• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Application of isotopic information for estimating parameters in Philip infiltration model

    2016-03-03 00:59:01ToWngHiliXuWeiminBo
    Water Science and Engineering 2016年4期

    To Wng*,Hi-li XuWei-min Bo

    aPowerChina Chengdu Engineering Corporation Limited,Chengdu 610072,China

    bState Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering,Hohai University,Nanjing 210098,China

    Application of isotopic information for estimating parameters in Philip infiltration model

    Tao Wanga,*,Hai-li Xua,Wei-min Baob

    aPowerChina Chengdu Engineering Corporation Limited,Chengdu 610072,China

    bState Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering,Hohai University,Nanjing 210098,China

    Minimizing parameter uncertainty is crucialin the application of hydrologic models.Isotopic information in various hydrologic components of the water cycle can expand our knowledge of the dynamics of water fl ow in the system,provide additional information for parameter estimation,and improve parameter identifi ability.This study combined the Philip infiltration model with an isotopic mixing model using an isotopic mass balance approach for estimating parameters in the Philip infiltration model.Two approaches to parameter estimation were compared:(a)using isotopic information to determine the soilwater transmission and then hydrologic information to estimate the soilsorptivity, and(b)using hydrologic information to determine the soil water transmission and the soil sorptivity.Results of parameter estimation were verifi ed through a rainfallinfiltration experimentin a laboratory under rainfallwith constantisotopic compositions and uniform initialsoilwater content conditions.Experimental results showed that approach(a),using isotopic and hydrologic information,estimated the soil water transmission in the Philip infiltration modelin a mannerthatmatched measured values well.The results of parameter estimation of approach(a)were better than those of approach(b).Itwas also found thatthe analytical precision of hydrogen and oxygen stable isotopes had a signifi canteffect on parameter estimation using isotopic information.

    Isotopic information;Hydrologic information;Parameter estimation;Philip infiltration model;Rainfall infiltration experiment

    1.Introduction

    The successful application of a catchment model depends on the accuracy of hydrologic and hydraulic parameters used for the simulations and structures of the model.Model structures are based on the catchment characteristics and conceptualization of a realistic study system(Fenicia et al.,2008). Because some model parameters are difficult or impossible to measure in the natural world,model parameters are often estimated from secondary information sources(Fonseca et al.,2014).In fact,only some available data are used in model calculation because of the limitation of data(Wagener,2003). Abundance of data is the foundation of understanding model structures and parameter estimation.Data mining and other auxiliary data are two important methods,apart from the traditional measurement method,for collecting information in a given catchment.The data mining method primarily extracts useful information from collected data using mathematical techniques(e.g.,the clustering method),while auxiliary data means an increasing quantity of data independent of stream discharge and other hydrologic data.Hydrogen and oxygen isotopes are good auxiliary data tools and often used to trace water movement in the water cycle in order to provide orthogonal information on the catchment behavior(Fenicia et al.,2008).The combination of isotopic information and hydrologic information can provide plenty of availableinformation for model calculation and reduce uncertainty in parameterestimation.The ways isotopic information is used in a hydrologic modelfor parameter estimation should be further developed.Dunn et al.(2008)studied the mixing processes and mean residence time in a set of nested sub-catchments in northeast Scotland as determined from isotopic data,which could reduce parameter uncertainty in a rainfall-runoff model. Sprenger et al.(2015)used the stable isotope composition of the soil pore water depth profile as a single or additional optimization target,and estimated flow and transport parameters in the unsaturated zone.They found that using both the isotope profiles and the soil moisture time series resulted in good simulation results and strong parameter identifiability. When only data from isotope profi les in combination with textural information were available,the results were still satisfactory(Sprenger etal.,2015).Klaus et al.(2015)studied temporal dynamics of catchment transit times from stable isotope data.They extracted information on catchment mixing from the stable isotope time series instead of prior assumptions of mixing or the shape of transit time distribution,and demonstrated proof of the concepts of the approach with artificial data.This indicated that the Nash-Sutcliffe efficiencies in tracer and instantaneous transit times were higher than 0.9.

    The complexities of model structures and number of parameters have a significant effect on parameter estimation using isotopic information.The two-parameter Philip infiltration model with a simple model structure has a specific physical foundation and is widely used to simulate rainfall infi ltration.However,because of limitations in observed hydrologic data,parameter estimation in a Philip infiltration model may be diffi cult.The objective of this study was to combine isotopic information with hydrologic information to estimate the parameters of a Philip infiltration modelthrough a rainfall-infi ltration experiment in a laboratory,and compare them with the results of parameter estimation using only hydrologic information.

    2.Methods

    2.1.Philip infiltration equation

    The Philip infiltration equation(Philip,1957a,1957b)was derived from Richard's equation with water vertically infiltrating into the unsaturated and semi-infinite homogeneous soilunder constantinitialwater contentconditions(Prevedello et al.,2009).The infiltration rate with time,i(t)in cm·h-1,is defined as

    where t is the infi ltration time(h),S is the soil sorptivity (cm·h-0.5),and A is the soilwater transmission(cm·h-1).The parameters S and A are related to soil diffusivity and moisture retention characteristics(Mishra et al.,2003).In this paper,S is taken into account as the average soil sorptivity,and A equals the saturated hydraulic conductivity Ks,which does not lead to serious errors in model calculation(Swartzendruber and Youngs,1974).The soil sorptivity S appears to be correlated with the soil water transmission A(Wang et al.,2006).

    The cumulative infiltration with time,I(t)in cm,can be expressed as

    In reality,Eqs.(1)and(2)are applicable to a limited time span(Prevedello et al.,2009).However,the classical Philip infiltration equation is still widely used for a constant head boundary neglecting the effect of a limited time span.

    2.2.Model parameter estimation using hydrologic

    information

    Two parameters of the Philip infi ltration model need to be estimated:the soil sorptivity S and soil water transmission A. There are also two major methods for parameter estimation using hydrologic information,namely,the linear graphic method and the least squares method(Bristow and Savage, 1987).In the linear graphic method,data of cumulative infiltration with time are plotted on a fi gure with t0.5as the abscissa and I(t)t-0.5as the ordinate.Then,the parameters S and A can be respectively obtained from the intercept and slope of the fi gure.The least squares method is used to optimize S and A through fi tting observed data and Eq.(1)or(2).Notwithstanding that the linear graphic method can easily obtain the model parameters,it is highly arbitrary due to t0.5existing on both axes in order to introduce self-correlation and limitation of data at time t=0(Bonell and Williams,1986).The least squares method shows objective characteristics and is widely used to estimate parameters of a model.In this study,S and A were estimated from observed data of cumulative infi ltration calculated with Eq.(2)using the least square method,and the calculated results were regarded as parameters obtained from hydrologic information.Effects of limited time on model calculation were neglected or considered errors in the parameter estimation process using hydrologic information due to the deficiency of available data.

    2.3.Modelparameter estimation using isotopic information

    Model parameter estimation using isotopic information is implemented with the isotopic mixing modelbased on isotope mass balance.The isotopic mixing model combines isotopic information with hydrologic information,and can be expressed as

    where Cj-1and Cjare the isotopic compositions of mixing water in the mixing tank at time tj-1and tj,respectively,and j indicates the time sequence;Cp,j-1is the isotopic composition of input water(e.g.,rainfall)at time tj-1;ΔV is the volume of water infiltrating into soil from time tj-1to tj;and V0represents the initial soil water volume,which is equal to thevolume of the mixing tank.The application of the isotopic mixing modelis based on certain conditions in which isotopic variations of soil water are primarily caused by isotopic mixing of rainfall and soil water in the process of infi ltration. Itis noted thatthis study only examined the rainfallinfi ltration under rainfallwith constantisotopic compositions and uniform initial soilwater contentconditions.The isotopes of soilwater and rainfall reached a balance between 0.5 h and 1 h after the beginning of the mixing process(Wang et al.,2010).

    When water fl ows out of the lower boundary of soil layers, the infi ltration rate gradually becomes a constant,equal to the saturated hydraulic conductivity Ks(Mishra et al.,2003). Thus,A can be indirectly obtained through estimation of the saturated hydraulic conductivity from observed data in the lower boundary of the soil column.The total amount of cumulative infiltration is divided into N equal parts and the volume of each partisΔV.When the infi ltration rate reaches a stable value,eachΔV volume of water infi ltrating into soilwill take the same time intervalΔt.Then,the relationship between ΔV and A isΔV=AΔtB,where B is the area of the crosssection of soil layers.As forΔV volume of water infi ltrating into soil,the water movements are described by the Philip infiltration model while isotopic variations are calculated using the isotopic mixing model.In an isotopic mixing model, theΔV volume of infiltrating water with isotopic composition Cp,j-1mixes with V0volume of water in the mixing tank with the isotopic composition Cj-1.As mixing is completed,the isotopic composition of mixing waters becomes Cj.There is ΔV volume of mixing water immediately fl owing out of the mixing tank,resulting in the volume of the mixing tank maintaining the value of V0.An assumption is introduced that lag timeτof the mixing water fl owing out of the lower boundary equals the time of water movement in the soil column.The relationship between the isotopic composition CjandΔV of outfl ow is established using the isotopic mixing model.DifferentΔV values correspond to different results of Cjwith time through trial calculations.Therefore,A can be estimated with the isotopic results of outflow.The time interval of isotopic results calculated using the isotopic mixing modelshould be treated the same as the time interval of water sampling during the experiment.Subsequently,the root mean squared error(RMSE)between calculations and observations of isotopic compositions of outflow,which is the criterion for estimating parameter A,is computed.

    In fact,isotopic information can only be used to establish the parameter A.Another parameter,the soil sorptivity S,is obtained by substituting the established parameter A and observed hydrologic data into Eq.(2).The water movements and isotopic variations above the lower boundary of soil layers are nottaken into account due to lack of relevant information.

    3.Rainfall infiltration experiment

    A rainfall infi ltration experiment was performed from 8:00 am on May 20 to 8:00 am on May 24,2008.The experimental site was set up in a rainfall simulation laboratory.In order to obtain a uniform initial soil water content profi le,the air-dried soils,from the soil surface of a hillside, were sealed in a container for three days.The initial water content measured by the oven-drying method was 53 g/kg. The initialsoilwater was extracted by the vacuum distillation method,with the values ofδD(deuterium)andδ18O(oxygen-18)being-27‰ and-3.5‰,respectively.The maximum extraction errors ofδD andδ18O using the vacuum distillation method in this experiment were-12‰and-0.7‰,respectively(Wang et al.,2009).Soils were packed into a transparent acrylic column 100 cm long and 15 cm in diameter with a bulk density of 1.22 g·cm-3,a total thickness of 84 cm,and weight of 18.116 kg.

    A rainfall simulator was placed above the soil surface, which consisted of a sprinkler made of hypodermic needles similar to those described in Liu etal.(2008).A Marriott tube was used to supply water and a graduated ruler was pasted on itfor measuring infiltration water with time(Fig.1).The water used for simulating rainfall was sealed and stored in a large container 65 cm long and 50 cm in diameter to ensure constant isotopic compositions during the experiment.The values ofδD andδ18O of water used for simulating rainfallwere-50‰and -7.2‰,respectively.A total volume of 16.313 L of water infiltrated into the soil during the experiment.The time from water infi ltration to ponded water appearance was less than 20 min.The wetting front was measured with time,which could be indirectly used to calculate the cumulative infi ltration.The interfaces among the Marriott tube,rainfall simulator,and column were well sealed to reduce the effect of the evaporation fractionation.Water fl owed out of a column after 14.8 h of rainfall infiltration,and the rainfall process lasted 59.35 h.The air temperature ranged from 21.3°C to 25.9°C, with a mean value of 23.1°C,and the relative humidity ranged from 48%to 79%,with a mean value of 58%.

    Fig.1.Photo of rainfall infiltration experiment.

    Water samples were collected at the bottom outlet of the column using 30-mL plastic bottles at predeterminedintervals.The time of collection for each water sample was recorded in order to calculate the soil water transmission. Hydrogen and oxygen isotopic compositions of water samples were measured using a MAT-253 mass spectrometer in the isotopic laboratory of the Ministry of Land and Resources in Beijing,China.The measured results were expressed as δvalues relative to the international standard Vienna Standard Mean Ocean Water(VSMOW).Analytical precisions were±2‰ and±0.2‰ for hydrogen and oxygen isotope analyses,respectively.

    4.Results and discussion

    4.1.Isotopic mixing of rainfall and soil water

    The application of an isotopic mixing modelis based on the condition in which isotopic variations of soil water in infiltration are mainly caused by the isotopic mixing ofrainfalland soil water.In the cases of rainfall with constant isotopic compositions and a slight effect of evaporation fractionation, the isotopic values of mixed rainfall and soil water should lie between the isotopic values of rainfall and soil water as end members(Shanley et al.,1998).Fig.2 shows the isotopic relationships between rainfall,the initial soil water,and outfl ow of the column.In this fi gure,the number represents the order of isotopic variations of outflow with time.δ18O values of outflow ranged from-7.7‰ to-3.7‰ with an average value of-6.6‰,andδD values ranged from-55‰to-28‰with an average value of-47‰.Fig.2 shows that isotopic values of outflow varying with time were located on or beside the mixing line that connected the isotopic values of rainfall and the initial soil water.The results indicated that isotopic variations of outflow water were primarily caused by the mixing of rainfall and soil water.Some data points away from the mixing line,such as point23 at the end of the experiment, might be mainly attributed to isotopic analysis errors of water samples.

    4.2.Results of parameter estimation

    Fig.2.Relationship betweenδD andδ18O values of outflow.

    The parameters were determined using hydrologic information.Observed data of the cumulative infiltration I(t)were fitted using Eq.(2)and the least squares method.The parameter A was derived as 1.35 cm·h-1and the parameter S was 4.00 cm·h-0.5.The value ofΔt was set as 1 h.The value ofΔV was 239 mL,corresponding to the parameter A determined using hydrologic information,while 210 mL ofΔV with a stable infiltration rate of 1.19 cm·h-1were calculated from observed data.Because the time ponded water appeared above the soil surface was less than 20 min in the experiment,the effect of time on infi ltration for modelcalculation was ignored in this study.The parameter A determined using hydrologic information was close to the observed stable infi ltration rate.

    Then,the model parameters were estimated by applying isotopic information.Relationships between A and isotopic compositions of outflow were indirectly determined using the isotopic mixing model.Fig.3 shows the relationship between parameter A and the root mean squared error(RMSE)of simulations and observations of isotopic compositions of outflow.The values of A obtained by the minimum values of RSME of hydrogen and oxygen isotopes were different.The values of A estimated with hydrogen isotopic information were smaller than those observed,while oxygen isotopic information showed a contrary result,with estimated values of A larger than those observed.As hydrogen and oxygen isotopes were simultaneously transported in soil profi les experiencing the slight effect of evaporation fractionation,the reason fordifferent values of A estimated using hydrogen and oxygen isotopic information might just be isotopic analysis errors of water samples and extraction errors in the initial soil water using the vacuum distillation method.The arithmetic average value of A determined using hydrogen and oxygen isotopic information was regarded as the fi nal value of the parameter, i.e.,1.15 cm·h-1.The parameter S,with a value of 4.64 cm·h-0.5,was obtained by substituting the estimated A value and observed data into Eq.(2).

    Fig.3.Relationship between parameter A and RMSE for hydrogen and oxygen isotopes.

    Table 1 shows the results of parameters estimated using hydrologic and isotopic information.As shown in Table 1,the value of A using only hydrogen or oxygen isotopic information is larger or smaller than that of the observed value,while that using hydrogen and oxygen isotopic information(the arithmetic average value)approaches the observed value.Parameters estimated using oxygen isotopic information are almost the same as those estimated using hydrologic information. Therefore,isotopic information could be used to estimate parameters of the Philip infi ltration model well with insufficient available hydrologic data.Furthermore,the combination of isotopic and hydrological information could increase the quantity of available information for modelcalculation,reduce the uncertainty of parameters,and provide a usefulmethod for parameter estimation.

    4.3.Simulation results of isotopic mixing model and Philip infiltration model

    ΔV with a value of 203 mL,corresponding to the parameters A and S determined using isotopic information with values of 1.15 cm·h-1and 4.64 cm·h-0.5,respectively,was substituted into the isotopic mixing model to calculate the isotopic variations of outfl ow in the soil column with time. Fig.4 shows isotopic variations of outfl ow using the isotopic mixing modelwith the comparison of observed values.It can be seen that the isotopic mixing model could describe isotopic variations of outfl ow well and combine isotopic and hydrologic information to estimate model parameters. Eq.(3)shows that parameter estimation using isotopic information is affected not only by the isotopic analysis errors of rainfall,but also by isotopic extraction errors with use of the vacuum distillation method.The initial soil water was fi rst extracted from soil using the vacuum distillation method,and then measured using a MAT-253 mass spectrometer with rainfall and mixing water.Errors inevitably existed in the extraction and measurement process of water samples,resulting in an increase in uncertainty of parameter estimation.

    Table1 Parameters estimated using hydrologic and isotopic information.

    Fig.4.Observed and simulated isotopic values of outflow.

    The cumulative infi ltration varying with time before water fl owed outof the lower boundary of soilwas calculated from Eq.(2)using parameters estimated by isotopic and hydrologic information with comparison of observations(as shown in Fig.5).The infi ltration rate gradually became constant with water fl owing out of the soil column.The cumulative infiltration calculated using estimated parameters with isotopic and hydrologic information was 34.87 cm and 35.43 cm,respectively,while the measured value was 34.63 cm at the end of the experiment.This indicates that the value of total cumulative infi ltration using parametersestimated with isotopic and hydrologic information was close to the observed value.

    Fig.5.Relationship between cumulative infiltration and time.

    5.Conclusions

    Sufficient available model information is critical to estimating model parameters.Hydrogen and oxygen isotopes are effective auxiliary data tools for providing large amounts of model information due to their tracer characteristics.In this study,an isotopic mixing model,which combined isotopic and hydrologic information,was used to estimate parameters in a Philip infi ltration model.A ponded water rainfall-infiltration experiment was performed under rainfall with constant isotopic compositions and uniform initial soil water content conditions.The experimental results show that the parameter A estimated using isotopic information was close to the observed value,and errors in isotopic analysis of water samples affected the parameter estimation.Therefore,isotopic information can be used to estimate parameters of a model in the absence of hydrologic information.Application of both isotopic and hydrologic information provides a potential method for determining parameters for modelapplications and reduces the uncertainty in parameter estimation.This study only focused on two parameters of the Philip infiltration model using isotopic information through rainfall-infiltration experiments.Further research might be required for the research method to be used in more complex hydrological models.

    Bonell,M.,Williams,J.,1986.Two parameters of the Philip infiltration equation:Their properties and spatial and temporalheterogeneity in a red earth of tropical semi-arid Queensland.J.Hydrol.87(1-2),9-31.http:// dx.doi.org/10.1016/0022-1694(86)90112-5.

    Bristow,K.L.,Savage,M.J.,1987.Estimation of parameters for the Philip two-term infiltration equation applied to field soil experiments.Aust.J. Soil Res.25(4),369-375.http://dx.doi.org/10.1071/SR9870369.

    Dunn,S.M.,Bacon,J.R.,Soulsby,C.,Tetzlaff,D.,Stutter,M.I.,Waldron,S., Malcolm,I.A.,2008.Interpretation of homogeneity inδ18O signatures of stream water in a nested sub-catchment system in north-east Scotland. Hydrol.Process.22(24),4767-4782.http://dx.doi.org/10.1002/hyp.7088.

    Fenicia,F.,McDonnell,J.J.,Savenije,H.H.G.,2008.Learning from model improvement:On the contribution of complementary data to process understanding.Water Resour.Res.44(6),W06419.http://dx.doi.org/ 10.1029/2007WR006386.

    Fonseca,A.,Ames,D.P.,Ping,Y.,Botelho,C.,Rui,B.,Vilar,V.,2014. Watershed model parameter estimation and uncertainty in data-limited environments.Environ.Model.Softw.51,84-93.http://dx.doi.org/ 10.1016/j.envsoft.2013.09.023.

    Klaus,J.,Chun,K.P.,Mcguire,K.J.,Mcdonnell,J.J.,2015.Temporal dynamics of catchment transittimes from stable isotope data.Water Resour. Res.51(6),4208-4223.http://dx.doi.org/10.1002/2014WR016247.

    Liu,J.T.,Zhang,J.B.,Feng,J.,2008.Green-Amptmodelforlayered soils with nonuniform initialwater contentunder unsteady infiltration.Soil Sci.Soc. Am.J.72(4),1041-1047.http://dx.doi.org/10.2136/sssaj2007.0119.

    Mishra,S.K.,Tyagi,J.V.,Singh,V.P.,2003.Comparison of infiltration models. Hydrol.Process.17(13),2629-2652.http://dx.doi.org/10.1002/hyp.1257.

    Philip,J.R.,1957a.The theory of infiltration:1.The infiltration equation and its solution.SoilSci.83(5),345-358.http://dx.doi.org/10.1097/00010694-200606001-00009.

    Philip,J.R.,1957b.The theory of infiltration:4.Sorptivity and algebraic infiltration equations.Soil Sci.84(3),257-264.http://dx.doi.org/10.1097/ 00010694-195709000-00010.

    Prevedello,C.L.,Loyola,J.M.T.,Reichardt,K.,Nielsen,D.R.,2009.New analytic solution related to the Richards,Philip,and Green-Amptequations for infiltration.Vadose Zone J.8(1),127-135.http://dx.doi.org/10.2136/ vzj2008.0091.

    Shanley,J.B.,Pendall,E.,Kendall,C.,Stevens,L.R.,Michel,R.L., Philips,P.J.,Forester,R.M.,Naftz,D.L.,Liu,B.L.,Stem,L.,etal.,1998. Isotopes as indicators of environmental change.In:Kendall,C., McDonnell,J.J.,eds.,Isotope Tracers in Catchment Hydrology.Elsevier Science B.V.,Amsterdam,pp.761-816.http://dx.doi.org/10.1016/B978-0-444-81546-0.50029-X.

    Sprenger,M.,Volkmann,T.H.M.,Blume,T.,Weiler,M.,2015.Estimating flow and transport parameters in the unsaturated zone with pore water stable isotopes.Hydrol.Earth Syst.Sci.19(6),2617-2635.http:// dx.doi.org/10.5194/hess-19-2617-2015.

    Swartzendruber,D.,Youngs,E.G.,1974.A comparison of physically-based infiltration equations.Soil Sci.117(3),165-167.http://dx.doi.org/ 10.1097/00010694-197403000-00005.

    Wagener,T.,2003.Evaluation of catchment models.Hydrol.Process.17(16), 3375-3378.http://dx.doi.org/10.1002/hyp.5158.

    Wang,Q.J.,Zhang,J.H.,Fan,J.,2006.An analytical method for relationship between hydraulic diffusivity and soil sorptivity.Pedosphere 16(4), 444-450.http://dx.doi.org/10.1016/S1002-0160(06)60074-X.

    Wang,T.,Bao,W.M.,Chen,X.,Shi,Z.,Hu,H.Y.,Qu,S.M.,2009.Soilwater extraction using vacuum distillation technology.J.Hohai Univ.Nat.Sci. 37(6),660-664.http://dx.doi.org/10.3876/j.issn.1000-1980.2009.06.010 (in Chinese).

    Wang,T.,Bao,W.M.,Li,L.,2010.Isotopic variations of soiland inputwater mixing.Hydrogeol.Eng.Geol.37(2),104-107.http://dx.doi.org/10.3969/ j.issn.1000-3665.2010.02.023(in Chinese).

    Received 30 November 2015;accepted 15 September 2016

    Available online 6 January 2017

    This work was supported by the National Natural Science Foundation of China(Grant No.51279057).

    *Corresponding author.

    E-mail address:wangtaogo@163.com(Tao Wang).

    Peer review under responsibility of Hohai University.

    ?2016 Hohai University.Production and hosting by Elsevier B.V.This is an open access article under the CC BY-NC-ND license(http:// creativecommons.org/licenses/by-nc-nd/4.0/).

    女人爽到高潮嗷嗷叫在线视频| 欧美日韩黄片免| 国产av国产精品国产| 大码成人一级视频| 国产精品秋霞免费鲁丝片| 亚洲熟女精品中文字幕| 亚洲一区二区三区欧美精品| 天天操日日干夜夜撸| 亚洲人成77777在线视频| 性色av乱码一区二区三区2| 黑丝袜美女国产一区| 日本黄色日本黄色录像| 91麻豆精品激情在线观看国产 | 日韩大码丰满熟妇| 中亚洲国语对白在线视频| e午夜精品久久久久久久| 天堂8中文在线网| 亚洲色图av天堂| 老熟女久久久| 无限看片的www在线观看| 老司机午夜福利在线观看视频 | 国产成人av激情在线播放| 在线播放国产精品三级| 精品久久蜜臀av无| 色婷婷av一区二区三区视频| 两人在一起打扑克的视频| 亚洲国产av新网站| 国产欧美日韩综合在线一区二区| 美女主播在线视频| 最新在线观看一区二区三区| 亚洲欧洲日产国产| 免费日韩欧美在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 久久中文字幕人妻熟女| 可以免费在线观看a视频的电影网站| 啦啦啦视频在线资源免费观看| 精品国产超薄肉色丝袜足j| 少妇被粗大的猛进出69影院| 日韩大码丰满熟妇| 91老司机精品| 亚洲全国av大片| 精品乱码久久久久久99久播| 又大又爽又粗| 人人澡人人妻人| 又紧又爽又黄一区二区| 亚洲视频免费观看视频| 一区二区三区精品91| 夫妻午夜视频| 国产亚洲av高清不卡| 午夜福利乱码中文字幕| 一级,二级,三级黄色视频| 精品欧美一区二区三区在线| 9热在线视频观看99| 免费少妇av软件| 国内毛片毛片毛片毛片毛片| 精品久久蜜臀av无| 午夜激情av网站| 国产一区有黄有色的免费视频| 午夜福利在线免费观看网站| 日本wwww免费看| 99精品在免费线老司机午夜| 欧美亚洲日本最大视频资源| a级片在线免费高清观看视频| 中亚洲国语对白在线视频| 人妻久久中文字幕网| 又黄又粗又硬又大视频| 国产精品香港三级国产av潘金莲| 亚洲黑人精品在线| 午夜久久久在线观看| 岛国在线观看网站| 80岁老熟妇乱子伦牲交| 如日韩欧美国产精品一区二区三区| 国产精品一区二区在线不卡| 妹子高潮喷水视频| 欧美老熟妇乱子伦牲交| 一个人免费在线观看的高清视频| 亚洲黑人精品在线| 亚洲天堂av无毛| 99热网站在线观看| 高清av免费在线| 久久ye,这里只有精品| 国产av国产精品国产| 中文字幕高清在线视频| 中文字幕精品免费在线观看视频| 岛国在线观看网站| 国产视频一区二区在线看| 日本黄色视频三级网站网址 | 建设人人有责人人尽责人人享有的| 亚洲精品中文字幕在线视频| tube8黄色片| 日本黄色日本黄色录像| 女警被强在线播放| 黑人操中国人逼视频| 精品人妻1区二区| 五月开心婷婷网| 黄色片一级片一级黄色片| 中文字幕av电影在线播放| 999精品在线视频| 精品乱码久久久久久99久播| 99热国产这里只有精品6| 精品少妇久久久久久888优播| 老司机靠b影院| 十八禁网站网址无遮挡| 最黄视频免费看| 男男h啪啪无遮挡| 黑人巨大精品欧美一区二区蜜桃| 日本a在线网址| 自拍欧美九色日韩亚洲蝌蚪91| 老司机亚洲免费影院| 国产xxxxx性猛交| 高清黄色对白视频在线免费看| 欧美一级毛片孕妇| 亚洲熟女毛片儿| 欧美午夜高清在线| 99热国产这里只有精品6| 色播在线永久视频| 欧美黑人精品巨大| a在线观看视频网站| 国产aⅴ精品一区二区三区波| 午夜两性在线视频| 90打野战视频偷拍视频| 自拍欧美九色日韩亚洲蝌蚪91| 老熟妇乱子伦视频在线观看| 99精品欧美一区二区三区四区| a在线观看视频网站| 人人澡人人妻人| 久久久精品区二区三区| 女人久久www免费人成看片| 国产精品秋霞免费鲁丝片| 精品国产国语对白av| 午夜福利视频在线观看免费| 最近最新免费中文字幕在线| 免费在线观看日本一区| 丁香六月天网| 男女下面插进去视频免费观看| 在线播放国产精品三级| 国产欧美日韩一区二区三区在线| 国产成人精品无人区| 国产熟女午夜一区二区三区| 99久久国产精品久久久| 免费av中文字幕在线| 老司机在亚洲福利影院| 国产视频一区二区在线看| 每晚都被弄得嗷嗷叫到高潮| av天堂在线播放| 久久狼人影院| 考比视频在线观看| 国产精品国产av在线观看| 性高湖久久久久久久久免费观看| 国产伦人伦偷精品视频| 大香蕉久久成人网| 操出白浆在线播放| 国产男女内射视频| 免费在线观看视频国产中文字幕亚洲| avwww免费| 一级,二级,三级黄色视频| 国产日韩一区二区三区精品不卡| 伊人久久大香线蕉亚洲五| 国产亚洲精品久久久久5区| 亚洲综合色网址| 久久国产精品影院| 19禁男女啪啪无遮挡网站| 夜夜夜夜夜久久久久| 欧美日韩av久久| 久久av网站| 精品国产乱码久久久久久小说| 亚洲成人手机| 热99久久久久精品小说推荐| 色婷婷av一区二区三区视频| 亚洲精品一卡2卡三卡4卡5卡| 亚洲,欧美精品.| 免费观看a级毛片全部| 91九色精品人成在线观看| 精品国产一区二区三区四区第35| 嫁个100分男人电影在线观看| 脱女人内裤的视频| 成年动漫av网址| 亚洲人成电影观看| 精品卡一卡二卡四卡免费| 国产又爽黄色视频| 超色免费av| 免费在线观看日本一区| 美女午夜性视频免费| 中亚洲国语对白在线视频| 黑人欧美特级aaaaaa片| 丁香六月天网| 一区在线观看完整版| 精品高清国产在线一区| 一区二区日韩欧美中文字幕| 黄色片一级片一级黄色片| 欧美人与性动交α欧美软件| 亚洲男人天堂网一区| 精品熟女少妇八av免费久了| 色婷婷久久久亚洲欧美| 十八禁网站网址无遮挡| 高清av免费在线| 丰满饥渴人妻一区二区三| 久久久水蜜桃国产精品网| 一区在线观看完整版| 免费不卡黄色视频| 国产又爽黄色视频| 人妻一区二区av| 久久99一区二区三区| 亚洲五月婷婷丁香| 午夜成年电影在线免费观看| 在线观看舔阴道视频| 变态另类成人亚洲欧美熟女 | 国产成人精品无人区| 女人爽到高潮嗷嗷叫在线视频| 丝瓜视频免费看黄片| 国产精品.久久久| 国产黄色免费在线视频| 日本wwww免费看| 日日爽夜夜爽网站| 757午夜福利合集在线观看| 久久婷婷成人综合色麻豆| 日韩成人在线观看一区二区三区| 欧美黑人欧美精品刺激| 51午夜福利影视在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美精品av麻豆av| 欧美激情久久久久久爽电影 | 男女床上黄色一级片免费看| 啪啪无遮挡十八禁网站| 国产单亲对白刺激| 9191精品国产免费久久| 黑人巨大精品欧美一区二区蜜桃| 99国产综合亚洲精品| 久久ye,这里只有精品| 日本五十路高清| 99riav亚洲国产免费| 女人爽到高潮嗷嗷叫在线视频| 亚洲第一青青草原| 国产精品免费大片| 日韩制服丝袜自拍偷拍| 波多野结衣一区麻豆| 欧美激情久久久久久爽电影 | 手机成人av网站| 成人免费观看视频高清| 人人妻人人添人人爽欧美一区卜| 少妇被粗大的猛进出69影院| 高清av免费在线| 韩国精品一区二区三区| 中文字幕人妻熟女乱码| 国产无遮挡羞羞视频在线观看| 18禁美女被吸乳视频| 啦啦啦在线免费观看视频4| 精品视频人人做人人爽| 狂野欧美激情性xxxx| 黄色 视频免费看| 国产福利在线免费观看视频| 中文字幕高清在线视频| 日韩三级视频一区二区三区| www.精华液| 国产日韩欧美亚洲二区| 欧美人与性动交α欧美精品济南到| 成年人午夜在线观看视频| 女性生殖器流出的白浆| 99精品在免费线老司机午夜| 中文字幕人妻丝袜一区二区| 成人18禁高潮啪啪吃奶动态图| 免费黄频网站在线观看国产| 黄色片一级片一级黄色片| 亚洲三区欧美一区| 男女下面插进去视频免费观看| 大片免费播放器 马上看| 欧美激情 高清一区二区三区| 日本vs欧美在线观看视频| 亚洲专区国产一区二区| 日本黄色日本黄色录像| 高清av免费在线| 999精品在线视频| 日韩欧美免费精品| 水蜜桃什么品种好| 国产一卡二卡三卡精品| 久久久精品国产亚洲av高清涩受| www日本在线高清视频| kizo精华| 亚洲人成电影免费在线| 免费日韩欧美在线观看| 国产精品免费一区二区三区在线 | 久久久久久久精品吃奶| 精品一区二区三区av网在线观看 | 国产精品偷伦视频观看了| 久久午夜亚洲精品久久| 啦啦啦在线免费观看视频4| 成人国产一区最新在线观看| 97在线人人人人妻| 精品国产一区二区三区久久久樱花| 99re6热这里在线精品视频| 精品国产乱码久久久久久男人| 国产精品欧美亚洲77777| 国产精品99久久99久久久不卡| 亚洲伊人色综图| 亚洲精品中文字幕一二三四区 | 国精品久久久久久国模美| 亚洲国产成人一精品久久久| 波多野结衣av一区二区av| 亚洲黑人精品在线| 亚洲精品乱久久久久久| 国产精品1区2区在线观看. | 免费看十八禁软件| 最黄视频免费看| 在线播放国产精品三级| 国产精品1区2区在线观看. | 巨乳人妻的诱惑在线观看| 人成视频在线观看免费观看| 久久99热这里只频精品6学生| 亚洲伊人色综图| 午夜福利在线观看吧| 夜夜夜夜夜久久久久| 国产1区2区3区精品| 麻豆成人av在线观看| 国产日韩欧美在线精品| 免费观看人在逋| 国产熟女午夜一区二区三区| 国产精品欧美亚洲77777| 黄色视频在线播放观看不卡| 老熟妇仑乱视频hdxx| a级毛片在线看网站| 成人18禁高潮啪啪吃奶动态图| 亚洲专区国产一区二区| 色94色欧美一区二区| 国产成人欧美在线观看 | 久久人妻福利社区极品人妻图片| 午夜福利在线观看吧| 人人妻人人添人人爽欧美一区卜| 在线观看66精品国产| 999精品在线视频| 国产一区二区三区综合在线观看| 精品福利永久在线观看| 免费不卡黄色视频| 国产老妇伦熟女老妇高清| 国产男靠女视频免费网站| 国产淫语在线视频| 国产精品 国内视频| 国产国语露脸激情在线看| 午夜激情久久久久久久| 岛国在线观看网站| 男女午夜视频在线观看| 精品国产一区二区三区久久久樱花| 国产精品一区二区在线不卡| 精品亚洲乱码少妇综合久久| 亚洲人成电影免费在线| 成年人午夜在线观看视频| 亚洲性夜色夜夜综合| 可以免费在线观看a视频的电影网站| 天天躁夜夜躁狠狠躁躁| 亚洲精品中文字幕一二三四区 | 国产在线一区二区三区精| 欧美精品人与动牲交sv欧美| 国产成人av教育| 亚洲色图 男人天堂 中文字幕| 天天添夜夜摸| 中文字幕人妻丝袜制服| av网站免费在线观看视频| 成人国产av品久久久| 亚洲熟妇熟女久久| 久久人妻福利社区极品人妻图片| 男人操女人黄网站| 国产男女内射视频| 久久久久久久久免费视频了| 成年人午夜在线观看视频| 丁香欧美五月| 国产在线免费精品| 国产黄色免费在线视频| 婷婷丁香在线五月| 午夜日韩欧美国产| 国产成+人综合+亚洲专区| 12—13女人毛片做爰片一| 欧美黑人精品巨大| 亚洲精品国产精品久久久不卡| 免费看十八禁软件| 黑人猛操日本美女一级片| 午夜久久久在线观看| 亚洲专区字幕在线| 免费一级毛片在线播放高清视频 | 欧美中文综合在线视频| 成人三级做爰电影| 两性午夜刺激爽爽歪歪视频在线观看 | 一二三四在线观看免费中文在| tube8黄色片| 久久久久国内视频| 窝窝影院91人妻| 老司机靠b影院| 一级,二级,三级黄色视频| 91九色精品人成在线观看| 成年人午夜在线观看视频| 国产精品久久久人人做人人爽| 老司机午夜十八禁免费视频| 国产一区二区三区视频了| 中文欧美无线码| 美国免费a级毛片| 日韩欧美三级三区| 亚洲情色 制服丝袜| 男女午夜视频在线观看| 国产成人精品久久二区二区91| 久久 成人 亚洲| 国产精品.久久久| 正在播放国产对白刺激| 亚洲专区国产一区二区| 黄片大片在线免费观看| 国产人伦9x9x在线观看| 国产真人三级小视频在线观看| 高清黄色对白视频在线免费看| 女警被强在线播放| 啦啦啦在线免费观看视频4| 黄色视频在线播放观看不卡| 国产日韩欧美在线精品| 一夜夜www| 精品一区二区三区四区五区乱码| 女人爽到高潮嗷嗷叫在线视频| 乱人伦中国视频| 午夜福利免费观看在线| 国产国语露脸激情在线看| 欧美成狂野欧美在线观看| 丰满少妇做爰视频| 久久中文看片网| 首页视频小说图片口味搜索| 两性午夜刺激爽爽歪歪视频在线观看 | 一进一出抽搐动态| 成人18禁高潮啪啪吃奶动态图| 亚洲 国产 在线| 亚洲人成电影观看| 女性被躁到高潮视频| 欧美精品一区二区大全| 91九色精品人成在线观看| 51午夜福利影视在线观看| 国精品久久久久久国模美| 午夜福利在线免费观看网站| 国产av国产精品国产| 午夜福利在线免费观看网站| 久久久久精品国产欧美久久久| 99精品欧美一区二区三区四区| 女人精品久久久久毛片| 大型黄色视频在线免费观看| 国产麻豆69| 美女视频免费永久观看网站| 久久这里只有精品19| 建设人人有责人人尽责人人享有的| 久久免费观看电影| 亚洲熟女毛片儿| 他把我摸到了高潮在线观看 | 王馨瑶露胸无遮挡在线观看| 日本精品一区二区三区蜜桃| 亚洲午夜理论影院| 欧美黑人欧美精品刺激| 夫妻午夜视频| 日本黄色日本黄色录像| 午夜福利影视在线免费观看| 日韩欧美三级三区| 亚洲午夜理论影院| 国产免费福利视频在线观看| 午夜福利视频精品| 满18在线观看网站| 国产视频一区二区在线看| 麻豆av在线久日| 每晚都被弄得嗷嗷叫到高潮| 高清毛片免费观看视频网站 | 久久久欧美国产精品| e午夜精品久久久久久久| 国产淫语在线视频| 777米奇影视久久| 亚洲精品一二三| 在线av久久热| 午夜福利一区二区在线看| 成人黄色视频免费在线看| 欧美+亚洲+日韩+国产| 18在线观看网站| 在线亚洲精品国产二区图片欧美| 老鸭窝网址在线观看| 超碰97精品在线观看| 亚洲国产欧美一区二区综合| 999久久久精品免费观看国产| 电影成人av| 精品国产亚洲在线| 国产精品香港三级国产av潘金莲| 日本vs欧美在线观看视频| 午夜福利影视在线免费观看| 久久国产精品男人的天堂亚洲| 69av精品久久久久久 | 亚洲熟女毛片儿| www.999成人在线观看| 一级片免费观看大全| 亚洲第一欧美日韩一区二区三区 | 高清黄色对白视频在线免费看| 一级毛片精品| 亚洲国产毛片av蜜桃av| 国产一区二区 视频在线| 国产高清激情床上av| 久久青草综合色| 久热这里只有精品99| 无人区码免费观看不卡 | 日韩有码中文字幕| 日韩中文字幕欧美一区二区| 欧美在线一区亚洲| 欧美亚洲日本最大视频资源| 一区二区三区精品91| 欧美+亚洲+日韩+国产| 欧美日韩福利视频一区二区| 亚洲欧美激情在线| 免费在线观看黄色视频的| 一区二区三区激情视频| 国产av精品麻豆| 侵犯人妻中文字幕一二三四区| 一夜夜www| 精品国产超薄肉色丝袜足j| 免费看十八禁软件| 国产精品一区二区精品视频观看| 大香蕉久久成人网| 国产视频一区二区在线看| 99精国产麻豆久久婷婷| 亚洲欧美激情在线| 亚洲精品自拍成人| 国产在线一区二区三区精| 女警被强在线播放| 不卡一级毛片| 欧美乱妇无乱码| 亚洲中文日韩欧美视频| 久久久久久久精品吃奶| 两性午夜刺激爽爽歪歪视频在线观看 | 欧美黄色片欧美黄色片| 午夜91福利影院| 黄色视频,在线免费观看| 水蜜桃什么品种好| 人人妻人人澡人人看| 亚洲全国av大片| 国产成人啪精品午夜网站| 巨乳人妻的诱惑在线观看| 熟女少妇亚洲综合色aaa.| 亚洲成人免费av在线播放| av又黄又爽大尺度在线免费看| 三上悠亚av全集在线观看| 精品欧美一区二区三区在线| 国产一区二区三区综合在线观看| 国产精品电影一区二区三区 | 亚洲七黄色美女视频| 精品国产亚洲在线| 欧美日韩一级在线毛片| 欧美黑人精品巨大| 欧美中文综合在线视频| 成人亚洲精品一区在线观看| 亚洲欧美日韩另类电影网站| 国产成人影院久久av| 国产在线一区二区三区精| 色尼玛亚洲综合影院| 久久久欧美国产精品| 欧美乱码精品一区二区三区| 狠狠婷婷综合久久久久久88av| 超碰97精品在线观看| 亚洲一区二区三区欧美精品| 黄网站色视频无遮挡免费观看| 国产精品亚洲av一区麻豆| 久久精品国产a三级三级三级| 正在播放国产对白刺激| 男女无遮挡免费网站观看| 在线播放国产精品三级| 国产精品av久久久久免费| 香蕉久久夜色| 后天国语完整版免费观看| 日韩中文字幕欧美一区二区| 日韩中文字幕视频在线看片| 亚洲美女黄片视频| 亚洲综合色网址| 亚洲中文av在线| 日日夜夜操网爽| 中亚洲国语对白在线视频| 欧美成人午夜精品| 日韩中文字幕视频在线看片| 十八禁网站网址无遮挡| 国产成人精品久久二区二区免费| 99riav亚洲国产免费| 免费看a级黄色片| 色综合欧美亚洲国产小说| 亚洲熟妇熟女久久| 国产一区二区 视频在线| 亚洲精品中文字幕一二三四区 | 肉色欧美久久久久久久蜜桃| 日韩中文字幕欧美一区二区| 欧美日韩成人在线一区二区| 免费看a级黄色片| 亚洲综合色网址| 国产免费现黄频在线看| 亚洲 欧美一区二区三区| 亚洲黑人精品在线| 精品人妻1区二区| 成人国产av品久久久| 亚洲一码二码三码区别大吗| 在线亚洲精品国产二区图片欧美| 欧美人与性动交α欧美精品济南到| 久久亚洲精品不卡| 亚洲欧洲精品一区二区精品久久久| 精品国产乱码久久久久久男人| 亚洲国产欧美日韩在线播放| 免费在线观看黄色视频的| 蜜桃在线观看..| 国产精品欧美亚洲77777| 国产有黄有色有爽视频| 久久久久久久大尺度免费视频| 无人区码免费观看不卡 | 黄色毛片三级朝国网站| 久久免费观看电影| 日韩成人在线观看一区二区三区| 日日摸夜夜添夜夜添小说| 午夜福利在线观看吧| 国产一区有黄有色的免费视频| 国产成人免费无遮挡视频| 国产av精品麻豆| 欧美日韩亚洲高清精品| 国产高清国产精品国产三级| 亚洲成av片中文字幕在线观看| 黄色视频在线播放观看不卡| 国产97色在线日韩免费| 午夜福利乱码中文字幕| 久久精品亚洲精品国产色婷小说|