• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Re-evaluating data quality of dog mitochondrial, Y chromosomal, and autosomal SNPs genotyped by SNP array

    2016-02-28 07:57:56NewtonOTECKOMinShengPENGHeChuanYANGYaPingZHANGGuoDongWANG
    Zoological Research 2016年6期

    Newton O. OTECKO, Min-Sheng PENG, He-Chuan YANG, Ya-Ping ZHANG,3, Guo-Dong WANG,*

    1State Key Laboratory of Genetic Resources and Evolution, Yunnan Key Laboratory of Molecular Biology of Domestic Animals, Germplasm Bank of Wild Species, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China

    2Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China

    3State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming 650091, China

    Re-evaluating data quality of dog mitochondrial, Y chromosomal, and autosomal SNPs genotyped by SNP array

    Newton O. OTECKO1,2, Min-Sheng PENG1,2, He-Chuan YANG1, Ya-Ping ZHANG1,2,3, Guo-Dong WANG1,2,*

    1State Key Laboratory of Genetic Resources and Evolution, Yunnan Key Laboratory of Molecular Biology of Domestic Animals, Germplasm Bank of Wild Species, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China

    2Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China

    3State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming 650091, China

    Quality deficiencies in single nucleotide polymorphism (SNP) analyses have important implications. We used missingness rates to investigate the quality of a recently published dataset containing 424 mitochondrial, 211 Y chromosomal, and 160 432 autosomal SNPs generated by a semicustom Illumina SNP array from 5 392 dogs and 14 grey wolves. Overall, the individual missingness rate for mitochondrial SNPs was ~43.8%, with 980 (18.1%) individuals completely missing mitochondrial SNP genotyping (missingness rate=1). In males, the genotype missingness rate was ~28.8% for Y chromosomal SNPs, with 374 males recording rates above 0.96. These 374 males also exhibited completely failed mitochondrial SNPs genotyping, indicative of a batch effect. Individual missingness rates for autosomal markers were greater than zero, but less than 0.5. Neither mitochondrial nor Y chromosomal SNPs achieved complete genotyping (locus missingness rate=0), whereas 5.9% of autosomal SNPs had a locus missingness rate=1. The high missingness rates and possible batch effect show that caution and rigorous measures are vital when genotyping and analyzing SNP array data for domestic animals. Further improvements of these arrays will be helpful to future studies.

    SNP array; Dog; Mitochondrial; Y chromosomal; Autosomal

    RESULTS

    Full iMR and lMR results are shown in Supplementary Tables S2 and S3, respectively. As summarized in Figure 1, complete genotyping (MR=0) for mitochondrial and Y chromosomal SNPs was observed for 3 039 (56.2%) and 1 896 (71.2%) individuals, respectively, with 980 (18.1%) and 107 (4.0%) individuals completely missing genotyping (MR=1) for the two marker types, respectively. Pure breed dogs tended to have a higher iMR (1) than that of other dogs. Additionally, overall mean iMR values were generally higher in pure breed dogs and much higher in grey wolves, specifically for mitochondrial and Y chromosomal marker types (Table 1). This trend was mirrored in the mean iMR across breeds, excluding MR=0 values (Supplementary Table S4). All individuals recorded autosomal genotyping iMR >0 to <0.5. Combined analysis of all MR values >0 and <1 (Figure 2) showed a higher mean iMR for the Y chromosomal (>40%) than the other two markers.

    Figure 1 lndividual missingness rates (iMR) for mitochondrial and Y chromosomal marker types

    Table 1 Comparison of individual missingness rates (iMR) across different breed categories

    Overall genotype missingness rates (MR>0) for mitochondrial and Y chromosomal SNPs were realized in 2 367 (43.8%) and 766 (28.8%) individuals, respectively, with the missing genotyping proportions in each breed summarized in Supplementary Table S4. Of the 980 individuals with mitochondrial MR=1, 374 were males, which all had Y chromosomal MR>0.96 (Figure 1 and Supplementary Table S5). The mean autosomal MR was also significantly higher for these 374 males (0.135) compared with the other 2 288 males (0.002) (Table 2). Further scrutiny indicated that all 980 individuals with mitochondrial MR=1 came from 1 325 samples that had a different experimental format, given the assaying plate numbering system (Sample IDs prefix, Supplementary Table S2). There was a marked difference in mean iMR across all three marker types between the two classes of samples, with those undergoing assaying plate serialization bearing lower missed genotyping rates (Supplementary Table S6). These observations suggest a likely batch effect (Leek, 2014; Leek et al., 2010) in the case of the 374 males.

    Assessment of lMR showed that none of the mitochondrial or Y chromosomal SNPs achieved complete genotyping (MR=0). While 5.9% of the autosomal SNPs were completely genotyped, 0.5% of the autosomal SNPs together with 0.7% of the mitochondrial SNPs had a ≥20% MR among the study individuals (Table 3). Overall, lMR was higher for mitochondrial and Y chromosomal SNPs compared with that for autosomal SNPs (Figure 3).

    Figure 2 Box plot showing the individual missingness rates (iMR) for mt: mitochondrial (n=1 387), Y: Y chromosomal (n=659), and Aut: autosomal (n=2 744) marker types according to gender for the 0<MR<1 category

    DlSCUSSlON

    The missingness rate can be used to clarify overall quality of genotyping. Problems at any stage of the genotyping process can adversely impact data analyses, including the definition of haplotypes and calculation of genetic diversities. Missingness rates can inform decisions on how to account for possible errors to support the genotyping process, and possibly inform technological advancements in SNP arrays (Laframboise, 2009). The observed overlapping pattern of high MR statistics for mitochondrial and Y chromosomal SNPs among the 374 males represents a possible batch effect scenario (Leek et al., 2010).

    Batch effects commonly occur in high-throughput technologies, where a subgroup of observations show qualitatively different behaviors across conditions, which might not be related to biological variability (Leek et al., 2010). Batch effects, like other genotyping problems, arise from ubiquitous sources that are often not fully recorded or reported, ranging from sample/DNA competence, date/time of experiment, technician input, reagents, chip numbers, as well as platforms or instruments used (Leek, 2014; Leek et al., 2010; Pompanon et al., 2005). Full experimental records and individual sample information, as highly advocated elsewhere (Kitchen et al., 2010; Leek et al., 2010), play vital roles in facilitating re-evaluations or metaanalyses of multiple datasets. This was a limitation encountered in our analysis, which lowered the power for definitive validation of the suspected batch effect and factors underlying high MR values.

    In the present study, MRs tended to be higher for pure breed dogs than for other dogs, suggesting potential breed-based differential SNP array missingness, contrary to more robust technologies such as next-generation sequencing. Missing genotype calls are widespread in high-throughput genotyping, but their effect on subsequent analyses has been largely ignored (Fu et al., 2009; Yu, 2012). In SNP arrays, missing call rates arise from technical issues like SNP array manufacturing, DNA processing, batch size and composition, or genotype calling criteria, as well as biological issues such as previously uncharacterized variants or DNA quality and quantity (Didion et al., 2012; Fu et al., 2009; Hong et al, 2008.; Nishida et al., 2008). In addition to careful DNA quality control and quantity standardization, other mitigation measures to reduce high MRs should include employing large and uniform batch sizes in genotype calling, using homogenous samples in the same batches (Hong et al., 2008), reviewing the suitability of quality control filtering cutoffs when calling genotypes (Fu et al., 2009), and continuous characterization and inclusion of rarer genomic variants in array designs (Didion et al., 2012).

    Table 2 Comparison of individual missingness rates (iMR) for 374 males with likely batch effect versus remaining males

    Table 3 Summary of locus missingness rates (lMR) for mitochondrial, Y chromosomal, and autosomal SNPs

    Figure 3 Box plot showing the locus missingness rates (lMR) for mitochondrial, Y chromosomal, and autosomal SNPs MR>0

    Due to the diverse, complex, and cryptic nature of genotyping issues in high-throughput technologies, such as batch effects, a thorough understanding and awareness of potential causal avenues, consequences, and mitigation strategies are serious concerns among researchers (Kitchen et al., 2010; Kupfer et al., 2012; Leek, 2014; Leek et al., 2010; Palanichamy & Zhang, 2010). SNP array technology, computational methodology, and biological inferences are closely interlinked (Laframboise, 2009). Our findings, therefore, point to the necessity of rigor and caution in the generation and use of SNP array genotyping data for domesticated animals, especially those improved for specialized traits. Continuous robustification and extensive precommercialization qualification of SNP arrays are areas for future consideration.

    ACKNOWLEDGEMENTS

    N.O.O. thanks the support of the Chinese Academy of Sciences-The World Academy of Sciences (CAS-TWAS) President’s Fellowship Program for Doctoral Candidates. G.-D.W. and M.-S.P. are grateful for support from the Youth Innovation Promotion Association, CAS.

    AVAlLABlLlTY OF DATA AND MATERlALS

    All data and software used in this paper are freely available. The SNP dataset for the 5406 dog samples has been published previously (Shannon et al., 2015b), and is freely available at: http: //www.datadryad.org/resource/doi: 10.5061/dryad.v9t5h. Both the PLINK and BoxPlotR software are freely available at: http: //pngu.mgh.harvard.edu/~purcell/plink and http: //boxplot. tyerslab.co/, respectively. In addition, we have provided the complete missingness rate data in the online version of this article in Supplementary Table S2 (results of individual missingness rates) and Supplementary Table S3 (results of locus missingness rates) plus other supplementary results supporting this paper.

    REFERENCES

    Didion JP, Yang H, Sheppard K, Fu CP, McMillan L, De Villena FPM, Churchill GA. 2012. Discovery of novel variants in genotyping arrays improves genotype retention and reduces ascertainment bias. BMC Genomics,13: 34.

    Fu WQ, Wang Y, Wang Y, Li R, Lin R, Jin L. 2009. Missing call bias in highthroughput genotyping. BMC Genomics,10: 106.

    Goddard ME, Hayes BJ. 2009. Mapping genes for complex traits in domestic animals and their use in breeding programmes. Nature Reviews Genetics,10(6): 381-391.

    Hong HX, Su ZQ, Ge WG, Shi LM, Perkins R, Fang H, Xu JS, Chen JJ, Han T, Kaput J, Fuscoe JC, Tong WD. 2008. Assessing batch effects of genotype calling algorithm BRLMM for the Affymetrix GeneChip Human Mapping 500 K array set using 270 HapMap samples. BMC Bioinformatics,9: S17.

    Kitchen RR, Sabine VS, Sims AH, Macaskill EJ, Renshaw L, Thomas JS, Van Hemert JI, Dixon JM, Bartlett JMS. 2010. Correcting for intraexperiment variation in Illumina BeadChip data is necessary to generate robust gene-expression profiles. BMC Genomics,11: 134.

    Kupfer P, Guthke R, Pohlers D, Huber R, Koczan D, Kinne RW. 2012. Batch correction of microarray data substantially improves the identification of genes differentially expressed in rheumatoid arthritis and osteoarthritis. BMC Medical Genomics,5: 23.

    LaFramboise T. 2009. Single nucleotide polymorphism arrays: a decade of biological, computational and technological advances. Nucleic Acids Research,37(13): 4181-4193.

    Leek JT. 2014. svaseq: removing batch effects and other unwanted noise from sequencing data. Nucleic Acids Research,42(21): e161.

    Leek JT, Scharpf RB, Bravo HC, Simcha D, Langmead B, Johnson WE, Geman D, Baggerly K, Irizarry RA. 2010. Tackling the widespread and critical impact of batch effects in high-throughput data. Nature Reviews Genetics,11(10): 733-739.

    Nishida N, Koike A, Tajima A, Ogasawara Y, Ishibashi Y, Uehara Y, Inoue I, Tokunaga K. 2008. Evaluating the performance of Affymetrix SNP Array 6.0 platform with 400 Japanese individuals. BMC Genomics,9: 431.

    Palanichamy MG, Zhang YP. 2010. Potential pitfalls in MitoChip detected tumor-specific somatic mutations: a call for caution when interpreting patient data. BMC Cancer,10: 597.

    Peng MS, He JD, Fan L, Liu J, Adeola AC, Wu SF, Murphy RW, Yao YG, Zhang YP. 2014. Retrieving Y chromosomal haplogroup trees using GWAS data. European Journal of Human Genetics,22(8): 1046-1050.

    Pompanon F, Bonin A, Bellemain E, Taberlet P. 2005. Genotyping errors: causes, consequences and solutions. Nature Reviews Genetics,6(11): 847-859.

    Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, Maller J, Sklar P, De Bakker PIW, Daly MJ, Sham PC. 2007. PLINK: a tool set for whole-genome association and population-based linkage analyses. The American Journal of Human Genetics,81(3): 559-575.

    Shannon LM, Boyko RH, Castelhano M, Corey E, Hayward JJ, McLean C, White ME, Abi Said M, Anita BA, Bondjengo NI, Calero J, Galov A, Hedimbi M, Imam B, Khalap R, Lally D, Masta A, Oliveira KC, Pérez L, Randall J, Tam NM, Trujillo-Cornejo FJ, Valeriano C, Sutter NB, Todhunter RJ, Bustamante CD, Boyko AR. 2015a. Data from: Genetic structure in villagedogs reveals a Central Asian domestication origin. Dryad Digital Repository. http: //dx.doi.org/10.5061/dryad.v9t5h.

    Shannon LM, Boyko RH, Castelhano M, Corey E, Hayward JJ, McLean C, White ME, Abi Said M, Anita BA, Bondjengo NI, Calero J, Galov A, Hedimbi M, Imam B, Khalap R, Lally D, Masta A, Oliveira KC, Pérez L, Randall J, Tam NM, Trujillo-Cornejo FJ, Valeriano C, Sutter NB, Todhunter RJ, Bustamante CD, Boyko AR. 2015b. Genetic structure in village dogs reveals a Central Asian domestication origin. Proceedings of the National Academy of Sciences of the United States of America,112(44): 13639-13644.

    Spitzer M, Wildenhain J, Rappsilber J, Tyers M. 2014. BoxPlotR: a web tool for generation of box plots. Nature Methods,11(2): 121-122.

    Yu ZX. 2012. Family-based association tests using genotype data with uncertainty. Biostatistics,13(2): 228-240.

    lNTRODUCTlON

    MATERlALS AND METHODS

    etrieved dog SNP datasets from Dryad (

    10.5061/ dryad.v9t5h) (Shannon et al., 2015a). Detailed methodology is described elsewhere (Shannon et al., 2015b). Briefly, DNA was extracted predominantly from whole blood samples by salt precipitation from 4675 pure breed, 168 mixed breed, and 549 village dogs, plus 14 grey wolves (Supplementary Table S1). The samples were genotyped against 424 mitochondrial, 211 Y chromosomal, and 160 432 autosomal SNP markers using asemicustom Illumina SNP array (Shannon et al., 2015b). We used PLINK v.1.07 to determine the missingness rates (MRs) of the datasets (Purcell et al., 2007). We analysed all individual MRs (iMR) for both mitochondrial and autosomal marker types, except for the Y chromosomal marker in females. We also calculated the locus MR (lMR) to assess the MRs for all SNPs. We used IBM SPSS statistics version 20.0 (SPSS, Inc., Chicago, IL, USA) for data analysis, and box plots were drawn by BoxPlotR software (Spitzer et al., 2014).

    Received: 18 October 2016; Accepted: 04 November 2016

    Foundation items: This work was supported by grants from the NSFC (91531303) and the 973 programs (2013CB835200; 2013CB835202)*

    , E-mail: wanggd@mail.kiz.ac.cn

    DOI:10.13918/j.issn.2095-8137.2016.6.356

    Single-nucleotide polymorphism (SNP) arrays have received wide recognition for detecting DNA polymorphisms in domestic animals (Goddard & Hayes, 2009). The availability of SNP arrays to incorporate not only dense autosomal markers, but also hundreds of mitochondrial and Y chromosomal SNPs, greatly assists breeding and population history inferences (Shannon et al., 2015b). Genotyping SNPs offers superior efficiency and convenience compared with traditional Sanger sequencing or genotyping techniques, such as denaturing highperformance liquid chromatography (DHPLC) and SNPshot. Like other high-throughput techniques, however, SNP assays are not infallible. Difficulties can arise from diverse, complex, and often cryptic sources, and different factors can converge to produce an artifact (Pompanon et al., 2005). With new technological advancements in the genotyping landscape, some potential artifacts remain unknown, untested, or unaccounted for (Leek, 2014; Leek et al., 2010). Previous studies on human populations have established potential technological and experimental pitfalls in genotyping, which could compromise data quality (Palanichamy & Zhang, 2010; Peng et al., 2014). To investigate these issues in domestic animals, we performed an independent re-evaluation of recently published SNP array data representing a global dog population (Shannon et al., 2015b).1

    av黄色大香蕉| 欧美精品国产亚洲| 禁无遮挡网站| 国产综合懂色| 亚洲电影在线观看av| 国产真实伦视频高清在线观看| 欧美精品国产亚洲| 狂野欧美白嫩少妇大欣赏| 国产在线精品亚洲第一网站| 亚洲av二区三区四区| 久久久午夜欧美精品| 久久久久久久久久黄片| 99久国产av精品国产电影| 欧美3d第一页| 国产精品久久电影中文字幕| 国产成人a区在线观看| 精品不卡国产一区二区三区| 久久精品国产清高在天天线| 亚洲最大成人手机在线| 91精品国产九色| 欧洲精品卡2卡3卡4卡5卡区| 久久精品国产亚洲av涩爱 | 最好的美女福利视频网| 超碰av人人做人人爽久久| 日韩 亚洲 欧美在线| 欧美一级a爱片免费观看看| av天堂中文字幕网| 久久精品国产清高在天天线| 精品欧美国产一区二区三| 乱码一卡2卡4卡精品| 亚洲av二区三区四区| 日本 av在线| av在线播放精品| 啦啦啦啦在线视频资源| 又黄又爽又免费观看的视频| 男女做爰动态图高潮gif福利片| 最近中文字幕高清免费大全6| 啦啦啦啦在线视频资源| 看免费成人av毛片| 久久婷婷人人爽人人干人人爱| 岛国在线免费视频观看| 亚洲国产精品久久男人天堂| 日韩成人伦理影院| 国产成人a区在线观看| 中文字幕熟女人妻在线| 日本免费a在线| 禁无遮挡网站| 国产乱人偷精品视频| 黄色欧美视频在线观看| 中文字幕人妻熟人妻熟丝袜美| 中文在线观看免费www的网站| 欧美中文日本在线观看视频| 欧美极品一区二区三区四区| 午夜免费男女啪啪视频观看 | 久久久久久伊人网av| 听说在线观看完整版免费高清| 成人午夜高清在线视频| 精品一区二区三区视频在线| 亚洲欧美精品综合久久99| 啦啦啦观看免费观看视频高清| 久久亚洲国产成人精品v| 99热精品在线国产| 人人妻人人看人人澡| 欧美日本视频| 精品少妇黑人巨大在线播放 | 99在线视频只有这里精品首页| 日本撒尿小便嘘嘘汇集6| 成年av动漫网址| 青春草视频在线免费观看| 免费看光身美女| 午夜福利在线观看免费完整高清在 | 亚洲人成网站在线观看播放| 国产黄片美女视频| 成人亚洲欧美一区二区av| 国产极品精品免费视频能看的| 日韩人妻高清精品专区| 久久久久久九九精品二区国产| 久久精品91蜜桃| 久久精品91蜜桃| 99久久久亚洲精品蜜臀av| 亚洲成人精品中文字幕电影| 久久久久久伊人网av| 中国国产av一级| 天天躁日日操中文字幕| 成人性生交大片免费视频hd| 成熟少妇高潮喷水视频| 观看免费一级毛片| 国产av一区在线观看免费| 免费av观看视频| 国产视频一区二区在线看| 婷婷精品国产亚洲av在线| 黑人高潮一二区| 男人的好看免费观看在线视频| 成年av动漫网址| 日日摸夜夜添夜夜添av毛片| 色在线成人网| av天堂中文字幕网| 国产男人的电影天堂91| av女优亚洲男人天堂| a级一级毛片免费在线观看| 国产精品综合久久久久久久免费| 噜噜噜噜噜久久久久久91| 美女高潮的动态| 天天一区二区日本电影三级| av免费在线看不卡| 韩国av在线不卡| 国产探花极品一区二区| 少妇丰满av| 成人无遮挡网站| 天堂网av新在线| ponron亚洲| 久久久久久大精品| 欧美国产日韩亚洲一区| 国内少妇人妻偷人精品xxx网站| 九九热线精品视视频播放| 日本撒尿小便嘘嘘汇集6| 特级一级黄色大片| h日本视频在线播放| 自拍偷自拍亚洲精品老妇| 成年女人永久免费观看视频| 色av中文字幕| 九九在线视频观看精品| 亚洲av成人av| 少妇熟女欧美另类| 波野结衣二区三区在线| 97在线视频观看| 婷婷六月久久综合丁香| 一本久久中文字幕| 亚洲欧美成人精品一区二区| 少妇被粗大猛烈的视频| 国产精品一区www在线观看| 久久亚洲国产成人精品v| 久久精品国产自在天天线| 亚洲va在线va天堂va国产| 国产色婷婷99| 婷婷色综合大香蕉| 我要看日韩黄色一级片| 一级av片app| 国产精品1区2区在线观看.| 亚洲av电影不卡..在线观看| 日本黄色视频三级网站网址| 日韩欧美免费精品| 国产高清三级在线| 91av网一区二区| 欧美成人a在线观看| av在线老鸭窝| 此物有八面人人有两片| 欧美xxxx黑人xx丫x性爽| 少妇熟女欧美另类| 国产精品99久久久久久久久| 日本黄色视频三级网站网址| 日本黄色视频三级网站网址| 亚洲人成网站在线播| 免费av观看视频| 国产精品野战在线观看| 日本-黄色视频高清免费观看| eeuss影院久久| 乱人视频在线观看| 一区二区三区四区激情视频 | 六月丁香七月| 18+在线观看网站| 国产精品亚洲一级av第二区| 欧美日韩在线观看h| 亚洲内射少妇av| 禁无遮挡网站| 国产av一区在线观看免费| 伊人久久精品亚洲午夜| 亚洲美女黄片视频| 一级毛片电影观看 | 高清午夜精品一区二区三区 | 亚洲精品亚洲一区二区| 99久久精品热视频| 精品免费久久久久久久清纯| 欧美色视频一区免费| 国产成人aa在线观看| 老司机午夜福利在线观看视频| 国产精品久久视频播放| 日本免费a在线| 一级av片app| 国产精品人妻久久久久久| 一区二区三区高清视频在线| 国产精品一及| 亚洲五月天丁香| 久久久久性生活片| 精品国内亚洲2022精品成人| 欧美三级亚洲精品| 亚洲美女黄片视频| 国国产精品蜜臀av免费| 国产精品久久久久久av不卡| 女人被狂操c到高潮| 天堂影院成人在线观看| 久久久久免费精品人妻一区二区| 亚洲精品一区av在线观看| 色哟哟·www| 免费搜索国产男女视频| 美女免费视频网站| 亚洲av美国av| 成人午夜高清在线视频| 97超级碰碰碰精品色视频在线观看| 内地一区二区视频在线| 国内精品久久久久精免费| 亚洲成人av在线免费| 国产午夜精品久久久久久一区二区三区 | 此物有八面人人有两片| 一级毛片电影观看 | 12—13女人毛片做爰片一| 久久精品国产清高在天天线| 97热精品久久久久久| 日本在线视频免费播放| 看十八女毛片水多多多| 国产精品av视频在线免费观看| 欧美zozozo另类| 国产精品久久久久久久久免| 国产午夜精品论理片| 欧美bdsm另类| 国产美女午夜福利| 三级男女做爰猛烈吃奶摸视频| 久久久久久久午夜电影| 成人美女网站在线观看视频| 久久99热这里只有精品18| 狂野欧美白嫩少妇大欣赏| 亚洲专区国产一区二区| 淫秽高清视频在线观看| 老师上课跳d突然被开到最大视频| 男人舔奶头视频| 午夜福利在线观看吧| 国产亚洲精品综合一区在线观看| 天堂√8在线中文| 亚洲欧美精品综合久久99| 成人av一区二区三区在线看| 久久午夜福利片| 亚洲欧美成人精品一区二区| 九色成人免费人妻av| 亚洲美女搞黄在线观看 | 成人亚洲精品av一区二区| 91久久精品电影网| 精品久久国产蜜桃| 午夜激情欧美在线| 国产精品一区二区免费欧美| 国产亚洲精品综合一区在线观看| 国产精品一区二区性色av| 免费av毛片视频| 禁无遮挡网站| 久久久a久久爽久久v久久| 日本熟妇午夜| 日韩精品有码人妻一区| av在线播放精品| 亚洲美女搞黄在线观看 | 亚洲精品久久国产高清桃花| 国产色爽女视频免费观看| 亚洲中文字幕日韩| 久久人人爽人人爽人人片va| 亚洲人与动物交配视频| 欧美+日韩+精品| 国内揄拍国产精品人妻在线| 最后的刺客免费高清国语| 精品久久久久久久久久免费视频| 亚洲成人久久性| 色综合站精品国产| 国产69精品久久久久777片| 久久久久国产网址| 美女黄网站色视频| 能在线免费观看的黄片| 久久久久久久久久成人| 舔av片在线| 日本一本二区三区精品| 久久99热这里只有精品18| 欧美中文日本在线观看视频| 国产男靠女视频免费网站| 国内精品宾馆在线| 成人特级黄色片久久久久久久| 亚洲七黄色美女视频| 人人妻人人看人人澡| 亚洲自偷自拍三级| 午夜久久久久精精品| 日韩欧美精品v在线| 国产淫片久久久久久久久| 在线a可以看的网站| 最近中文字幕高清免费大全6| 麻豆一二三区av精品| 一进一出好大好爽视频| 蜜桃久久精品国产亚洲av| 人人妻人人澡欧美一区二区| 狂野欧美白嫩少妇大欣赏| 成年女人看的毛片在线观看| 最近手机中文字幕大全| 九九在线视频观看精品| 在线观看午夜福利视频| 国产精品1区2区在线观看.| 天美传媒精品一区二区| 欧美日韩国产亚洲二区| 国产高清激情床上av| 国产真实乱freesex| 久久综合国产亚洲精品| 一边摸一边抽搐一进一小说| 精品久久久噜噜| 国产精品一区二区性色av| 天美传媒精品一区二区| 麻豆乱淫一区二区| 国产白丝娇喘喷水9色精品| 免费不卡的大黄色大毛片视频在线观看 | 欧美bdsm另类| 国产精品久久久久久av不卡| 老女人水多毛片| 日韩av不卡免费在线播放| 男女之事视频高清在线观看| 别揉我奶头 嗯啊视频| 国产免费一级a男人的天堂| 乱人视频在线观看| 亚洲精品乱码久久久v下载方式| 永久网站在线| 嫩草影院精品99| 高清毛片免费看| 国产女主播在线喷水免费视频网站 | 乱人视频在线观看| 99久久成人亚洲精品观看| 男人舔奶头视频| 欧美成人a在线观看| 精品久久久久久久人妻蜜臀av| 久久精品夜夜夜夜夜久久蜜豆| a级毛色黄片| 男女啪啪激烈高潮av片| 少妇人妻精品综合一区二区 | 村上凉子中文字幕在线| 在线免费十八禁| 亚洲第一区二区三区不卡| 久久久久国内视频| 亚洲人成网站在线播放欧美日韩| 久久久久九九精品影院| 亚洲第一区二区三区不卡| 亚洲va在线va天堂va国产| av天堂中文字幕网| 俺也久久电影网| av天堂中文字幕网| 久久久久九九精品影院| 久久精品国产亚洲av涩爱 | 激情 狠狠 欧美| 亚洲第一电影网av| 亚洲人成网站在线播放欧美日韩| 麻豆国产97在线/欧美| 高清毛片免费看| 欧美+亚洲+日韩+国产| 69av精品久久久久久| 丝袜喷水一区| 国产一区二区在线观看日韩| 国产成人aa在线观看| 欧美区成人在线视频| 免费看美女性在线毛片视频| 久久久久精品国产欧美久久久| 国产三级中文精品| 在线观看午夜福利视频| 日韩欧美在线乱码| 日日撸夜夜添| 成人鲁丝片一二三区免费| 亚洲电影在线观看av| 少妇裸体淫交视频免费看高清| 天堂影院成人在线观看| 亚洲美女黄片视频| 久久久色成人| 国产毛片a区久久久久| 床上黄色一级片| 亚洲美女搞黄在线观看 | 99热全是精品| 在线观看免费视频日本深夜| 九九热线精品视视频播放| 久久久久久久久久久丰满| 国产 一区精品| 色视频www国产| 亚洲美女黄片视频| 成熟少妇高潮喷水视频| 国内揄拍国产精品人妻在线| 九九爱精品视频在线观看| 国产伦精品一区二区三区视频9| 色av中文字幕| 国产精品久久久久久精品电影| 如何舔出高潮| 国产伦精品一区二区三区视频9| 国产久久久一区二区三区| 成人国产麻豆网| 亚洲图色成人| 亚洲精品色激情综合| 又黄又爽又刺激的免费视频.| 亚洲av美国av| 日日摸夜夜添夜夜添小说| 床上黄色一级片| 天堂av国产一区二区熟女人妻| 九色成人免费人妻av| av专区在线播放| a级毛片免费高清观看在线播放| 在线国产一区二区在线| 天美传媒精品一区二区| 国语自产精品视频在线第100页| 午夜亚洲福利在线播放| 三级经典国产精品| 午夜免费激情av| 国产成人精品久久久久久| 久久久色成人| 波多野结衣高清无吗| 桃色一区二区三区在线观看| 久久人人精品亚洲av| 国产精品伦人一区二区| 男女下面进入的视频免费午夜| 久久精品国产亚洲av天美| 免费av毛片视频| 十八禁国产超污无遮挡网站| 亚洲精品色激情综合| 99热精品在线国产| 听说在线观看完整版免费高清| 欧美+日韩+精品| 岛国在线免费视频观看| 精品不卡国产一区二区三区| 精品一区二区三区视频在线| 人人妻,人人澡人人爽秒播| 国产精品一二三区在线看| 亚洲精品日韩av片在线观看| 蜜桃久久精品国产亚洲av| 国产成人91sexporn| 99热这里只有是精品50| 亚洲国产欧美人成| 欧美激情国产日韩精品一区| 久久韩国三级中文字幕| 国产午夜福利久久久久久| 国产淫片久久久久久久久| 亚洲激情五月婷婷啪啪| 中出人妻视频一区二区| 99久久精品热视频| 人妻丰满熟妇av一区二区三区| 97在线视频观看| 搡老熟女国产l中国老女人| 69人妻影院| 人人妻人人澡人人爽人人夜夜 | 亚洲色图av天堂| 亚洲精品影视一区二区三区av| 一个人看视频在线观看www免费| 噜噜噜噜噜久久久久久91| 美女被艹到高潮喷水动态| 日韩欧美三级三区| 国产91av在线免费观看| 天天躁夜夜躁狠狠久久av| 午夜精品在线福利| 亚洲专区国产一区二区| 岛国在线免费视频观看| 亚洲国产日韩欧美精品在线观看| 哪里可以看免费的av片| 午夜久久久久精精品| 午夜a级毛片| 成人鲁丝片一二三区免费| 欧美+亚洲+日韩+国产| 最近在线观看免费完整版| 你懂的网址亚洲精品在线观看 | 国产三级在线视频| 三级毛片av免费| 免费在线观看影片大全网站| 亚洲欧美清纯卡通| 女同久久另类99精品国产91| 亚州av有码| 99热6这里只有精品| 国内精品美女久久久久久| 毛片女人毛片| 国产视频一区二区在线看| 天天躁日日操中文字幕| 婷婷亚洲欧美| 狠狠狠狠99中文字幕| 久久久久久久久中文| АⅤ资源中文在线天堂| 真实男女啪啪啪动态图| 国产精品久久久久久精品电影| 欧美极品一区二区三区四区| 亚洲精品一区av在线观看| 在线免费观看不下载黄p国产| 国产爱豆传媒在线观看| 1024手机看黄色片| 欧美三级亚洲精品| 俺也久久电影网| 免费av不卡在线播放| 99久久无色码亚洲精品果冻| 亚洲国产精品合色在线| 精品免费久久久久久久清纯| 国产伦一二天堂av在线观看| 乱人视频在线观看| 18+在线观看网站| 噜噜噜噜噜久久久久久91| a级一级毛片免费在线观看| 国产一区二区在线av高清观看| 日韩大尺度精品在线看网址| 美女xxoo啪啪120秒动态图| 人人妻人人澡人人爽人人夜夜 | 三级男女做爰猛烈吃奶摸视频| 99在线视频只有这里精品首页| 欧美日本亚洲视频在线播放| 级片在线观看| 亚洲最大成人av| 三级经典国产精品| 乱系列少妇在线播放| 一级a爱片免费观看的视频| 一本精品99久久精品77| 久久久精品欧美日韩精品| 又黄又爽又免费观看的视频| 久久久色成人| 亚洲精品日韩av片在线观看| 久久久久久久亚洲中文字幕| 听说在线观看完整版免费高清| 亚洲经典国产精华液单| 午夜爱爱视频在线播放| 一a级毛片在线观看| 精品一区二区三区av网在线观看| 亚洲性夜色夜夜综合| av天堂中文字幕网| 欧美xxxx性猛交bbbb| 男女下面进入的视频免费午夜| 啦啦啦观看免费观看视频高清| 日本免费a在线| 成人特级黄色片久久久久久久| 久久人人爽人人片av| 久久婷婷人人爽人人干人人爱| 国产av麻豆久久久久久久| 99国产精品一区二区蜜桃av| 身体一侧抽搐| 男人狂女人下面高潮的视频| 精品午夜福利在线看| 欧美日韩国产亚洲二区| 午夜福利视频1000在线观看| 亚洲自拍偷在线| 男女那种视频在线观看| 俄罗斯特黄特色一大片| 日本黄色视频三级网站网址| 最新在线观看一区二区三区| 国产精品,欧美在线| 中文资源天堂在线| 国产成人影院久久av| 亚洲真实伦在线观看| 国产精品永久免费网站| 日韩强制内射视频| 欧美区成人在线视频| 国产日本99.免费观看| 香蕉av资源在线| 日韩在线高清观看一区二区三区| 日韩高清综合在线| 亚洲美女黄片视频| 亚洲在线观看片| 日本爱情动作片www.在线观看 | 一级av片app| 天堂动漫精品| 久久久久国产精品人妻aⅴ院| av女优亚洲男人天堂| 3wmmmm亚洲av在线观看| 国产av麻豆久久久久久久| 观看美女的网站| 免费无遮挡裸体视频| 一夜夜www| 亚洲国产色片| 12—13女人毛片做爰片一| 99热全是精品| 亚洲国产精品sss在线观看| 精品午夜福利视频在线观看一区| 成人国产麻豆网| 99久久成人亚洲精品观看| 精品午夜福利在线看| 久久久欧美国产精品| 观看美女的网站| 特级一级黄色大片| 一区二区三区四区激情视频 | 亚洲av中文字字幕乱码综合| 久久久久久大精品| 91狼人影院| av在线播放精品| 一个人看视频在线观看www免费| av在线天堂中文字幕| 一个人看视频在线观看www免费| 偷拍熟女少妇极品色| 久久久久国产精品人妻aⅴ院| 亚洲五月天丁香| 午夜福利在线观看免费完整高清在 | 亚洲无线在线观看| 色5月婷婷丁香| 女人十人毛片免费观看3o分钟| .国产精品久久| 18禁裸乳无遮挡免费网站照片| 色哟哟哟哟哟哟| 国产中年淑女户外野战色| 日韩欧美精品v在线| 特大巨黑吊av在线直播| 久久精品国产自在天天线| 天堂影院成人在线观看| 国产欧美日韩精品亚洲av| 亚洲中文日韩欧美视频| 日本免费a在线| av福利片在线观看| 国产亚洲av嫩草精品影院| 2021天堂中文幕一二区在线观| 亚洲欧美日韩高清在线视频| 卡戴珊不雅视频在线播放| 又粗又爽又猛毛片免费看| 久久久a久久爽久久v久久| 亚洲av熟女| 亚洲精品在线观看二区| 亚洲人成网站高清观看| 色播亚洲综合网| 2021天堂中文幕一二区在线观| 中文在线观看免费www的网站| 变态另类丝袜制服| 欧美激情国产日韩精品一区| 一区二区三区免费毛片| 成人毛片a级毛片在线播放| 性欧美人与动物交配| 亚洲av.av天堂| 天天一区二区日本电影三级| 狂野欧美白嫩少妇大欣赏| 久久久久久久久久黄片| 看十八女毛片水多多多| 欧美色欧美亚洲另类二区| 日韩精品有码人妻一区| 淫妇啪啪啪对白视频| 男女啪啪激烈高潮av片| 一个人观看的视频www高清免费观看|