程 瑜,李向前,趙增玉,張祥云,郭 剛
(江蘇省地質(zhì)調(diào)查研究院,南京 210049)
蘇北盆地TZK9孔磁性地層及重礦物組合特征研究
程 瑜,李向前,趙增玉,張祥云,郭 剛
(江蘇省地質(zhì)調(diào)查研究院,南京 210049)
通過對蘇北盆地TZK9孔的磁性地層和重礦物組合分析,探索了該地區(qū)晚上新世以來沉積物的物源變化特征。古地磁結(jié)果顯示,TZK9孔的M/G界線位于250.3 m,B/M界線位于78.5 m,并很好記錄了2次正極性亞時(Jaramillo和Olduvai),分別位于129.0~150.2 m與172.55~192.80 m,通過沉積速率外推獲得該鉆孔的底界年齡約為3.0 Ma。對TZK9孔重礦物組合、特征指數(shù)進行分析,并結(jié)合淮河及長江下游的重礦物組合特征,揭示在距今3.0~2.6 Ma其沉積物主要來自于淮河流域。而相比晚上新世,第四紀的磷灰石、鋯石、金紅石、電氣石含量增加,表明該地區(qū)開始受到了長江流域的影響,而第四紀以來重礦物特征指數(shù)(ZTR)逐漸增大可能主要受控于全球氣候變化。
晚上新世;磁性地層;重礦物;蘇北盆地
蘇北盆地位于江蘇省東北部,包括里下河平原和蘇北濱海平原,總面積約3.28×104km2。蘇北盆地是晚中生代以后發(fā)育的大型沉積盆地[1~3],歷史時期內(nèi)長江、黃河和淮河攜帶的大量物質(zhì)在此沉積了數(shù)千米厚的河湖相地層[4~6],其沉積物很好地記錄了長江、黃河和淮河的演化過程,是追蹤源和匯過程的理想?yún)^(qū)域。關(guān)于蘇北平原的物質(zhì)來源,前人的研究主要集中在全新世[7~9],對長尺度的物源變化研究較少,僅蘇強等[10]利用XH-1孔的粒度和磁化率的相關(guān)性進行了初步分析。
重礦物耐磨蝕、穩(wěn)定性強,能較多地保留其母巖的信息,在沉積物物源分析中占有重要地位[11~13]。本文通過對蘇北平原地區(qū)TZK9孔系統(tǒng)的磁性地層學(xué)研究,結(jié)合重礦物組合及特征指數(shù)分析結(jié)果,并與長江、淮河流域的重礦物組合進行對比,探討該地區(qū)晚上新世以來沉積物的物質(zhì)來源特征和水系變遷。
蘇北盆地東臨黃海,西接寧鎮(zhèn)揚丘陵崗地區(qū),北面為徐淮黃泛平原區(qū),南面與長江三角洲平原區(qū)相連,介于32°10′—35°05′N、118°40′—120°30′E之間。蘇北盆地大地構(gòu)造位置上屬于揚子陸塊的東北緣,西以郯廬斷裂為界,東面延伸入黃海,北接蘇魯造山帶,南鄰?fù)〒P隆起。晚白堊世—古近紀,隨著太平洋板塊向東亞板塊俯沖,中國東部區(qū)域應(yīng)力背景、應(yīng)變方式均發(fā)生了根本性改變,在構(gòu)造作用下,整體呈現(xiàn)“兩坳夾一隆”的構(gòu)造格局(即鹽阜坳陷-建湖隆起-東臺坳陷)。新近紀以來,全區(qū)持續(xù)拗陷,在河流、湖泊、海洋等外部營力的作用下,形成了連續(xù)的、巨厚的新生代地層,地貌上逐漸由盆地發(fā)展為平原。
2.1 剖面特征
TZK9孔(32°35′N,120°6′E)位于江蘇省泰州市東北約20 km處(見圖1)。鉆孔所處地區(qū)屬東亞季風氣候,雨熱同期,夏季高溫多雨,冬季寒冷干旱,年均降水量1038 mm左右,年平均氣溫14~15 ℃。
圖1 鉆孔位置圖Fig.1 Position of core TZK9
鉆探進尺共286.86 m,依據(jù)巖性特征,可將鉆孔自上而下分為16層:
(1)0~3.33 m,灰色、灰黑色黏土層,零星見鈣質(zhì)結(jié)核;
(2)3.33~8.46 m,灰黃色、黃灰色黏土、粉砂質(zhì)黏土、含黏土粉砂、黏土質(zhì)粉砂,局部富集銹黃色鐵錳質(zhì)斑點;
(3)8.46~16.2 m,灰色黏土、黏土質(zhì)粉砂與黏土混層、含粉砂黏土、黏土質(zhì)粉砂;
(4)16.2~37.55 m,灰色、灰綠色、棕黃色黏土、含黏土粉砂、黏土質(zhì)粉砂;
(5)37.55~76.1 m,以灰色為主,零星見棕黃色、灰綠色,巖性為含黏土粉砂、黏土、黏土質(zhì)粉砂、含粉砂黏土、粉砂質(zhì)黏土,零星見鈣質(zhì)結(jié)核,局部富集貝殼碎片;
(6)76.1~171.2 m,以灰黃、棕黃色為主,局部段為灰色,巖性為黏土、含粉砂黏土、粉砂質(zhì)黏土、黏土質(zhì)粉砂、含黏土粉砂、粉砂,局部夾灰綠色根痕及斑塊,零星見鈣質(zhì)結(jié)核、白色螺殼碎片及黑色、銹黃色鐵錳質(zhì)斑點、結(jié)核;
(7)171.2~179.5 m,淺灰色中砂、粗砂、含礫粗砂、礫質(zhì)粗砂、砂礫層,上部為深灰色粉砂夾灰褐色黏土,礫石礫徑0.2~0.5 cm不等,分選中等,為次磨圓—次棱角狀,主要成分為石英;
(8)179.5~180.12 m,淺灰色—灰白色含礫黏土質(zhì)粉砂,風化強烈,膠結(jié)作用強,礫石礫徑小(0.2~0.5 cm之間),磨圓、分選中等;
(9)180.12~183.85 m,灰色含礫中粗砂、含礫中砂,分選較差,粒徑0.2~4.0 cm;
(10)183.85~184.68 m,淺灰色黏土,頂部為不整合面,風化強烈,可見少量小的礫石和鈣質(zhì)結(jié)核;
(11)184.68~245.3 m,以棕黃色、棕紅色、灰黃色為主,局部見灰色,巖性為黏土、含粉砂黏土、含鈣質(zhì)結(jié)核含粉砂黏土、黏土質(zhì)粉砂、粉砂等;
(12)245.3~254.15 m,以黃灰色為主,局部段為灰黃色、灰色,巖性為粉砂—粉細砂,局部夾黏土質(zhì)粉砂及黏土團塊,其中可見少量鈣質(zhì)結(jié)核;
(13)254.15~268.1 m,由3個由粗至細的沉積旋回組成,自下而上分別為中細砂—中粗砂夾黏土、礫質(zhì)中粗砂—含礫中粗砂—細砂、砂礫層—中砂—含黏土粉砂;
(14)268.1~274.25 m,黃灰色黏土質(zhì)粉砂—粉砂、粉砂—粉細砂,局部段鈣質(zhì)膠結(jié)成砂盤,頂部為灰綠色黏土;
(15)274.25~280.8 m,棕黃—棕紅色含鈣質(zhì)結(jié)核黏土,灰綠色淋濾條帶發(fā)育,鈣質(zhì)結(jié)核較??;
(16)280.8~286.86 m,黃灰色粉砂質(zhì)黏土—黏土質(zhì)粉砂、粉砂—粉細砂,局部鈣質(zhì)膠結(jié)。
2.2 樣品采集及測試方法
鉆孔巖心以30 cm間距采集古地磁定向樣品共805塊,樣品測試在南京大學(xué)古地磁實驗室完成。熱退磁前首先測試了所有樣品的天然剩磁,根據(jù)不同的巖性按照0.3~0.6 m間距對382塊樣品用TD-48全自動熱退磁儀以15~100 ℃間隔進行了系統(tǒng)熱退磁,退磁溫度分別為100 ℃,200 ℃,250 ℃,300 ℃,340 ℃,380 ℃,420 ℃,460 ℃,500 ℃,525 ℃,550 ℃,565 ℃,580 ℃;將剩磁超過20%的樣品進行進一步加熱,溫度分別為610 ℃、640 ℃、670 ℃、690 ℃。在表征退磁結(jié)果的剩磁矢量正交投影圖(見圖2)上,所有樣品的剩磁均有2個分量——次生粘滯剩磁分量及原生特征剩磁分量,大部分樣品退磁效果較好,在低溫(小于300 ℃)分量獲得特征剩磁方向,退磁曲線基本呈線性且趨向原點。剩磁在2G-755型超導(dǎo)磁力儀上進行測試。
圖2 TZK9孔典型樣品熱退磁的剩磁矢量正交投影圖Fig.2 Orthogonal demagnetization plots diagram of typical normal and reversed samples from core TZK9
3.1 磁性地層
對于鉆孔樣品而言,由于北方向不確定,磁性地層的確立往往重點考慮磁傾角的變化特征。泰州TZK9孔的磁性地層結(jié)果如圖3所示。
圖3 TZK9巖石地層及磁性地層Fig.3 Lithostratigraphy and magnetostratigraphy of sediments from the core TZK9
磁性地層結(jié)果顯示,M/G界限位于鉆孔250.3 m處,B/M界線位于78.5 m,129~150.2 m和172.55~192.8 m,分別對應(yīng)Jaramillo和Olduvai正極性亞時。以古地磁界限作為年齡控制點,計算出每個序列的沉積速率(見圖4)。從圖4可以看出,中更新世以來的沉積速率為0.1 mm/a,0.78~1.07 Ma的沉積速率較高,為0.24~0.26 mm/a,1.07~2.58 Ma的沉積速率較低,為0.031~0.12 mm/a,根據(jù)1.945~2.58 Ma的平均速率0.09 mm/a推算出鉆孔的底界年齡約為3.0 Ma。根據(jù)極性倒轉(zhuǎn)界限年齡進行線性內(nèi)插獲得該鉆孔的時間標尺。
圖4 TZK9孔的深度-年齡關(guān)系圖Fig.4 Relationship between age and depth of sediments in core TZK9
3.2 重礦物
在相似的水動力條件下,重礦物特征指數(shù)(ATi指數(shù)、GZi指數(shù)、ZTR指數(shù)、風化指數(shù))可以很好反映物源特征[15]。ATi指數(shù)(磷灰石/(磷灰石+電氣石)×100)和GZi指數(shù)(石榴子石/(石榴子石+鋯石)×100)分別反映磷灰石的風化程度及變質(zhì)巖源區(qū)的變化特征[16~17],ZTR指數(shù)(鋯石+電氣石+金紅石)和風化指數(shù)(較穩(wěn)定礦物與不穩(wěn)定礦物之和/極穩(wěn)定礦物與穩(wěn)定礦物之和)代表礦物的成熟度,ZTR值越大,風化指數(shù)越小,則礦物的成熟度越高[18~19]。TZK9孔沉積物中的重礦物主要為鈦鐵礦和綠簾石,含有少量的鋯石、磷灰石、金紅石、白鈦石、石榴子石、電氣石、赤褐鐵礦、榍石、磁鐵礦、輝石、角閃石,藍晶石、銳鈦礦、黃鐵礦只在少數(shù)樣品中出現(xiàn)。
根據(jù)自上而下的重礦物組合特征,可將TZK9孔分為2個階段(見表1、表2)。
表1 TZK9孔中主要重礦物含量(%)的垂向變化特征
表2 TZK9孔中主要重礦物含量及特征參數(shù)的變化
階段一:3.0~2.6 Ma(285.5~253.3 m),以鈦鐵礦-綠簾石-磁鐵礦-石榴子石-鋯石為主,鈦鐵礦和綠簾石的含量較高,分別為32.56%~51.73%和16.13%~28.11%,磁鐵礦、石榴子石、鋯石的含量大部分低于10%,分別為4.71%~10.75%、4.38%~6.86%、1.96%~5.13%,還見少量的磷灰石(0.34%~2.06%)、金紅石(0.19%~0.48%)、白鈦石(0.32%~1.30%)、赤褐鐵礦(2.27%~6.86%)、榍石(0.17%~1.55%),電氣石、輝石、角閃石、藍晶石、銳鈦礦、黃鐵礦出現(xiàn)在局部層位,含量<2%。ATi指數(shù)位于63.43~100之間,表明沉積物源成分中磷灰石經(jīng)歷弱風化;GZi指數(shù)的變化范圍為46.02~77.81,平均值為61.34,表明來自變質(zhì)巖的石榴石比來自中酸性火成巖的比例高;ZTR指數(shù)的值較低,變化范圍為2.31~6.63,平均值為4.36;風化指數(shù)285.5 m處較低,為0.22,其余2個點為0.47、0.55,風化程度較高,以極穩(wěn)定礦物和穩(wěn)定礦物為主,沉積物經(jīng)過了較長的搬運距離和長期的風化剝蝕。
階段二:2.6~0 Ma(253.3~0 m):以鈦鐵礦-綠簾石-鋯石-磷灰石-石榴子石-磁鐵礦為主,相比上一階段,鋯石、磷灰石、金紅石含量增加,分別為3.32%~10.34%、1.22%~10.30%、0.47%~4.41%,石榴子石、白鈦石和赤褐鐵礦含量降低,分別為0.95%~7.52%、0.09%~2.13%和1.15%~10.98%,磁鐵礦含量變化范圍較大,為0~14.38%,角閃石的含量略有增加,為0~4.58%,在0~0.38 Ma(0~37.8 m),角閃石消失。相比上一階段,ATi指數(shù)變化不明顯;GZi指數(shù)變小,變化范圍11.48~68.47,平均值31.47,表明變質(zhì)巖源區(qū)的范圍有所減小,而中酸性的源區(qū)有所擴張;ZTR指數(shù)值增大,變化范圍4.34~14.47,平均值10.49;風化指數(shù)變化較小,礦物成熟度增加。
綜上所述,晚上新世以來,TZK9孔的重礦物組合以中基性巖漿巖的鈦鐵礦、巖漿期后接觸變質(zhì)礦物綠簾石、典型變質(zhì)巖礦物石榴子石、酸性—中酸性火成巖礦物鋯石、磷灰石、磁鐵礦、強氧化自生礦物赤褐鐵礦為主,而典型的變質(zhì)巖礦物藍晶石分布不穩(wěn)定;ATi指數(shù)在50.97~100之間,GZi指數(shù)位于11.48~77.81,表明沉積物來源為變質(zhì)巖與基性、中酸性巖漿巖的混合。
距今3.0~2.6 Ma,TZK9孔重礦物組合為鈦鐵礦-綠簾石-磁鐵礦-石榴子石-鋯石,與位于研究區(qū)西部丘陵地帶山前淮河流域的的JH孔(180~268 m)在此時期的重礦物組合為鈦鐵礦-綠簾石-赤褐鐵礦-磁鐵礦-石榴子石-鋯石-磷灰石[20]相似,而長江中下游地區(qū)的巖石以中酸性巖漿巖和沉積巖為主,重礦物組合以角閃石-綠簾石-赤褐鐵礦-磁鐵礦-輝石-石榴子石-鋯石為主[21],與TZK9孔存在極大差異。因此,在該時段,研究區(qū)主要受淮河流域的影響。
距今2.6~0 Ma,TZK9孔重礦物組合的鈦鐵礦-綠簾石-鋯石-磷灰石-石榴子石-磁鐵礦,相比上一階段,石榴子石含量減少,鋯石、磷灰石、電氣石、金紅石含量增加,表明源區(qū)變質(zhì)巖收縮而中酸性巖擴張;而JH孔相對于上一時段,這幾種礦物并沒有明顯的變化[20],表明這幾種重礦物含量的變化并不是由淮河流域引起的。研究區(qū)位于蘇北盆地的南側(cè),長江河床來回擺動影響到該地區(qū),南京—鎮(zhèn)江一帶發(fā)育的中酸性巖漿巖[22],為該地區(qū)提供了一部分物源。因此,在該時段,該地區(qū)的物質(zhì)來源仍以淮河為主,但也有一部分沉積物來自于長江下游,第四紀以來該地區(qū)開始受到長江流域的影響。
第四紀以來,全球氧同位素值從~3.3‰升高至現(xiàn)在的~4‰,表明全球氣候逐漸變冷[23~24]。在寒冷期,熱帶輻合帶(ITCZ)向南遷移,導(dǎo)致東亞夏季風減弱[25~26],從赤道地區(qū)向研究區(qū)輸送的水汽和熱量相對減少[27]。而晚上新世以來全球海平面下降[28],導(dǎo)致輸送水汽和熱量的距離增加,研究區(qū)的降水減少,地表徑流減弱。但另一方面,海平面下降致使河谷下切,河流侵蝕作用增強,其影響大于地表徑流減弱帶來的影響,沉積物的搬運能力和距離增加,分選作用增強,沉積物礦物成熟度增大,此結(jié)果與長江三角洲末次盛冰期ZTR指數(shù)特征[29]相符。因此,第四紀以來TZK9孔的ZTR指數(shù)的逐漸增高主要受控于全球氣候變化。
本文對長江三角洲北翼TZK9孔的古地磁和重礦物組合進行了系統(tǒng)研究。研究結(jié)果表明,TZK9孔記錄了距今3.0 Ma以來蘇北平原沉積物的變化,第四紀的底界位于250.3 m,B/M界線位于78.5 m;晚上新世以來,研究區(qū)的源巖為變質(zhì)巖、中基性巖漿巖、中酸性巖漿巖的混合,3.0~2.6 Ma的重礦物組合為鈦鐵礦-綠簾石-磁鐵礦-石榴子石-鋯石,主要受淮河流域的影響,2.6~0 Ma重礦物組合為鈦鐵礦-綠簾石-石榴子石-鋯石-磷灰石-磁鐵礦,中酸性巖成分磷灰石、鋯石、電氣石、金紅石含量的增加,是因為長江流域影響到了該地區(qū);第四紀以來ZTR指數(shù)的逐漸增加可能是受控于全球氣候變化。
[1] 包漢勇,郭戰(zhàn)峰,黃亞平,等. 蘇北盆地晚白堊世以來的構(gòu)造熱演化[J]. 高校地質(zhì)學(xué)報,2013,19(4):574~579.
BAO Han-yong,GUO Zhan-feng,HUANG Ya-ping,et al. Tectonic-thermal evolution of the Subei Basin since the Late Cretaceous[J]. Geological Journal of China Universities, 2013,19(4):574~579.
[2] 陳友飛,嚴欽尚,許世遠. 蘇北盆地沉積環(huán)境演變及其構(gòu)造背景[J]. 地質(zhì)科學(xué),1993,28(2):151~160.
CHEN You-fei,YAN Qin-shang,XU Shi-yuan. Evolution of the sedimentary environments in north Jiangsu Basin and its tectonic setting [J]. Scientia Geologica Sinaca, 1993,28(2):151~160.
[3] 邱海峻,許志琴,喬德武. 蘇北盆地構(gòu)造演化研究進展[J]. 地質(zhì)通報,2006,25(9/10):1117~1120.
QIU Hai-jun,XU Zhi-qin,QIAO De-wu. Progress in the study of tectonic evolution of the Subei Basin,Jiangsu,China [J]. Geological Bulletin of China,2006,25(9/10):1117~1120.
[4] 張喜林,朱筱敏,鐘大康,等. 蘇北盆地高郵凹陷古近系戴南組沉積相及其對隱蔽油氣藏的控制[J]. 古地理學(xué)報,2005,7(2):207~218.
ZHANG Xi-lin,ZHU Xiao-min,ZHONG Da-kang,et al. Sedimentary facies and its controlling on subtle oil and gas reservoirs of the Dainan Formation of Paleogene in Gaoyou sag,Subei Basin[J]. Journal of Palaeogeography,2005,7(2):207~218.
[5] 錢基. 蘇北盆地油氣田的形成與分布特征[J]. 石油大學(xué)學(xué)報(自然科學(xué)版),2000,24(4):21~25.
QIAN Ji. Formation and distribution of oil and gas fields in Subei Basin [J]. Journal of the University of Petroleum,China,2000,24(4):21~25.
[6] 高麗坤,林春明,姚玉來,等. 蘇北盆地高郵凹陷古近系戴南組沉積相及沉積演化[J]. 沉積學(xué)報,2010,28(4): 706~716.
GAO Li-kun,LIN Chun-ming,YAO Yu-lai,et al. Sedimentary facies and evolution of Paleogene Dainan Formation in Gaoyou sag,Subei Basin [J]. Acta Sedimentologica Sinica,2010,28(4):706~716.
[7] 楊守業(yè),李從先,張家強. 蘇北濱海平原全新世沉積物物源研究——元素地球化學(xué)與重礦物方法比較 [J]. 沉積學(xué)報,1999,17(3):458~463.
YANG Shou-ye,LI Cong-xian,ZHANG Jia-qiang. Provenance study of holicene sediments in subei coastal Plain-Comparison between elemental geochemistry and heavy mineral methods [J].Acta Sedimentologica Sinica,1999,17(3):458~463.
[8] 馮金順,孫磊,葛云,等. 江蘇省里下河 (興化-泰州) 地區(qū)淺表沉積物特征及古地理環(huán)境演變[J]. 江蘇地質(zhì),2007,31(2):101~107.
FENG Jin-shun,SUN Lei,GE Yun,et al. On shallow sediment properties and paleogeographic evolvement in Xinghua-Taizhou,Jiangsu [J]. Jiangsu Geology, 2007,31(2):101~107.
[9] 舒強,李才林,趙志軍,等. 蘇北盆地淺鉆沉積物磁化率與粒度記錄的末次冰消期以來的環(huán)境變化[J]. 沉積學(xué)報,2009,27(1): 111~117.
SHU Qiang,LI Cai-lin,ZHAO Zhi-jun,et al. The records of mass susceptibility and grain size for climate changes in Subei Basin during the last deglaciation [J]. Acta Sedimentologica Sinica,2009,27(1): 111~117.
[10] 舒強,張茂恒,趙志軍,等. 蘇北盆地 XH-1 鉆孔晚新生代沉積記錄特征及其與長江貫通時間的關(guān)聯(lián)[J]. 地層學(xué)雜志,2008, 32(3):308~314.
SHU Qiang,ZHANG Mao-heng,ZHAO Zhi-jun,et al. Sedimentary record from the XH-1 core in north Jiangsu Basin and its implication on the Yangtze river run-through time [J]. Journal of Stratigraphy,2008, 32(3):308~314.
[11] Garzanti E,Andò S. Heavy mineral concentration in modern sands: implications for provenance interpretation [J]. Developments in Sedimentology,2007,58:517~545.
[12] Garzanti E,Andò S,Vezzoli G. Settling equivalence of detrital minerals and grain-size dependence of sediment composition [J]. Earth and Planetary Science Letters,2008,273(1):138~151.
[13] Heroy D C,Kuehl S A,Goodbred S L. Mineralogy of the Ganges and Brahmaputra Rivers: implications for river switching and Late Quaternary climate change [J]. Sedimentary Geology,2003,155(3):343~359.
[14] Ogg J G,Smith A G. The geomagnetic polarity time scale [M]. Massachusetts: Woods Hole Oceanographic Institution,2004.
[15] Morton A C,Hallsworth C R. Processes controlling the composition of heavy mineral assemblages in sandstones [J]. Sedimentary Geology,1999,124(1):3~29.
[16] 趙紅格,劉池洋. 物源分析方法及研究進展[J]. 沉積學(xué)報,2003,21(3):409~415.
ZHAO Hong-ge,LIU Chi-yang. Approaches and prospect of provenance analysis [J].Acta Sedimentologica Sinaca,2003,21(3):409~415.
[17] Morton A,Hurst A. Correlation of sandstones using heavy minerals:an example from the Statfjord Formation of the Snorre Field,northern North Sea [J]. Geological Society,London,Special Publications,1995,89(1):3~22.
[18] 和鐘鏵,劉招君. 柴達木盆地北緣大煤溝剖面重礦物分析及其地質(zhì)意義[J]. 世界地質(zhì),2001,20(3):279~284.
HE Zhong-hua,LIU Zhao-jun,Guo Wei. The heavy mineral analysis and its geological significance of dameigou section in northern Caidam Basin[J]. World Geology,2001,20(3):279~284.
[19] 陸潔民,郭召杰,趙澤輝,等. 新生代酒西盆地沉積特征及其與祁連山隆升關(guān)系的研究[J]. 高校地質(zhì)學(xué)報,2004,10(1):50~61.
LU Jie-min,GUO Zhao-jie,ZHAO Ze-hui,et al. Cenozic sedimentation characteristics of Jiuxi Basin and uplift history of northern Qilian mountain[J]. Geological Journal of China Universities, 2004,10(1):50~61.
[20] 鄭良爍. 蘇北興化2孔晚中新世以來重礦物物源示蹤研究[D]. 南京: 南京師范大學(xué),2013.
ZHENG Liang-shuo. The provenance study of the heavy mineral of 2 core since the late Miocene,in Xinghua,Subei Basin[D]. Nanjing: Nanjing Normal University,2013.
[21] 王臘春,陳曉玲,儲同慶. 黃河、長江泥沙特性對比分析[J]. 地理研究,1997,16(4):71~79.
WANG La-chun,CHEN Xiao-ling,CHU Tong-qing. A contrast analysis on the loads character of the Yangtze River and the Yellow River[J].Geographical Research,1997,16(4):71~79.
[22] 江蘇省地質(zhì)礦產(chǎn)局. 江蘇省及上海市區(qū)域地質(zhì)志[M]. 北京:地質(zhì)出版社,1984:1~857.
Jiangsu Geology & Mineral Exploration Bureau. Regional geology of Jiangsu Province and Shanghai [M]. Beijing:Geological Publishing House,1984: 1~857.
[23] Zachos J C,Dickens G R,Zeebe R E. An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics [J]. Nature,2008,451(7176):279~283.
[24] De Boer B,Van de Wal R S W,Bintanja R,et al. Cenozoic global ice-volume and temperature simulations with 1-D ice-sheet models forced by benthicδ18O records [J]. Annals of Glaciology,2010,51(55):23~33.
[25] Yancheva G,Nowaczyk N R,Mingram J,et al. Influence of the intertropical convergence zone on the East Asian monsoon [J]. Nature,2007,445(7123):74~77.
[26] Wan S,Li A,Clift P D,et al. Development of the East Asian monsoon:mineralogical and sedimentologic records in the northern South China Sea since 20 Ma [J]. Palaeogeography,Palaeoclimatology,Palaeoecology,2007,254(3):561~582.
[27] Oppo D W,Sun Y. Amplitude and timing of sea-surface temperature change in the northern South China Sea: Dynamic link to the East Asian monsoon [J]. Geology,2005,33(10):785~788.
[28] Miller K G,Kominz M A,Browning J V,et al. The Phanerozoic record of global sea-level change [J]. Science,2005,310(5752):1293~1298.
[29] 王揚揚,范代讀. 長江三角洲晚第四紀地層沉積物源特征及其對季風氣候變化的響應(yīng)[J]. 古地理學(xué)報,2013,15(6):853~863.
WANG Yang-yang,F(xiàn)AN Dai-du. Provenance characteristics of the late Quaternary in the Yangtze River Delta and its response to monsoon climate change[J]. Journal of Palaeogeography,2013,15(6):853~863.
MAGNETOSTRATIGRAPHY AND HEAVY MINERALS RECORDS OF TZK9 CORE IN SUBEI BASIN
CHENG Yu, LI Xiang-qian, ZHAO Zeng-yu, ZHANG Xiang-yun, GUO Gang
(TheInstituteofGeologicalSurveyofJiangsuProvince,Nanjing210049,China)
The core TZK9 is located in the northeast Taizhou city (N 32°35′,E120°6′),the south of Subei Basin. The main kinds of lithology in the core are clay and silty clay. Some silt, sand and coarse sand are also found. In this study, 382 samples at 30~60 cm intervals were taken for paleomagnetic measurements,and 17 samples for heavy minerals test. Magnetostratigraphic results show that, the M/G and B/M are found at the depth of 250.3 and 78.5 m, respectively. Extrapolation with accumulation rates suggest that the basal ages for sediments in this core is about 3.0 Ma. ATi index was from 50.97 to 100,while GZI index was 11.48 to 77.81,indicating that the source was metamorphic and igneous rocks. During 3.0~2.6 Ma, the main heavy minerals of TZK9 core were ilmenite, epidote, magnetite, garnet and zircon. Comparing the heavy minerals of the TZK9 core with Huai river and Yangtze river,it shows that the sediment came from the Huai river during this time. During 2.6~0 Ma, the main heavy minerals are ilmenite, epidote, zircon, apatite, garnet and magnetite. The content of zircon, apatite, tourmaline, rutile increases compared to the previous period, and it indicates that the Yangtze river begin to influence this area in this period. And the ZTR index gradually increased since 2.6 Ma, which may be related to the change of global climate.
Late Pliocene; magnetic stratigraphy; heavy minerals; the Subei Basin
1006-6616(2016)04-0994-10
2016-06-16
中國地質(zhì)調(diào)查局地質(zhì)調(diào)查項目“特殊地質(zhì)地貌區(qū)填圖試點”(DD20160060)、“江蘇1∶5萬港口、泰縣、張甸公社、泰興縣、生祠堂鎮(zhèn)幅平原區(qū)填圖試點”(12120114042901)
程瑜(1989-),女,助理工程師,主要從事古環(huán)境研究工作。E-mail:ftchengyu@msn.com
P539.3;P534.63
A