• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Application of isotopic information for estimating parameters in Philip infiltration model

    2016-03-03 00:59:01ToWngHiliXuWeiminBo
    Water Science and Engineering 2016年4期

    To Wng*,Hi-li XuWei-min Bo

    aPowerChina Chengdu Engineering Corporation Limited,Chengdu 610072,China

    bState Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering,Hohai University,Nanjing 210098,China

    Application of isotopic information for estimating parameters in Philip infiltration model

    Tao Wanga,*,Hai-li Xua,Wei-min Baob

    aPowerChina Chengdu Engineering Corporation Limited,Chengdu 610072,China

    bState Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering,Hohai University,Nanjing 210098,China

    Minimizing parameter uncertainty is crucialin the application of hydrologic models.Isotopic information in various hydrologic components of the water cycle can expand our knowledge of the dynamics of water fl ow in the system,provide additional information for parameter estimation,and improve parameter identifi ability.This study combined the Philip infiltration model with an isotopic mixing model using an isotopic mass balance approach for estimating parameters in the Philip infiltration model.Two approaches to parameter estimation were compared:(a)using isotopic information to determine the soilwater transmission and then hydrologic information to estimate the soilsorptivity, and(b)using hydrologic information to determine the soil water transmission and the soil sorptivity.Results of parameter estimation were verifi ed through a rainfallinfiltration experimentin a laboratory under rainfallwith constantisotopic compositions and uniform initialsoilwater content conditions.Experimental results showed that approach(a),using isotopic and hydrologic information,estimated the soil water transmission in the Philip infiltration modelin a mannerthatmatched measured values well.The results of parameter estimation of approach(a)were better than those of approach(b).Itwas also found thatthe analytical precision of hydrogen and oxygen stable isotopes had a signifi canteffect on parameter estimation using isotopic information.

    Isotopic information;Hydrologic information;Parameter estimation;Philip infiltration model;Rainfall infiltration experiment

    1.Introduction

    The successful application of a catchment model depends on the accuracy of hydrologic and hydraulic parameters used for the simulations and structures of the model.Model structures are based on the catchment characteristics and conceptualization of a realistic study system(Fenicia et al.,2008). Because some model parameters are difficult or impossible to measure in the natural world,model parameters are often estimated from secondary information sources(Fonseca et al.,2014).In fact,only some available data are used in model calculation because of the limitation of data(Wagener,2003). Abundance of data is the foundation of understanding model structures and parameter estimation.Data mining and other auxiliary data are two important methods,apart from the traditional measurement method,for collecting information in a given catchment.The data mining method primarily extracts useful information from collected data using mathematical techniques(e.g.,the clustering method),while auxiliary data means an increasing quantity of data independent of stream discharge and other hydrologic data.Hydrogen and oxygen isotopes are good auxiliary data tools and often used to trace water movement in the water cycle in order to provide orthogonal information on the catchment behavior(Fenicia et al.,2008).The combination of isotopic information and hydrologic information can provide plenty of availableinformation for model calculation and reduce uncertainty in parameterestimation.The ways isotopic information is used in a hydrologic modelfor parameter estimation should be further developed.Dunn et al.(2008)studied the mixing processes and mean residence time in a set of nested sub-catchments in northeast Scotland as determined from isotopic data,which could reduce parameter uncertainty in a rainfall-runoff model. Sprenger et al.(2015)used the stable isotope composition of the soil pore water depth profile as a single or additional optimization target,and estimated flow and transport parameters in the unsaturated zone.They found that using both the isotope profiles and the soil moisture time series resulted in good simulation results and strong parameter identifiability. When only data from isotope profi les in combination with textural information were available,the results were still satisfactory(Sprenger etal.,2015).Klaus et al.(2015)studied temporal dynamics of catchment transit times from stable isotope data.They extracted information on catchment mixing from the stable isotope time series instead of prior assumptions of mixing or the shape of transit time distribution,and demonstrated proof of the concepts of the approach with artificial data.This indicated that the Nash-Sutcliffe efficiencies in tracer and instantaneous transit times were higher than 0.9.

    The complexities of model structures and number of parameters have a significant effect on parameter estimation using isotopic information.The two-parameter Philip infiltration model with a simple model structure has a specific physical foundation and is widely used to simulate rainfall infi ltration.However,because of limitations in observed hydrologic data,parameter estimation in a Philip infiltration model may be diffi cult.The objective of this study was to combine isotopic information with hydrologic information to estimate the parameters of a Philip infiltration modelthrough a rainfall-infi ltration experiment in a laboratory,and compare them with the results of parameter estimation using only hydrologic information.

    2.Methods

    2.1.Philip infiltration equation

    The Philip infiltration equation(Philip,1957a,1957b)was derived from Richard's equation with water vertically infiltrating into the unsaturated and semi-infinite homogeneous soilunder constantinitialwater contentconditions(Prevedello et al.,2009).The infiltration rate with time,i(t)in cm·h-1,is defined as

    where t is the infi ltration time(h),S is the soil sorptivity (cm·h-0.5),and A is the soilwater transmission(cm·h-1).The parameters S and A are related to soil diffusivity and moisture retention characteristics(Mishra et al.,2003).In this paper,S is taken into account as the average soil sorptivity,and A equals the saturated hydraulic conductivity Ks,which does not lead to serious errors in model calculation(Swartzendruber and Youngs,1974).The soil sorptivity S appears to be correlated with the soil water transmission A(Wang et al.,2006).

    The cumulative infiltration with time,I(t)in cm,can be expressed as

    In reality,Eqs.(1)and(2)are applicable to a limited time span(Prevedello et al.,2009).However,the classical Philip infiltration equation is still widely used for a constant head boundary neglecting the effect of a limited time span.

    2.2.Model parameter estimation using hydrologic

    information

    Two parameters of the Philip infi ltration model need to be estimated:the soil sorptivity S and soil water transmission A. There are also two major methods for parameter estimation using hydrologic information,namely,the linear graphic method and the least squares method(Bristow and Savage, 1987).In the linear graphic method,data of cumulative infiltration with time are plotted on a fi gure with t0.5as the abscissa and I(t)t-0.5as the ordinate.Then,the parameters S and A can be respectively obtained from the intercept and slope of the fi gure.The least squares method is used to optimize S and A through fi tting observed data and Eq.(1)or(2).Notwithstanding that the linear graphic method can easily obtain the model parameters,it is highly arbitrary due to t0.5existing on both axes in order to introduce self-correlation and limitation of data at time t=0(Bonell and Williams,1986).The least squares method shows objective characteristics and is widely used to estimate parameters of a model.In this study,S and A were estimated from observed data of cumulative infi ltration calculated with Eq.(2)using the least square method,and the calculated results were regarded as parameters obtained from hydrologic information.Effects of limited time on model calculation were neglected or considered errors in the parameter estimation process using hydrologic information due to the deficiency of available data.

    2.3.Modelparameter estimation using isotopic information

    Model parameter estimation using isotopic information is implemented with the isotopic mixing modelbased on isotope mass balance.The isotopic mixing model combines isotopic information with hydrologic information,and can be expressed as

    where Cj-1and Cjare the isotopic compositions of mixing water in the mixing tank at time tj-1and tj,respectively,and j indicates the time sequence;Cp,j-1is the isotopic composition of input water(e.g.,rainfall)at time tj-1;ΔV is the volume of water infiltrating into soil from time tj-1to tj;and V0represents the initial soil water volume,which is equal to thevolume of the mixing tank.The application of the isotopic mixing modelis based on certain conditions in which isotopic variations of soil water are primarily caused by isotopic mixing of rainfall and soil water in the process of infi ltration. Itis noted thatthis study only examined the rainfallinfi ltration under rainfallwith constantisotopic compositions and uniform initial soilwater contentconditions.The isotopes of soilwater and rainfall reached a balance between 0.5 h and 1 h after the beginning of the mixing process(Wang et al.,2010).

    When water fl ows out of the lower boundary of soil layers, the infi ltration rate gradually becomes a constant,equal to the saturated hydraulic conductivity Ks(Mishra et al.,2003). Thus,A can be indirectly obtained through estimation of the saturated hydraulic conductivity from observed data in the lower boundary of the soil column.The total amount of cumulative infiltration is divided into N equal parts and the volume of each partisΔV.When the infi ltration rate reaches a stable value,eachΔV volume of water infi ltrating into soilwill take the same time intervalΔt.Then,the relationship between ΔV and A isΔV=AΔtB,where B is the area of the crosssection of soil layers.As forΔV volume of water infi ltrating into soil,the water movements are described by the Philip infiltration model while isotopic variations are calculated using the isotopic mixing model.In an isotopic mixing model, theΔV volume of infiltrating water with isotopic composition Cp,j-1mixes with V0volume of water in the mixing tank with the isotopic composition Cj-1.As mixing is completed,the isotopic composition of mixing waters becomes Cj.There is ΔV volume of mixing water immediately fl owing out of the mixing tank,resulting in the volume of the mixing tank maintaining the value of V0.An assumption is introduced that lag timeτof the mixing water fl owing out of the lower boundary equals the time of water movement in the soil column.The relationship between the isotopic composition CjandΔV of outfl ow is established using the isotopic mixing model.DifferentΔV values correspond to different results of Cjwith time through trial calculations.Therefore,A can be estimated with the isotopic results of outflow.The time interval of isotopic results calculated using the isotopic mixing modelshould be treated the same as the time interval of water sampling during the experiment.Subsequently,the root mean squared error(RMSE)between calculations and observations of isotopic compositions of outflow,which is the criterion for estimating parameter A,is computed.

    In fact,isotopic information can only be used to establish the parameter A.Another parameter,the soil sorptivity S,is obtained by substituting the established parameter A and observed hydrologic data into Eq.(2).The water movements and isotopic variations above the lower boundary of soil layers are nottaken into account due to lack of relevant information.

    3.Rainfall infiltration experiment

    A rainfall infi ltration experiment was performed from 8:00 am on May 20 to 8:00 am on May 24,2008.The experimental site was set up in a rainfall simulation laboratory.In order to obtain a uniform initial soil water content profi le,the air-dried soils,from the soil surface of a hillside, were sealed in a container for three days.The initial water content measured by the oven-drying method was 53 g/kg. The initialsoilwater was extracted by the vacuum distillation method,with the values ofδD(deuterium)andδ18O(oxygen-18)being-27‰ and-3.5‰,respectively.The maximum extraction errors ofδD andδ18O using the vacuum distillation method in this experiment were-12‰and-0.7‰,respectively(Wang et al.,2009).Soils were packed into a transparent acrylic column 100 cm long and 15 cm in diameter with a bulk density of 1.22 g·cm-3,a total thickness of 84 cm,and weight of 18.116 kg.

    A rainfall simulator was placed above the soil surface, which consisted of a sprinkler made of hypodermic needles similar to those described in Liu etal.(2008).A Marriott tube was used to supply water and a graduated ruler was pasted on itfor measuring infiltration water with time(Fig.1).The water used for simulating rainfall was sealed and stored in a large container 65 cm long and 50 cm in diameter to ensure constant isotopic compositions during the experiment.The values ofδD andδ18O of water used for simulating rainfallwere-50‰and -7.2‰,respectively.A total volume of 16.313 L of water infiltrated into the soil during the experiment.The time from water infi ltration to ponded water appearance was less than 20 min.The wetting front was measured with time,which could be indirectly used to calculate the cumulative infi ltration.The interfaces among the Marriott tube,rainfall simulator,and column were well sealed to reduce the effect of the evaporation fractionation.Water fl owed out of a column after 14.8 h of rainfall infiltration,and the rainfall process lasted 59.35 h.The air temperature ranged from 21.3°C to 25.9°C, with a mean value of 23.1°C,and the relative humidity ranged from 48%to 79%,with a mean value of 58%.

    Fig.1.Photo of rainfall infiltration experiment.

    Water samples were collected at the bottom outlet of the column using 30-mL plastic bottles at predeterminedintervals.The time of collection for each water sample was recorded in order to calculate the soil water transmission. Hydrogen and oxygen isotopic compositions of water samples were measured using a MAT-253 mass spectrometer in the isotopic laboratory of the Ministry of Land and Resources in Beijing,China.The measured results were expressed as δvalues relative to the international standard Vienna Standard Mean Ocean Water(VSMOW).Analytical precisions were±2‰ and±0.2‰ for hydrogen and oxygen isotope analyses,respectively.

    4.Results and discussion

    4.1.Isotopic mixing of rainfall and soil water

    The application of an isotopic mixing modelis based on the condition in which isotopic variations of soil water in infiltration are mainly caused by the isotopic mixing ofrainfalland soil water.In the cases of rainfall with constant isotopic compositions and a slight effect of evaporation fractionation, the isotopic values of mixed rainfall and soil water should lie between the isotopic values of rainfall and soil water as end members(Shanley et al.,1998).Fig.2 shows the isotopic relationships between rainfall,the initial soil water,and outfl ow of the column.In this fi gure,the number represents the order of isotopic variations of outflow with time.δ18O values of outflow ranged from-7.7‰ to-3.7‰ with an average value of-6.6‰,andδD values ranged from-55‰to-28‰with an average value of-47‰.Fig.2 shows that isotopic values of outflow varying with time were located on or beside the mixing line that connected the isotopic values of rainfall and the initial soil water.The results indicated that isotopic variations of outflow water were primarily caused by the mixing of rainfall and soil water.Some data points away from the mixing line,such as point23 at the end of the experiment, might be mainly attributed to isotopic analysis errors of water samples.

    4.2.Results of parameter estimation

    Fig.2.Relationship betweenδD andδ18O values of outflow.

    The parameters were determined using hydrologic information.Observed data of the cumulative infiltration I(t)were fitted using Eq.(2)and the least squares method.The parameter A was derived as 1.35 cm·h-1and the parameter S was 4.00 cm·h-0.5.The value ofΔt was set as 1 h.The value ofΔV was 239 mL,corresponding to the parameter A determined using hydrologic information,while 210 mL ofΔV with a stable infiltration rate of 1.19 cm·h-1were calculated from observed data.Because the time ponded water appeared above the soil surface was less than 20 min in the experiment,the effect of time on infi ltration for modelcalculation was ignored in this study.The parameter A determined using hydrologic information was close to the observed stable infi ltration rate.

    Then,the model parameters were estimated by applying isotopic information.Relationships between A and isotopic compositions of outflow were indirectly determined using the isotopic mixing model.Fig.3 shows the relationship between parameter A and the root mean squared error(RMSE)of simulations and observations of isotopic compositions of outflow.The values of A obtained by the minimum values of RSME of hydrogen and oxygen isotopes were different.The values of A estimated with hydrogen isotopic information were smaller than those observed,while oxygen isotopic information showed a contrary result,with estimated values of A larger than those observed.As hydrogen and oxygen isotopes were simultaneously transported in soil profi les experiencing the slight effect of evaporation fractionation,the reason fordifferent values of A estimated using hydrogen and oxygen isotopic information might just be isotopic analysis errors of water samples and extraction errors in the initial soil water using the vacuum distillation method.The arithmetic average value of A determined using hydrogen and oxygen isotopic information was regarded as the fi nal value of the parameter, i.e.,1.15 cm·h-1.The parameter S,with a value of 4.64 cm·h-0.5,was obtained by substituting the estimated A value and observed data into Eq.(2).

    Fig.3.Relationship between parameter A and RMSE for hydrogen and oxygen isotopes.

    Table 1 shows the results of parameters estimated using hydrologic and isotopic information.As shown in Table 1,the value of A using only hydrogen or oxygen isotopic information is larger or smaller than that of the observed value,while that using hydrogen and oxygen isotopic information(the arithmetic average value)approaches the observed value.Parameters estimated using oxygen isotopic information are almost the same as those estimated using hydrologic information. Therefore,isotopic information could be used to estimate parameters of the Philip infi ltration model well with insufficient available hydrologic data.Furthermore,the combination of isotopic and hydrological information could increase the quantity of available information for modelcalculation,reduce the uncertainty of parameters,and provide a usefulmethod for parameter estimation.

    4.3.Simulation results of isotopic mixing model and Philip infiltration model

    ΔV with a value of 203 mL,corresponding to the parameters A and S determined using isotopic information with values of 1.15 cm·h-1and 4.64 cm·h-0.5,respectively,was substituted into the isotopic mixing model to calculate the isotopic variations of outfl ow in the soil column with time. Fig.4 shows isotopic variations of outfl ow using the isotopic mixing modelwith the comparison of observed values.It can be seen that the isotopic mixing model could describe isotopic variations of outfl ow well and combine isotopic and hydrologic information to estimate model parameters. Eq.(3)shows that parameter estimation using isotopic information is affected not only by the isotopic analysis errors of rainfall,but also by isotopic extraction errors with use of the vacuum distillation method.The initial soil water was fi rst extracted from soil using the vacuum distillation method,and then measured using a MAT-253 mass spectrometer with rainfall and mixing water.Errors inevitably existed in the extraction and measurement process of water samples,resulting in an increase in uncertainty of parameter estimation.

    Table1 Parameters estimated using hydrologic and isotopic information.

    Fig.4.Observed and simulated isotopic values of outflow.

    The cumulative infi ltration varying with time before water fl owed outof the lower boundary of soilwas calculated from Eq.(2)using parameters estimated by isotopic and hydrologic information with comparison of observations(as shown in Fig.5).The infi ltration rate gradually became constant with water fl owing out of the soil column.The cumulative infiltration calculated using estimated parameters with isotopic and hydrologic information was 34.87 cm and 35.43 cm,respectively,while the measured value was 34.63 cm at the end of the experiment.This indicates that the value of total cumulative infi ltration using parametersestimated with isotopic and hydrologic information was close to the observed value.

    Fig.5.Relationship between cumulative infiltration and time.

    5.Conclusions

    Sufficient available model information is critical to estimating model parameters.Hydrogen and oxygen isotopes are effective auxiliary data tools for providing large amounts of model information due to their tracer characteristics.In this study,an isotopic mixing model,which combined isotopic and hydrologic information,was used to estimate parameters in a Philip infi ltration model.A ponded water rainfall-infiltration experiment was performed under rainfall with constant isotopic compositions and uniform initial soil water content conditions.The experimental results show that the parameter A estimated using isotopic information was close to the observed value,and errors in isotopic analysis of water samples affected the parameter estimation.Therefore,isotopic information can be used to estimate parameters of a model in the absence of hydrologic information.Application of both isotopic and hydrologic information provides a potential method for determining parameters for modelapplications and reduces the uncertainty in parameter estimation.This study only focused on two parameters of the Philip infiltration model using isotopic information through rainfall-infiltration experiments.Further research might be required for the research method to be used in more complex hydrological models.

    Bonell,M.,Williams,J.,1986.Two parameters of the Philip infiltration equation:Their properties and spatial and temporalheterogeneity in a red earth of tropical semi-arid Queensland.J.Hydrol.87(1-2),9-31.http:// dx.doi.org/10.1016/0022-1694(86)90112-5.

    Bristow,K.L.,Savage,M.J.,1987.Estimation of parameters for the Philip two-term infiltration equation applied to field soil experiments.Aust.J. Soil Res.25(4),369-375.http://dx.doi.org/10.1071/SR9870369.

    Dunn,S.M.,Bacon,J.R.,Soulsby,C.,Tetzlaff,D.,Stutter,M.I.,Waldron,S., Malcolm,I.A.,2008.Interpretation of homogeneity inδ18O signatures of stream water in a nested sub-catchment system in north-east Scotland. Hydrol.Process.22(24),4767-4782.http://dx.doi.org/10.1002/hyp.7088.

    Fenicia,F.,McDonnell,J.J.,Savenije,H.H.G.,2008.Learning from model improvement:On the contribution of complementary data to process understanding.Water Resour.Res.44(6),W06419.http://dx.doi.org/ 10.1029/2007WR006386.

    Fonseca,A.,Ames,D.P.,Ping,Y.,Botelho,C.,Rui,B.,Vilar,V.,2014. Watershed model parameter estimation and uncertainty in data-limited environments.Environ.Model.Softw.51,84-93.http://dx.doi.org/ 10.1016/j.envsoft.2013.09.023.

    Klaus,J.,Chun,K.P.,Mcguire,K.J.,Mcdonnell,J.J.,2015.Temporal dynamics of catchment transittimes from stable isotope data.Water Resour. Res.51(6),4208-4223.http://dx.doi.org/10.1002/2014WR016247.

    Liu,J.T.,Zhang,J.B.,Feng,J.,2008.Green-Amptmodelforlayered soils with nonuniform initialwater contentunder unsteady infiltration.Soil Sci.Soc. Am.J.72(4),1041-1047.http://dx.doi.org/10.2136/sssaj2007.0119.

    Mishra,S.K.,Tyagi,J.V.,Singh,V.P.,2003.Comparison of infiltration models. Hydrol.Process.17(13),2629-2652.http://dx.doi.org/10.1002/hyp.1257.

    Philip,J.R.,1957a.The theory of infiltration:1.The infiltration equation and its solution.SoilSci.83(5),345-358.http://dx.doi.org/10.1097/00010694-200606001-00009.

    Philip,J.R.,1957b.The theory of infiltration:4.Sorptivity and algebraic infiltration equations.Soil Sci.84(3),257-264.http://dx.doi.org/10.1097/ 00010694-195709000-00010.

    Prevedello,C.L.,Loyola,J.M.T.,Reichardt,K.,Nielsen,D.R.,2009.New analytic solution related to the Richards,Philip,and Green-Amptequations for infiltration.Vadose Zone J.8(1),127-135.http://dx.doi.org/10.2136/ vzj2008.0091.

    Shanley,J.B.,Pendall,E.,Kendall,C.,Stevens,L.R.,Michel,R.L., Philips,P.J.,Forester,R.M.,Naftz,D.L.,Liu,B.L.,Stem,L.,etal.,1998. Isotopes as indicators of environmental change.In:Kendall,C., McDonnell,J.J.,eds.,Isotope Tracers in Catchment Hydrology.Elsevier Science B.V.,Amsterdam,pp.761-816.http://dx.doi.org/10.1016/B978-0-444-81546-0.50029-X.

    Sprenger,M.,Volkmann,T.H.M.,Blume,T.,Weiler,M.,2015.Estimating flow and transport parameters in the unsaturated zone with pore water stable isotopes.Hydrol.Earth Syst.Sci.19(6),2617-2635.http:// dx.doi.org/10.5194/hess-19-2617-2015.

    Swartzendruber,D.,Youngs,E.G.,1974.A comparison of physically-based infiltration equations.Soil Sci.117(3),165-167.http://dx.doi.org/ 10.1097/00010694-197403000-00005.

    Wagener,T.,2003.Evaluation of catchment models.Hydrol.Process.17(16), 3375-3378.http://dx.doi.org/10.1002/hyp.5158.

    Wang,Q.J.,Zhang,J.H.,Fan,J.,2006.An analytical method for relationship between hydraulic diffusivity and soil sorptivity.Pedosphere 16(4), 444-450.http://dx.doi.org/10.1016/S1002-0160(06)60074-X.

    Wang,T.,Bao,W.M.,Chen,X.,Shi,Z.,Hu,H.Y.,Qu,S.M.,2009.Soilwater extraction using vacuum distillation technology.J.Hohai Univ.Nat.Sci. 37(6),660-664.http://dx.doi.org/10.3876/j.issn.1000-1980.2009.06.010 (in Chinese).

    Wang,T.,Bao,W.M.,Li,L.,2010.Isotopic variations of soiland inputwater mixing.Hydrogeol.Eng.Geol.37(2),104-107.http://dx.doi.org/10.3969/ j.issn.1000-3665.2010.02.023(in Chinese).

    Received 30 November 2015;accepted 15 September 2016

    Available online 6 January 2017

    This work was supported by the National Natural Science Foundation of China(Grant No.51279057).

    *Corresponding author.

    E-mail address:wangtaogo@163.com(Tao Wang).

    Peer review under responsibility of Hohai University.

    ?2016 Hohai University.Production and hosting by Elsevier B.V.This is an open access article under the CC BY-NC-ND license(http:// creativecommons.org/licenses/by-nc-nd/4.0/).

    欧美成人一区二区免费高清观看| 日日干狠狠操夜夜爽| 一级毛片久久久久久久久女| 麻豆成人午夜福利视频| 校园春色视频在线观看| 级片在线观看| 不卡视频在线观看欧美| 12—13女人毛片做爰片一| 精品久久久久久久久亚洲| 中文精品一卡2卡3卡4更新| 精品久久久久久久久av| 毛片一级片免费看久久久久| 性欧美人与动物交配| 亚洲人成网站高清观看| 日本成人三级电影网站| 日韩欧美一区二区三区在线观看| 一个人免费在线观看电影| 精品欧美国产一区二区三| 欧美丝袜亚洲另类| 中文在线观看免费www的网站| 亚洲人成网站在线播| 亚洲无线观看免费| 欧美日本亚洲视频在线播放| 国产一区二区亚洲精品在线观看| 亚洲欧美中文字幕日韩二区| a级一级毛片免费在线观看| 亚洲人成网站在线播放欧美日韩| 日韩三级伦理在线观看| 国产亚洲精品久久久com| 蜜桃久久精品国产亚洲av| 18+在线观看网站| av在线蜜桃| 国产精品久久久久久精品电影| 激情 狠狠 欧美| 午夜爱爱视频在线播放| 精品久久久久久久人妻蜜臀av| 亚洲电影在线观看av| 国产伦精品一区二区三区视频9| 超碰av人人做人人爽久久| 在线免费观看不下载黄p国产| 国产精品麻豆人妻色哟哟久久 | av女优亚洲男人天堂| 男女那种视频在线观看| 成人毛片a级毛片在线播放| www.色视频.com| 亚洲av一区综合| 日本撒尿小便嘘嘘汇集6| 可以在线观看毛片的网站| 亚洲人成网站在线播放欧美日韩| 国产真实伦视频高清在线观看| 亚洲内射少妇av| 在线免费十八禁| 亚洲三级黄色毛片| 久久热精品热| 黄色视频,在线免费观看| 欧美xxxx性猛交bbbb| 国产成人a区在线观看| 欧美日韩综合久久久久久| 男女做爰动态图高潮gif福利片| 国产高清有码在线观看视频| 亚洲av不卡在线观看| 久久久久久久久久成人| 精品久久久久久久久亚洲| 18禁在线播放成人免费| 国产精品伦人一区二区| 99久久九九国产精品国产免费| 在线观看一区二区三区| 中国美女看黄片| 高清在线视频一区二区三区 | 夜夜看夜夜爽夜夜摸| 久久亚洲精品不卡| 在线观看午夜福利视频| 亚洲在线自拍视频| 男女啪啪激烈高潮av片| 国产精品女同一区二区软件| 中出人妻视频一区二区| 三级男女做爰猛烈吃奶摸视频| 久久这里只有精品中国| 午夜老司机福利剧场| 亚洲人成网站在线播| 亚洲av二区三区四区| 亚洲真实伦在线观看| АⅤ资源中文在线天堂| 能在线免费观看的黄片| 91精品一卡2卡3卡4卡| 亚洲精品自拍成人| 美女xxoo啪啪120秒动态图| 日本撒尿小便嘘嘘汇集6| 伦精品一区二区三区| 亚洲欧美精品专区久久| 18禁在线无遮挡免费观看视频| 晚上一个人看的免费电影| 人妻制服诱惑在线中文字幕| 91av网一区二区| 九九热线精品视视频播放| 日韩 亚洲 欧美在线| 中文字幕av在线有码专区| 大型黄色视频在线免费观看| av在线天堂中文字幕| 国产69精品久久久久777片| 国产午夜精品一二区理论片| 最好的美女福利视频网| 日韩精品有码人妻一区| 精品久久久久久久末码| 亚洲丝袜综合中文字幕| 国产av在哪里看| 亚洲熟妇中文字幕五十中出| 久久99热6这里只有精品| 91狼人影院| 哪个播放器可以免费观看大片| 亚洲七黄色美女视频| 99久国产av精品| 国产精品国产高清国产av| 久久精品久久久久久噜噜老黄 | 少妇熟女欧美另类| 婷婷亚洲欧美| 亚洲内射少妇av| 日韩一区二区三区影片| 免费无遮挡裸体视频| 久久99热这里只有精品18| 久久午夜福利片| 久久久久久久亚洲中文字幕| 国产精品一区二区性色av| 男女边吃奶边做爰视频| 国产一级毛片在线| 九九在线视频观看精品| 亚洲欧洲日产国产| 麻豆精品久久久久久蜜桃| 中国美白少妇内射xxxbb| 国产午夜精品久久久久久一区二区三区| 嫩草影院精品99| 嘟嘟电影网在线观看| 亚洲国产精品合色在线| 国产一区亚洲一区在线观看| 久久99热6这里只有精品| 两性午夜刺激爽爽歪歪视频在线观看| 日韩欧美一区二区三区在线观看| 国产精品美女特级片免费视频播放器| 国产免费男女视频| 热99在线观看视频| 可以在线观看的亚洲视频| 麻豆成人av视频| 久久人人精品亚洲av| 免费人成视频x8x8入口观看| 日本一本二区三区精品| 午夜福利在线在线| 欧美成人一区二区免费高清观看| 国产在线男女| 亚洲真实伦在线观看| av视频在线观看入口| 又爽又黄a免费视频| 91久久精品电影网| 亚洲av一区综合| 亚洲精品乱码久久久v下载方式| 在线观看免费视频日本深夜| 一边亲一边摸免费视频| 青春草国产在线视频 | 成人特级av手机在线观看| 在线免费观看不下载黄p国产| 亚洲最大成人中文| 少妇的逼好多水| 国产人妻一区二区三区在| 亚洲国产日韩欧美精品在线观看| 免费电影在线观看免费观看| 国产精品嫩草影院av在线观看| 99热这里只有是精品50| 亚洲精品日韩在线中文字幕 | 日本黄大片高清| 淫秽高清视频在线观看| 亚洲精品乱码久久久v下载方式| av.在线天堂| 国产精品一区二区三区四区久久| 夜夜夜夜夜久久久久| 欧美日韩国产亚洲二区| 国产精品一及| 久久久国产成人精品二区| 欧美日韩国产亚洲二区| АⅤ资源中文在线天堂| 精品久久久久久成人av| 1000部很黄的大片| 亚洲精品影视一区二区三区av| 国产在线精品亚洲第一网站| 国产一区二区三区av在线 | 国产免费一级a男人的天堂| 国国产精品蜜臀av免费| 免费黄网站久久成人精品| 中文亚洲av片在线观看爽| 国产一区二区在线av高清观看| 久久精品国产99精品国产亚洲性色| 在线观看66精品国产| 精品久久久久久久久av| 国产在视频线在精品| 日韩人妻高清精品专区| 日韩欧美精品免费久久| 国产在线男女| 国产一区亚洲一区在线观看| 欧美高清性xxxxhd video| 边亲边吃奶的免费视频| 校园人妻丝袜中文字幕| 亚洲av中文字字幕乱码综合| 美女国产视频在线观看| 一级黄片播放器| h日本视频在线播放| 九色成人免费人妻av| 狂野欧美白嫩少妇大欣赏| 亚洲最大成人中文| 床上黄色一级片| 婷婷色av中文字幕| 我的老师免费观看完整版| 偷拍熟女少妇极品色| 亚洲第一电影网av| 日韩欧美精品v在线| 久久久久九九精品影院| 日韩欧美在线乱码| 日韩制服骚丝袜av| 久久精品国产99精品国产亚洲性色| 中文亚洲av片在线观看爽| 九九久久精品国产亚洲av麻豆| 国产精品久久久久久av不卡| 18+在线观看网站| 久久久久久九九精品二区国产| 精品久久国产蜜桃| 国产大屁股一区二区在线视频| ponron亚洲| 一夜夜www| 日本一本二区三区精品| 国产高清激情床上av| 亚洲成人久久爱视频| 国产精品国产高清国产av| 国产一区二区激情短视频| 特大巨黑吊av在线直播| 午夜福利高清视频| 99久久无色码亚洲精品果冻| 波多野结衣巨乳人妻| 欧美日韩精品成人综合77777| 亚洲精品国产av成人精品| 午夜免费男女啪啪视频观看| 婷婷六月久久综合丁香| 亚洲四区av| 精品久久久久久久人妻蜜臀av| 日韩精品有码人妻一区| 久久草成人影院| 寂寞人妻少妇视频99o| 噜噜噜噜噜久久久久久91| 国产69精品久久久久777片| 中文亚洲av片在线观看爽| 婷婷六月久久综合丁香| 欧美3d第一页| 波多野结衣高清无吗| 国产成人影院久久av| 亚洲性久久影院| 99热精品在线国产| 久久99热这里只有精品18| 中文字幕精品亚洲无线码一区| 欧美区成人在线视频| 深爱激情五月婷婷| 天堂av国产一区二区熟女人妻| 久久99蜜桃精品久久| 春色校园在线视频观看| 一级黄色大片毛片| 国产黄色小视频在线观看| 亚洲在线自拍视频| 美女黄网站色视频| 亚洲国产精品久久男人天堂| 亚洲精品自拍成人| 毛片女人毛片| 色综合色国产| 亚洲av一区综合| 国产av麻豆久久久久久久| 久久婷婷人人爽人人干人人爱| 少妇人妻精品综合一区二区 | 久久6这里有精品| 99久久精品一区二区三区| 久久久成人免费电影| av女优亚洲男人天堂| 午夜精品一区二区三区免费看| 久久久久久久久久久免费av| 国产高清激情床上av| 国产成人aa在线观看| 欧美激情久久久久久爽电影| 波多野结衣高清作品| 极品教师在线视频| 边亲边吃奶的免费视频| 夜夜爽天天搞| 欧美变态另类bdsm刘玥| 久久婷婷人人爽人人干人人爱| 最近2019中文字幕mv第一页| 伊人久久精品亚洲午夜| 欧美精品国产亚洲| 美女高潮的动态| 欧美日韩一区二区视频在线观看视频在线 | 夫妻性生交免费视频一级片| 国内少妇人妻偷人精品xxx网站| 成年av动漫网址| 成人欧美大片| 人人妻人人澡欧美一区二区| 亚洲精品国产成人久久av| 亚洲欧美清纯卡通| 国产在线精品亚洲第一网站| 国产爱豆传媒在线观看| 国产精品免费一区二区三区在线| 精品久久久久久久末码| 中文字幕制服av| 免费av观看视频| 久久99蜜桃精品久久| 欧美xxxx黑人xx丫x性爽| 日韩大尺度精品在线看网址| 日本免费一区二区三区高清不卡| 美女xxoo啪啪120秒动态图| 国产精品一区www在线观看| 一区二区三区高清视频在线| 精品久久久久久久久av| 国产精华一区二区三区| 中文字幕av在线有码专区| 村上凉子中文字幕在线| 亚洲五月天丁香| 校园春色视频在线观看| 插逼视频在线观看| a级毛片免费高清观看在线播放| 狂野欧美白嫩少妇大欣赏| 91精品一卡2卡3卡4卡| 国产伦精品一区二区三区视频9| 中国美女看黄片| 国产精品国产三级国产av玫瑰| 午夜老司机福利剧场| 久久久久久久久久久丰满| 成人高潮视频无遮挡免费网站| 精华霜和精华液先用哪个| av卡一久久| 午夜视频国产福利| 在线观看一区二区三区| 国产精品嫩草影院av在线观看| 特级一级黄色大片| 国产精品免费一区二区三区在线| 久久久久性生活片| 精品熟女少妇av免费看| 观看美女的网站| 欧美潮喷喷水| 高清日韩中文字幕在线| 亚洲人与动物交配视频| 亚洲国产精品合色在线| 国产蜜桃级精品一区二区三区| av卡一久久| 一级毛片aaaaaa免费看小| 亚洲精品久久久久久婷婷小说 | .国产精品久久| 久久久久久国产a免费观看| 99久国产av精品| 国产精品1区2区在线观看.| 精品一区二区免费观看| 国产亚洲欧美98| 一区二区三区高清视频在线| 在线观看午夜福利视频| 国产成人freesex在线| 国产精品人妻久久久影院| 男人的好看免费观看在线视频| 直男gayav资源| 欧美最新免费一区二区三区| 精品国产三级普通话版| 超碰av人人做人人爽久久| 少妇猛男粗大的猛烈进出视频 | 禁无遮挡网站| 国产亚洲av片在线观看秒播厂 | 国产精品精品国产色婷婷| 国产成人a区在线观看| 国产爱豆传媒在线观看| 国国产精品蜜臀av免费| 久久精品夜色国产| 亚洲精华国产精华液的使用体验 | 乱系列少妇在线播放| 欧美潮喷喷水| 欧美+亚洲+日韩+国产| 中文字幕熟女人妻在线| 桃色一区二区三区在线观看| 亚洲性久久影院| av国产免费在线观看| 久久韩国三级中文字幕| 国产成人a区在线观看| 亚洲成人精品中文字幕电影| 99久国产av精品国产电影| 国产精品一区二区在线观看99 | 高清在线视频一区二区三区 | 91久久精品电影网| 国产黄a三级三级三级人| 成人av在线播放网站| 内射极品少妇av片p| 久久精品夜夜夜夜夜久久蜜豆| 在线免费观看不下载黄p国产| 看黄色毛片网站| 亚洲中文字幕一区二区三区有码在线看| 97在线视频观看| 少妇熟女欧美另类| 国产白丝娇喘喷水9色精品| 日本-黄色视频高清免费观看| 波多野结衣高清作品| 一边摸一边抽搐一进一小说| 久久草成人影院| 亚洲av二区三区四区| 国产精品综合久久久久久久免费| 久久久精品欧美日韩精品| 啦啦啦啦在线视频资源| 亚洲国产精品合色在线| 黄色配什么色好看| 国产精品av视频在线免费观看| 女人十人毛片免费观看3o分钟| 欧美3d第一页| 日本一本二区三区精品| 天天一区二区日本电影三级| 99久久精品热视频| 美女xxoo啪啪120秒动态图| av在线播放精品| 午夜久久久久精精品| 在线国产一区二区在线| 热99在线观看视频| 狂野欧美激情性xxxx在线观看| 日本黄色片子视频| 欧美成人精品欧美一级黄| 婷婷亚洲欧美| 国产女主播在线喷水免费视频网站 | 亚洲电影在线观看av| 悠悠久久av| 亚洲内射少妇av| 丝袜美腿在线中文| 成人亚洲精品av一区二区| 成人特级黄色片久久久久久久| 久久久久久久久大av| 97在线视频观看| 久久草成人影院| 老司机福利观看| 一级毛片aaaaaa免费看小| 一区二区三区高清视频在线| 观看美女的网站| 简卡轻食公司| 成年av动漫网址| 在线观看66精品国产| 免费大片18禁| 最近中文字幕高清免费大全6| 国产淫片久久久久久久久| 校园春色视频在线观看| 白带黄色成豆腐渣| 男人舔奶头视频| 欧美日韩综合久久久久久| 欧美日本亚洲视频在线播放| 亚洲人成网站高清观看| 在线播放无遮挡| 插逼视频在线观看| 国产一区二区在线av高清观看| 男女视频在线观看网站免费| 国产综合懂色| 免费一级毛片在线播放高清视频| 两性午夜刺激爽爽歪歪视频在线观看| av国产免费在线观看| 国产一区二区三区在线臀色熟女| 麻豆精品久久久久久蜜桃| 精品99又大又爽又粗少妇毛片| 丝袜喷水一区| 麻豆成人av视频| 国内精品美女久久久久久| 国语自产精品视频在线第100页| 亚洲欧洲国产日韩| 美女黄网站色视频| 国产成人福利小说| 亚洲欧洲日产国产| 日本爱情动作片www.在线观看| 51国产日韩欧美| 午夜精品一区二区三区免费看| 国产精品电影一区二区三区| 日韩欧美国产在线观看| 精品99又大又爽又粗少妇毛片| 丝袜喷水一区| 只有这里有精品99| 亚洲无线在线观看| 日韩亚洲欧美综合| 国产激情偷乱视频一区二区| 欧美区成人在线视频| 九九热线精品视视频播放| 国产成人aa在线观看| 国产探花在线观看一区二区| 99久久久亚洲精品蜜臀av| 丰满人妻一区二区三区视频av| 中文欧美无线码| 精品免费久久久久久久清纯| 日本在线视频免费播放| 成人永久免费在线观看视频| 欧美高清成人免费视频www| 久久热精品热| 69av精品久久久久久| 久久久久久久久久久丰满| 欧美日本亚洲视频在线播放| 成人性生交大片免费视频hd| 久久精品91蜜桃| 日本爱情动作片www.在线观看| 久久亚洲国产成人精品v| 国产精品,欧美在线| 国产美女午夜福利| 国产午夜精品论理片| 男女边吃奶边做爰视频| 亚洲欧美日韩高清专用| 国产精品久久电影中文字幕| 中文亚洲av片在线观看爽| 久久中文看片网| 成人性生交大片免费视频hd| 久久精品国产亚洲av涩爱 | 国产精品国产三级国产av玫瑰| av女优亚洲男人天堂| 天堂网av新在线| 日本五十路高清| av女优亚洲男人天堂| 波野结衣二区三区在线| 美女内射精品一级片tv| 91精品国产九色| 熟女电影av网| 久久精品夜夜夜夜夜久久蜜豆| 国产精品爽爽va在线观看网站| 美女cb高潮喷水在线观看| 国产精品久久电影中文字幕| 色哟哟哟哟哟哟| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 男女下面进入的视频免费午夜| 最近2019中文字幕mv第一页| 国产av麻豆久久久久久久| 久久亚洲精品不卡| 欧美性猛交黑人性爽| 久久午夜亚洲精品久久| 好男人在线观看高清免费视频| 免费观看精品视频网站| 免费av观看视频| 日本免费a在线| 啦啦啦观看免费观看视频高清| 国产成人91sexporn| 麻豆av噜噜一区二区三区| 成人一区二区视频在线观看| 三级国产精品欧美在线观看| 午夜福利高清视频| 丝袜美腿在线中文| 国产精品人妻久久久久久| 成人综合一区亚洲| 成人三级黄色视频| 欧美色欧美亚洲另类二区| 成年女人看的毛片在线观看| 成人无遮挡网站| 日韩成人伦理影院| 精品一区二区免费观看| 蜜桃亚洲精品一区二区三区| 日韩制服骚丝袜av| 又爽又黄无遮挡网站| 国产精品福利在线免费观看| 一级毛片我不卡| 三级经典国产精品| 久久久精品94久久精品| 成人一区二区视频在线观看| 菩萨蛮人人尽说江南好唐韦庄 | 国内少妇人妻偷人精品xxx网站| 午夜福利在线观看吧| 精品人妻一区二区三区麻豆| 亚洲精华国产精华液的使用体验 | 国产精品爽爽va在线观看网站| 看片在线看免费视频| 国产真实伦视频高清在线观看| 精品日产1卡2卡| 在线观看av片永久免费下载| 色播亚洲综合网| 中文资源天堂在线| а√天堂www在线а√下载| 美女被艹到高潮喷水动态| 色吧在线观看| 日本三级黄在线观看| 国产乱人视频| 午夜激情欧美在线| 国内精品美女久久久久久| 久久久国产成人免费| av.在线天堂| 久久精品夜色国产| 全区人妻精品视频| 国产成人aa在线观看| 国产 一区精品| 久久精品久久久久久久性| 成人三级黄色视频| 女人十人毛片免费观看3o分钟| a级毛片免费高清观看在线播放| 尤物成人国产欧美一区二区三区| av在线蜜桃| 男插女下体视频免费在线播放| 国产成人午夜福利电影在线观看| 亚洲18禁久久av| 日本撒尿小便嘘嘘汇集6| 亚洲精品自拍成人| 久久午夜福利片| 免费av不卡在线播放| 麻豆国产97在线/欧美| 欧美最黄视频在线播放免费| 欧美又色又爽又黄视频| 热99re8久久精品国产| 18+在线观看网站| 国产视频首页在线观看| 免费看日本二区| 黄片无遮挡物在线观看| 最后的刺客免费高清国语| 一个人看的www免费观看视频| 黑人高潮一二区| 久久人妻av系列| 两个人的视频大全免费| 久久九九热精品免费| 免费看光身美女| 国产黄色小视频在线观看| 日韩欧美国产在线观看| 九九久久精品国产亚洲av麻豆| 国产人妻一区二区三区在| 只有这里有精品99| 日韩欧美精品免费久久| .国产精品久久| 国产精品三级大全| 最近最新中文字幕大全电影3| 99热只有精品国产| 欧美成人免费av一区二区三区|