• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    銀粉含量對(duì)印刷型聚合物發(fā)光器件的影響

    2016-02-23 07:19:10曾文進(jìn)趙春燕李詠華李冬梅

    曾文進(jìn),趙春燕,李詠華,李冬梅,李 雪,張 赤,

    彭俊彪2,賴文勇1,牛巧利1,閔永剛1

    1) 南京郵電大學(xué)材料學(xué)院,江蘇南京 210023;2)華南理工大學(xué)發(fā)光材料與器件教育部重點(diǎn)實(shí)驗(yàn)室,廣東廣州 510641

    ?

    Received:2015-06-14;Accepted:2015-11-13

    Foundation:National Natural Science Foundation of China (61504066); Natural Science Foundation of Jiangsu Higher Education Institutions of China (15KJB430024); Natural Science Foundation of Jiangsu Province (BK20150838)

    ? Corresponding author:Professor Min Yonggang. E-mail: iamygmin@njupt.edu.cn

    Citation:Zeng Wenjin, Zhao Chunyan, Li Yonghua, et al. Effect of Ag content on the performance of cathode-printed PLEDs[J]. Journal of Shenzhen University Science and Engineering, 2016, 33(1): 18-24.

    【Chemistry and Chemical Engineering / 化學(xué)與化工】

    Effect of Ag content on the performance of

    cathode-printed PLEDs

    Zeng Wenjin1, Zhao Chunyan1, Li Yonghua1, Li Dongmei1, Li Xue1,

    Zhang Chi2, Peng Junbiao2, Lai Wenyong1,

    銀粉含量對(duì)印刷型聚合物發(fā)光器件的影響

    曾文進(jìn)1,趙春燕1,李詠華1,李冬梅1,李雪1,張赤2,

    彭俊彪2,賴文勇1,牛巧利1,閔永剛1

    1) 南京郵電大學(xué)材料學(xué)院,江蘇南京 210023;2)華南理工大學(xué)發(fā)光材料與器件教育部重點(diǎn)實(shí)驗(yàn)室,廣東廣州 510641

    摘要:研究銀粉含量和印刷陰極型聚合物發(fā)光二極管(polymer light-emitting diode,PLED)之間的構(gòu)-效關(guān)系.實(shí)驗(yàn)比較兩種不同銀粉含量的導(dǎo)電銀膠,通過(guò)刮涂法制備PLED的陰極.兩種銀膠的膠體基底相同,區(qū)別在于銀粉顆粒的含量不同.實(shí)驗(yàn)研究銀粉的分布狀態(tài)與器件性能之間的關(guān)系.結(jié)果表明,銀膠中的銀粉含量越高,器件的性能越好,主要體現(xiàn)在驅(qū)動(dòng)電壓更低、電流密度更大和量子效率更高.偏光顯微鏡圖片顯示,提高銀膠中銀粉的含量,可以優(yōu)化銀粉在印刷陰極/電子傳輸層之間的分布.通過(guò)銀粉覆蓋率的數(shù)據(jù)模擬也證明了這一點(diǎn).為確定銀粉覆蓋率的提高能夠優(yōu)化器件效率,在器件中通過(guò)蒸鍍添加薄銀層.結(jié)果表明,由于薄銀層的插入,器件的驅(qū)動(dòng)電壓隨之下降,器件性能也得到優(yōu)化.因此,在印刷型的PLED器件中,提高銀膠中銀粉的含量可以有效減低載流子的注入勢(shì)壘,達(dá)到器件優(yōu)化的效果.

    關(guān)鍵詞:化學(xué)物理學(xué);聚合物發(fā)光二極管;導(dǎo)電銀膠;刮涂工藝;印刷式電極;相界面電阻

    The polymer light-emitting diode (PLED) has attracted tremendous attention due to its superiorities in solution processability, low cost, richness of display colors and its potential applications in large-area display panels and solid state light source, etc. Moreover, PLED can be fabricated by the technique of full-printing[1-4]. Until now, the series of novel electroluminescent polymers, which are suitable for solution-processing, have been developed since electronic luminescence was reported from devices made of conjugated polymers[5-9].

    The cathode of PLED can also be printed from the metal pastes, such as silver, copper or gold pastes. However it should be noted that high efficiency required the balanced injection of charge carriers from both the electrodes (anode and cathode) before we applied the metal pastes on the cathode as mentioned above[10]. In addition, metals with low work function, such as Ca, Ba and Mg, are not suitable for printing due to their high chemical activities. Currently, Ag paste is considered as the most promising material for the cathode printing in full-printed PLED based on the following three reasons: ① Silver paste can be achieved with comparable conductivity to evaporated metal after curing at room or moderate temperature, unlike CNTs or graphene which need super high temperature to achieve considerable conductivity. ② Ag paste possesses strong adhesive strength which leads to its wide application in the field of electronic circuits. ③ Ag paste is applicable to most printing techniques such as blade-coating, inkjet printing, screen printing, etc[11].

    Due to the high work function of silver, generally an electron-transporting layer (ETL) is needed to match the energy levels of the polymer layer and the cathode. Amino-/ammonium-functionalized polyfluorene were synthesized ETL materials in the full-printed PLED by Cao and other groups[12-20].

    However, we still notice that the performance of PLED with printed cathode needs further improvement, which mainly reflects its higher driving voltage and lower current density. It is necessary to investigate the injection barriers of the silver particles at the interface between the polymer layer and the Ag-paste cathode. And the injection barriers of the silver particles may be greatly affected by the distribution of silver particles in the paste, which arises from the particles size, the silver content and contact resistance at the interface of the polymer/silver paste.

    In this study, PLED was fabricated with the cathode made from two kinds of Ag pastes, based on the same resin base but the different Ag contents. It was found that the Ag contents significantly influence the coverage of Ag particles at the polymer-cathode interface. The coverage of Ag particles is related to the interfacial resistance of the cathode. With the simulation of the polarized microscopic images by scientific image processing software, we can analyze the relationship between the distribution of Ag particles and the performance of the device.

    1Experiment

    1.1Materials

    Indium tin oxide (ITO) glass with a surface resistance of ca. 25 Ω/sq was purchased from China South Glass Co. Ltd. Poly[2-(4-(3′,7′-dimethyloctyloxy)-phenyl)-p-phenylenevinylene] (P-PPV) and poly[9, 9-bis(3′-(N, N-dimethylamino)propyl)-2,7-fluorene-alt-2,7-(9,9-dioctylfluorene)] (PFN) were synthesized as reported elsewhere[21-22]. Poly (3,4-ethylenedioxythiophene)-polystyrenesulfonic acid (PEDOT ∶PSS) (Baytron P 4083) was purchased from Bayer company and used without further purification. The conducting Ag pastes with a viscosity of ca. 18 Pa·s and a conductivity higher than 3 × 103s·cm-1were prepared in laboratory. Two kinds of Ag pastes with different Ag content were applied in this study. Paste KD-1 has a mass fraction of 75% for the Ag content, while paste KD-2 has a higher mass fraction of 95%.

    1.2Device fabrication

    ITO glass was cleaned ultrasonically by a solvent bath of acetone, detergent, deionized water and isopropyl alcohol in sequence. Surface treatment by O2plasma was performed on ITO surface to remove the organic residue and improve the work function as well. The layers of PEDOT∶PSS, P-PPV solution (5.5 mg/mL inp-xylene) and PFN solution (4 mg/mL in methanol) were formed on the clean ITO glass in sequence by spin-coating. The optimum thickness for each layer was found to be 40 nm of PEDOT∶PSS, 80 nm of P-PPV and 20 nm of PFN. For the devices with the cathode made of Ag paste, the Ag paste was patterned on top of the PFN layer by the method of blade coating in a glove box under an inert atmosphere. The shape and thickness of the Ag paste were controlled by a plastic mask. For the control device using Ag as a cathode, 150 nm Ag was thermal evaporated at a rate of 0.2 nm/s under high vacuum below 3 × 10-4Pa, with the metal thickness controlled by a calibrated crystal oscillator. The architecture of electron-only device was ITO/Sn(30 nm)/ P-PPV(80 nm)/PFN(20 nm)/cathode. The 30 nm layer of Sn was thermally evaporated under high vacuum below 3 × 10-4Pa. The subsequent deposition of P-PPV, PFN and the cathode was same as that of the standard devices.

    1.3Characterization

    The thickness of the polymer thin films was determined by a surface profiler (Tencor Alpha-Step 500). Current density-luminance-voltage (J-L-V) characteristic curves were collected on a semiconductor testing system consisting of a Keithley 236 source-meter and a calibrated silicon photodiode. The external quantum efficiency (QE) was calculated by measuring the light output in a calibrated integrated sphere (IS-080, Labsphere). The polarized microscopic images were collected on the polarized microscope (Nikon Eclips E600, Tokyo, Japan). The coverage of Ag particles was calculated using an image-processing software (Image J, a widely-used software to calculate the area of irregular shape).

    2Results and discussions

    The chemical structures of the polymers P-PPV and PFN are shown in Fig.1(a) and (b) respectively, in which the P-PPV acts as the emission layer (EML) and PFN as the electron-transporting layer (ETL). The amino group of PFN can induce dipoles under the applied electric filed, thus benefits the electron injection from the PLED cathode. As known, Ag is a noble metal with high work function, which is unfavorable for electron injection from the cathode. Therefore, the thin layer of PFN plays a very important role in the realization of using Ag metal as the cathode. Fig.1(c) indicates the device architecture has the optimum configuration of ITO/PEDOT∶PSS(40 nm)/P-PPV(80 nm)/PFN(20 nm)/Ag paste, which had been verified in previous study[18].

    Fig.1 Chemical structures of P-PPV, PFN, and the device architecture with the configuration of ITO/PEDOT∶PSS(40 nm)/P-PPV(80 nm)/PFN(20 nm)/Ag paste圖1 P-PPV和PFN的化學(xué)結(jié)構(gòu)式以及器件結(jié)構(gòu)

    In our previous study[15-16], it has been revealed that the thickness of PPV and PFN can affect device performance. The thickness of each film layer indicated in the structure has been optimized. For comparison, devices with evaporated Ag as cathodes were also fabricated in the same configuration as the control. For simplicity, devices with cathodes made of the above-mentioned materials were referred as device 1, device 2 and device 3, corresponding to evaporated Ag, Ag paste KD-1 and KD-2, respectively.

    Fig.2 Electronic properties of P-PPV devices with two different Ag pastes (KD-1 and KD-2) as device cathodes. Performance of control device with evaporated Ag is also shown for comparison.圖2 兩種不同銀膠(KD-1和KD-2)制備的P-PPV發(fā)光二極管的電學(xué)性能曲線圖

    It is expectable that there are differences between the electric properties of PLED with evaporated Ag and Ag paste as the cathode. Fig.2(a) and (b) respectively demonstrate the J-L-V characteristic curves and QE-Jcurves of P-PPV devices with different cathode materials. It can be seen that devices 1 and 3 have similar on-voltage, lower than that of device 2. However, when the luminance at a specified voltage is taken into account, device 1 possesses a higher value than device 2 and device 3. As a result, indicated in Fig.2(b), device 1 demonstrates the highest efficiency. More details are summarized in table 1. At a specific current density of 10 mA/cm2, device 1 achieves a luminance of 880 cd/m2at 7.9 V, with a QE of 3.8%, a QEmaxof 4.2% and a maximum luminance efficiency (LEmax) of 11.0 cd/A. For devices with two kinds of Ag paste as a cathode, such as device 2 and device 3, the latter has a much better performance, with a luminance of 740 cd/m2at 7.8 V, a QEmaxof 3.0% and a LEmaxof 7.8 cd/A.

    Table 1 Performance comparison between P-PPV devices with Ag paste KD-1 and KD-2 as the cathode

    Fig.3 In-situ polarized microscopic images collected from the ITO side to compare the distribution of Ag particles between the two Ag pastes圖3 兩種不同銀膠的偏光顯微鏡照片以及對(duì)應(yīng)的軟件模擬圖

    Despite the obvious results that device 1 has attained the best performance among the three types of devices, it would be more interesting to make clear the reason why device 3 possesses a superior performance over device 2 merely arising from the different Ag contents in the paste. It can be taken for granted that pastes of different Ag content have different resistance, which can influence device performance. However, to further understand the mechanism, silver distribution of Ag particles should be investigated, especially at the interface between the cathode and the polymer layer. Therefore, polarized microscopy was applied in-situ to observe the distribution of the Ag particles within the actual device. The polarized images of the two pastes are presented in Fig.3(a) and (b), in which the brighter spots represent the Ag particles directly contacting the polymer layer, while the darker background is the opaque paste resin. By comparing the two images, it is clear that Ag particles have a richer distribution in device 3. As known, Ag particles are the effective components making an Ag paste conductive. The enrichment of Ag particles can facilitate better formation of an ohmic contact[23-24]between the cathode and the polymer layer and would thus effectively benefit the transporting and injection of electrons. To quantitatively evaluate the enrichment of Ag particles, the value of Ag particles coverage was calculated using simulation software. The simulated images are demonstrated in Fig.3(c) and (d), which correspond to the polarized images in (a) and (b). The coverage of Ag particles in Fig.3(a) was calculated to be 27.6%, less than 65.0% in Fig.3(b). Direct contact of silver particles with the polymer layer can reduce the internal resistance of the device since the resin of the silver paste is usually isolated[25]. Therefore, it is reasonable to speculate that the lower coverage of Ag particles in paste KD-1 led to its poorer device performance.Electron-only devices were prepared with tin (Sn) as the anode. The injection barrier height of different cathode configurations can be calculated according to the Fowler-Nordheim (FN) tunneling mechanism. In the FN model, the injection current density (J) is related to the magnitude of electric field (F) by the following equation[26-27],

    where

    Here φ is the barrier height, m the effective mass of electrons in the active materials, q is the charge of an electron, and h is Planck’s constant. The barrier heights were calculated to be 0.40, 0.51 and 0.44 eV, respectively, for the cathode configurations of Ag, Ag paste KD-1 and Ag paste KD-2, as indicated in Fig.4. The results indicate that higher coverage of Ag particles can lower the injection carrier of the electrons injecting from the cathode.

    Fig.4 Characteristic curves of the injection current density related to the electric field圖4 不同電極材料的P-PPV器件的陰極注入勢(shì)壘計(jì)算曲線

    Fig.5 Electronic properties of P-PPV devices with a thin layer of evaporated Ag in different thickness inserted between polymer layer and Ag paste cathode KD-1圖5 插層蒸鍍Ag后的P-PPV器件電學(xué)性能曲線

    To further verify the speculation, a thin layer of Ag in a different thickness was thermally evaporated on top of the polymer layer before the coating of the Ag paste KD-1. With the thickness of the evaporated Ag increasing, the Ag particles can finally form a complete layer of Ag which can fully cover the polymer surface. The evaporated thin Ag film and the following coated Ag paste together constituted the device cathode. Therefore, the thermal evaporation of the inserted Ag film can be regarded as an analogous process in which the coverage of Ag particles in the paste can increase gradually with the growth of the evaporated Ag film. The J-V curves and L-V curves are shown in Fig.5(a) and (b). It can be seen that the electric behavior of the paste device, with the thickness of the evaporated Ag layer increasing from 0 to 30 nm, became more similar to that of the evaporated control one. And its performance also improves gradually towards that of the control device. Therefore, it is proved again that a low coverage of Ag particles in the paste is unfavorable to device performance. It is crucial to develop efficient methods to increase the coverage of Ag particles to achieve high-efficiency PLED with the cathode made of Ag paste.

    Conclusions

    In summary, we have undertaken an investigation on the relationship between the silver content in the paste and the device performance of the cathode-printed PLED. Our experiment results reveal that higher silver content in the paste facilitates better distribution of Ag at the interface of the cathode and the electron-transporting layer. According to the simulation results, higher coverage of Ag particles at the interface is favorable to the device performance, therefore it provides guidance to the further improvement of the printed PLED with Ag paste as cathode. As a result, the maximum QE of 3.0% are achieved for the devices with the cathode of higher silver contents.

    趙春燕(1990—),女,南京郵電大學(xué)碩士研究生.研究方向:有機(jī)光電器件. E-mail:1053179147@qq.com

    曾文進(jìn)、趙春燕為共同第一作者.

    引文:曾文進(jìn),趙春燕,李詠華,等.銀粉含量對(duì)印刷型聚合物發(fā)光器件的影響[J]. 深圳大學(xué)學(xué)報(bào)理工版,2016,33(1):18-24.(英文版)

    參考文獻(xiàn)/ References:

    [1] Friend R H, Gymer R W, Holmes A B, et al. Electroluminescence in conjugated polymers[J]. Nature, 1999, 397(6715): 121-128.

    [2] Burroughes J H, Bradley D D C, Brown A R, et al. Light-emitting diodes based on conjugated polymers[J]. Nature, 1990, 347(6293): 539-541.

    [3] Braun D, Heeger A J. Visible light emission from semiconducting polymer diodes[J]. Applied Physics Letters, 1991, 58(18):1982-1984.

    [4] Wu Junbo, Becerril H A, Bao Zhenan, et al. Organic solar cells with solution-processed graphene transparent electrodes[J]. Applied Physics Letters, 2008, 92(26): 263302.

    [5] Zhong Chengmei, Duan Chunhui, Huang Fei, et al. Materials and devices toward fully solution processable organic light-emitting diodes[J]. Chemistry of Materials, 2011, 23(3): 326-340.

    [6] Zhang Lianjie, Hu Sujun, Chen Junwu, et al. A series of energy-transfer copolymers derived from fluorene and 4,7-dithienylbenzotriazole for high efficiency yellow, orange, and white light-emitting diodes[J]. Advanced Functional Materials, 2011, 21(19): 3760-3769.

    [7] Grimsdale A C, Chan K L, Martin R E, et al. Synthesis of light-emitting conjugated polymers for applications in electroluminescent devices[J]. Chemical Reviews, 2009, 109(3):897-1091.

    [8] Kamtekar K T, Monkman A P, Bryce M R, et al. Recent advances in white organic light-emitting materials and devices (WOLEDs)[J]. Advanced Materials, 2010, 22(5): 572-582.

    [9] Farinola G M, Ragnia R. Electroluminescent materials for white organic light emitting diodes[J]. Chemical Society Reviews, 2011, 40(7): 3467-3482.

    [10] Rozanski L J, Castaldelli E, Sam F L M, et al. Solution processed naphthalene diimide derivative as electron transport layers for enhanced brightness and efficient polymer light emitting diodes[J]. Journal of Materials Chemistry C, 2013, 13(7): 3347-3352.

    [11] Hu Liangbing, Kim H S, Lee J Y, et al. Scalable coating and properties of transparent, flexible, silver nanowire electrodes[J]. ACS Nano, 2010, 4(5): 2955-2963.

    [12] Huang Fei,Cheng Yenju,Zhang Yong,et al.Crosslinkable hole-transporting materials for solution processed polymer light-emitting diodes[J]. Journal of Materials Chemistry, 2008, 18(38): 4495-4509.

    [13] Huang Fei, Wu Hongbin, Cao Yong, et al. Water/alcohol soluble conjugated polymers as highly efficient electron transporting/injection layer in optoelectronic devices[J]. Chemical Society Reviews, 2010, 39(7): 2500-2521.

    [14] Ma Wanli, Iyer P K, Gong Xiong, et al. Water/methanol soluble conjugated copolymer as an electron transport layer in polymer light-emitting diodes[J]. Advanced Materials, 2005, 17(3): 274-277.

    [15] Wu Hongbin, Huang Fei, Mo Yueqi, et al. Efficient elctron injection from a bilayer cathode consisting of aluminum and alchole-/water-soluble conjugated polymers[J]. Advanced Materials, 2004, 16(20): 1826-1830.

    [16] Hoven C V, Garcia A, Bazan G C, et al. Recent applications of conjugated polyelectrolytes in optoelectronic devices[J]. Advanced Materials, 2008, 20(20): 3793-3810.

    [17] Wu Hongbin, Huang Fei, Peng Junbiao, et al. High-efficiency electron injection cathode of Au for polymer light-emitting devices[J]. Organic Electronics, 2005, 6(3):118-128.

    [18] Zhong Chengmei, Liu Shengjian, Huang Fei, et al. Highly efficient electron injection from indium tin oxide/cross-linkable amino-functionalized polyfluorene interface in inverted organic light emitting devices[J]. Chemistry of Materials, 2011, 23(21):4870-4876.

    [19] Zeng Wenjin, Wu Hongbin, Zhang Chi, et al. Polymer light-emitting diodes with cathodes printed from conducting Ag paste[J]. Advanced Materials, 2007, 19(6): 810-814.

    [20] Zheng Hua, Zheng Yina, Liu Nanliu, et al. All-solution processed polymer light-emitting diode displays[J]. Nature Communications, 2013, 4(7): 1971-1978.

    [21] Mo Yueqi, Huang Jian, Jiang Jiaxin, et al. Influence of traces of water on the synthesis and electrolumi-nescence propties of poly(2-methoxy,5-(2′-ethylhexylo-xy)-1,4-phenylene vinylene)[J]. Chinese Journal of Polymer Science, 2002, 20(5): 461-465.

    [22] Huang Fei, Hou Lintao,Wu Hongbin, et al. High-efficiency, environment-friendly electroluminescent polymers with stable high work function metal as a cathode: green- and yellow-emitting conjugated polyfluorene polyelectrolytes and their neutral precursors[J]. Journal of the American Chemical Society, 2004, 126(31): 9845-9853.

    [23] Vinod P N. Specific contact resistance and metallurgical process of the silver-based paste for making ohmic contact structure on the porous silicon/p-Si surface of the silicon solar cell[J]. Journal of Materials Science: Materials in Electronics, 2010, 21(7): 730-736.

    [24] Kulushich G, Bazer-Bachi B, Takahashi T, et al. Contact formation on 100 Ω/sq emitter by screen printed silver paste[J]. Energy Procedia, 2012, 27: 485-490.

    [25] Strümpler R, Glatz-Reichenbach J. Conducting polymer composites[J]. Journal of Electroceramics, 1999, 3(4): 329-346.

    [26] Parker I D, Glatz-Reichenbach J. Carrier tunneling and device characteristics in polymer light-emitting diodes[J]. Journal of Applied Physics, 1994, 75(3): 1656-1660.

    [27] Kumar A, Srivastava R, Tyagi P, et al. Effect of doping of 8-hydroxyquinolinatolithium on electron transport in tris(8-hydroxyquinolinato) aluminum[J]. Journal of Applied Physics, 2011, 109(11): 114511.

    【中文責(zé)編:方圓;英文責(zé)編:木南】

    Niu Qiaoli1, and Min Yonggang1?

    1) School of Materials Science and Engineering, Nanjing University of Posts and Telecommunications,

    Nanjing 210023, Jiangsu Province, P.R.China

    2) State Key Lab of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640,

    Guangdong Province, P.R.China

    Abstract:The structure-activity relationship of the cathode-printed polymer light-emitting diodes (PLEDs) is investigated. Two kinds of Ag pastes on the same paste resin but with different content of Ag particles were applied to prepare the cathodes of PLEDs by the blade-coating. The relationship between the distribution of Ag particles and the performance of PLEDs was investigated. The results indicate that the paste with a higher silver content exhibites better performances, including a lower driving voltage, higher current density and quantum efficiency. In-situ polarized microscopic images reveal that a higher silver content in the paste could lead to a better distribution of Ag at the interface of the cathode and the electron-transporting layer (ETL), which can also be proved by the simulation of the coverage percentage. A thin layer of Ag was inserted by evaporation between the ETL and Ag-paste cathode, which is regarded as equivalent to the increase of Ag coverage at the interface. As expected, the driving voltage of the devices was reduced and the performance improved after the thin layer of thermally-deposited Ag was inserted. Therefore, large Ag contents at the interface benefits the performance of PLED due to the low injection barriers.

    Key words:chemical physics; polymer light-emitting diodes; Ag paste; blade-coating; printed cathode; interface resistance

    作者簡(jiǎn)介:曾文進(jìn)(1981—),男,南京郵電大學(xué)講師、博士.研究方向:有機(jī)光電器件.E-mail:iamwjzeng@njupt.edu.cn

    基金項(xiàng)目:國(guó)家自然科學(xué)基金資助項(xiàng)目 (61504066);江蘇省高校自然科學(xué)研究資助項(xiàng)目(15KJB430024);江蘇省自然科學(xué)基金資助項(xiàng)目 (BK20150838)

    doi:CLC number: O 472+.8Document code: A10.3724/SP.J.1249.2016.01018

    久久九九热精品免费| 老司机在亚洲福利影院| 午夜精品国产一区二区电影| av视频免费观看在线观看| 成人亚洲精品一区在线观看| 波多野结衣一区麻豆| 久久精品国产99精品国产亚洲性色 | 香蕉国产在线看| 国产精品久久电影中文字幕| 欧美乱色亚洲激情| 男人舔女人的私密视频| 国产精品久久久人人做人人爽| 极品教师在线免费播放| 国内精品久久久久久久电影| 高潮久久久久久久久久久不卡| 欧美不卡视频在线免费观看 | 极品教师在线免费播放| 一级作爱视频免费观看| 中文字幕久久专区| 妹子高潮喷水视频| 19禁男女啪啪无遮挡网站| 亚洲国产精品成人综合色| 老鸭窝网址在线观看| 午夜福利在线观看吧| 制服丝袜大香蕉在线| 欧美日本中文国产一区发布| 淫秽高清视频在线观看| 精品国产乱码久久久久久男人| 搡老妇女老女人老熟妇| 亚洲五月天丁香| 波多野结衣一区麻豆| 国产成人一区二区三区免费视频网站| 最新在线观看一区二区三区| 亚洲精品国产色婷婷电影| 国产成人av激情在线播放| 国产亚洲精品综合一区在线观看 | 国产精品免费视频内射| 在线观看免费视频网站a站| 男女之事视频高清在线观看| 欧美另类亚洲清纯唯美| 国产乱人伦免费视频| 97人妻精品一区二区三区麻豆 | 69av精品久久久久久| 亚洲欧美激情综合另类| 久久精品国产综合久久久| 老司机靠b影院| 亚洲精品美女久久久久99蜜臀| 一区二区三区精品91| 亚洲欧洲精品一区二区精品久久久| 九色亚洲精品在线播放| 亚洲,欧美精品.| 丝袜人妻中文字幕| 9色porny在线观看| 亚洲五月色婷婷综合| 男人舔女人下体高潮全视频| 51午夜福利影视在线观看| 免费不卡黄色视频| 两性午夜刺激爽爽歪歪视频在线观看 | 国产精品一区二区免费欧美| 精品国产超薄肉色丝袜足j| 男女做爰动态图高潮gif福利片 | 超碰成人久久| 免费少妇av软件| 91av网站免费观看| 午夜福利成人在线免费观看| 一级黄色大片毛片| 深夜精品福利| 欧美日韩一级在线毛片| 怎么达到女性高潮| 午夜免费成人在线视频| 搡老妇女老女人老熟妇| 在线播放国产精品三级| 亚洲精品国产区一区二| 亚洲人成77777在线视频| 国内精品久久久久久久电影| 色婷婷久久久亚洲欧美| 一区福利在线观看| 成年人黄色毛片网站| 中文字幕最新亚洲高清| 国产99白浆流出| 天堂动漫精品| 免费在线观看亚洲国产| 少妇熟女aⅴ在线视频| 亚洲国产毛片av蜜桃av| 国产伦人伦偷精品视频| 女人被狂操c到高潮| 黑人操中国人逼视频| 黑人巨大精品欧美一区二区蜜桃| 亚洲无线在线观看| e午夜精品久久久久久久| 欧美日本视频| avwww免费| 夜夜爽天天搞| 淫妇啪啪啪对白视频| 亚洲欧美激情在线| 免费高清视频大片| 国产成人一区二区三区免费视频网站| 国产精品乱码一区二三区的特点 | 最新美女视频免费是黄的| 黄色成人免费大全| 亚洲熟妇中文字幕五十中出| 女警被强在线播放| 色婷婷久久久亚洲欧美| 美女高潮喷水抽搐中文字幕| 国内精品久久久久久久电影| 久久久久国产精品人妻aⅴ院| 美女大奶头视频| 中文字幕另类日韩欧美亚洲嫩草| 可以免费在线观看a视频的电影网站| 国产精品乱码一区二三区的特点 | 淫妇啪啪啪对白视频| 黄色 视频免费看| 成人免费观看视频高清| 老司机福利观看| 美女国产高潮福利片在线看| 深夜精品福利| 最新在线观看一区二区三区| 亚洲精品一卡2卡三卡4卡5卡| 丰满的人妻完整版| 桃红色精品国产亚洲av| 两个人看的免费小视频| 韩国精品一区二区三区| 久久精品国产亚洲av高清一级| 国产精品久久电影中文字幕| 一进一出抽搐gif免费好疼| 欧美激情极品国产一区二区三区| 国产单亲对白刺激| 女同久久另类99精品国产91| 91精品三级在线观看| 在线观看日韩欧美| 国产亚洲精品一区二区www| 国产在线观看jvid| 大香蕉久久成人网| 欧美日本视频| 欧美午夜高清在线| 久久午夜亚洲精品久久| 亚洲一区二区三区不卡视频| 午夜免费观看网址| 日本vs欧美在线观看视频| 美国免费a级毛片| av欧美777| 亚洲五月婷婷丁香| 国产伦一二天堂av在线观看| 久久精品91蜜桃| 亚洲成av片中文字幕在线观看| 女警被强在线播放| 在线观看66精品国产| 男女床上黄色一级片免费看| 非洲黑人性xxxx精品又粗又长| av电影中文网址| 无遮挡黄片免费观看| 国产精品av久久久久免费| 一区二区三区精品91| 欧美日韩亚洲国产一区二区在线观看| 色尼玛亚洲综合影院| 最近最新中文字幕大全电影3 | 多毛熟女@视频| 国产亚洲精品综合一区在线观看 | 可以免费在线观看a视频的电影网站| 亚洲色图综合在线观看| 亚洲av五月六月丁香网| 日本五十路高清| 国产一区二区三区综合在线观看| 又大又爽又粗| 亚洲天堂国产精品一区在线| 午夜免费成人在线视频| 青草久久国产| 老司机深夜福利视频在线观看| 国产av一区二区精品久久| 给我免费播放毛片高清在线观看| 国产伦一二天堂av在线观看| 日韩精品免费视频一区二区三区| 久久久精品国产亚洲av高清涩受| 不卡av一区二区三区| 久久婷婷人人爽人人干人人爱 | 人人妻,人人澡人人爽秒播| 制服丝袜大香蕉在线| 成人18禁在线播放| 亚洲伊人色综图| 高清黄色对白视频在线免费看| 久久久久久久久免费视频了| 丁香欧美五月| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美精品亚洲一区二区| 国产精品爽爽va在线观看网站 | 亚洲色图综合在线观看| 久久精品aⅴ一区二区三区四区| 男人操女人黄网站| 亚洲午夜精品一区,二区,三区| 亚洲久久久国产精品| 女人精品久久久久毛片| 黄网站色视频无遮挡免费观看| 亚洲成av片中文字幕在线观看| 久久久久国内视频| 色在线成人网| 免费高清在线观看日韩| 国产97色在线日韩免费| 国产免费男女视频| 国产又爽黄色视频| 日本免费a在线| 欧美成人免费av一区二区三区| 国产精品99久久99久久久不卡| av欧美777| 黄片大片在线免费观看| 看免费av毛片| 国产亚洲精品久久久久久毛片| 国产精品,欧美在线| 一区二区三区精品91| 99精品在免费线老司机午夜| 久久婷婷成人综合色麻豆| 亚洲视频免费观看视频| 黄片大片在线免费观看| 九色国产91popny在线| 亚洲国产欧美日韩在线播放| 19禁男女啪啪无遮挡网站| 丝袜人妻中文字幕| 欧美日韩亚洲国产一区二区在线观看| 老司机靠b影院| 久久久久久久精品吃奶| 99久久99久久久精品蜜桃| 精品人妻在线不人妻| 国产精品秋霞免费鲁丝片| 国产精品99久久99久久久不卡| 欧美日韩中文字幕国产精品一区二区三区 | 午夜久久久在线观看| 少妇粗大呻吟视频| 又大又爽又粗| 手机成人av网站| 琪琪午夜伦伦电影理论片6080| 欧美国产日韩亚洲一区| 在线视频色国产色| 欧美日韩一级在线毛片| 一级a爱视频在线免费观看| 午夜福利免费观看在线| 人人澡人人妻人| 国产真人三级小视频在线观看| 久久久国产成人免费| 激情在线观看视频在线高清| 免费看美女性在线毛片视频| 国产精品野战在线观看| 亚洲久久久国产精品| 亚洲av电影不卡..在线观看| 人人妻人人澡欧美一区二区 | 亚洲精品一区av在线观看| 一区二区三区精品91| 99国产精品一区二区三区| 长腿黑丝高跟| 日韩欧美在线二视频| 波多野结衣高清无吗| 亚洲精华国产精华精| 亚洲午夜理论影院| 久久久水蜜桃国产精品网| 国产亚洲欧美精品永久| 国产三级在线视频| 黄色片一级片一级黄色片| 久久香蕉精品热| 中文字幕另类日韩欧美亚洲嫩草| 亚洲av成人一区二区三| 变态另类丝袜制服| 黄片播放在线免费| 少妇被粗大的猛进出69影院| 欧美成人免费av一区二区三区| 国产精品综合久久久久久久免费 | av电影中文网址| 免费高清视频大片| 黄片播放在线免费| 久久中文看片网| 精品午夜福利视频在线观看一区| 成人国产一区最新在线观看| 国产欧美日韩一区二区精品| 妹子高潮喷水视频| 高清毛片免费观看视频网站| 在线观看66精品国产| 黄频高清免费视频| 午夜福利影视在线免费观看| 久久久水蜜桃国产精品网| 伦理电影免费视频| 一区福利在线观看| 成人国语在线视频| 午夜影院日韩av| 18美女黄网站色大片免费观看| 91九色精品人成在线观看| 久久中文看片网| 一卡2卡三卡四卡精品乱码亚洲| 老熟妇仑乱视频hdxx| 免费看十八禁软件| 国产精品国产高清国产av| 国产三级黄色录像| 欧美一级a爱片免费观看看 | 人人妻人人爽人人添夜夜欢视频| 午夜精品久久久久久毛片777| 国产aⅴ精品一区二区三区波| 成人三级做爰电影| 国产精品免费视频内射| 国产黄a三级三级三级人| 操出白浆在线播放| 看黄色毛片网站| 亚洲国产精品999在线| 老鸭窝网址在线观看| 两个人看的免费小视频| 亚洲伊人色综图| 老鸭窝网址在线观看| 久久国产精品人妻蜜桃| 乱人伦中国视频| 色精品久久人妻99蜜桃| 欧美大码av| 日本五十路高清| 久久久久九九精品影院| 久久国产亚洲av麻豆专区| 午夜a级毛片| 丝袜人妻中文字幕| 午夜免费鲁丝| 久久人人精品亚洲av| 国产麻豆成人av免费视频| 一区二区三区激情视频| 又大又爽又粗| 国产亚洲精品久久久久久毛片| 色播亚洲综合网| 99国产精品一区二区三区| 黑丝袜美女国产一区| 免费在线观看日本一区| 国产一卡二卡三卡精品| 制服人妻中文乱码| 亚洲视频免费观看视频| 久久影院123| 国产高清激情床上av| 色综合欧美亚洲国产小说| av中文乱码字幕在线| 国产麻豆成人av免费视频| 免费在线观看影片大全网站| 麻豆国产av国片精品| 国产视频一区二区在线看| 一个人观看的视频www高清免费观看 | 一级黄色大片毛片| 丝袜人妻中文字幕| 亚洲国产高清在线一区二区三 | 女警被强在线播放| 18禁观看日本| 18禁黄网站禁片午夜丰满| 老汉色∧v一级毛片| 亚洲五月婷婷丁香| 欧美日韩黄片免| 一区二区三区精品91| 亚洲欧美日韩另类电影网站| 久久精品成人免费网站| 日韩中文字幕欧美一区二区| 高清毛片免费观看视频网站| 亚洲精品在线美女| 99在线视频只有这里精品首页| 亚洲中文字幕日韩| 亚洲五月婷婷丁香| 欧美亚洲日本最大视频资源| 精品熟女少妇八av免费久了| 嫩草影视91久久| bbb黄色大片| 国产欧美日韩一区二区三区在线| 热99re8久久精品国产| 18禁观看日本| 日韩一卡2卡3卡4卡2021年| 日本免费一区二区三区高清不卡 | 亚洲国产精品sss在线观看| 两人在一起打扑克的视频| 婷婷精品国产亚洲av在线| 精品无人区乱码1区二区| 日韩精品青青久久久久久| 操出白浆在线播放| 神马国产精品三级电影在线观看 | 成年人黄色毛片网站| 激情视频va一区二区三区| 桃红色精品国产亚洲av| 丝袜在线中文字幕| 国产精品美女特级片免费视频播放器 | 欧美在线一区亚洲| 97人妻天天添夜夜摸| av网站免费在线观看视频| 美女国产高潮福利片在线看| 欧美成人一区二区免费高清观看 | 国产成人av教育| 午夜精品国产一区二区电影| x7x7x7水蜜桃| 久久国产乱子伦精品免费另类| 操美女的视频在线观看| 国产又爽黄色视频| 国产精品 欧美亚洲| 久热这里只有精品99| www.精华液| avwww免费| √禁漫天堂资源中文www| 一区二区日韩欧美中文字幕| 最新美女视频免费是黄的| 亚洲av美国av| 日日爽夜夜爽网站| 嫩草影院精品99| 美国免费a级毛片| 免费女性裸体啪啪无遮挡网站| 亚洲va日本ⅴa欧美va伊人久久| av视频在线观看入口| 一边摸一边抽搐一进一出视频| 一个人观看的视频www高清免费观看 | 午夜福利一区二区在线看| 久久伊人香网站| 男女做爰动态图高潮gif福利片 | 日韩欧美一区视频在线观看| 伦理电影免费视频| 十八禁网站免费在线| 国产精品电影一区二区三区| 成在线人永久免费视频| 又黄又爽又免费观看的视频| 久久天躁狠狠躁夜夜2o2o| 中文亚洲av片在线观看爽| 黄片大片在线免费观看| 午夜精品国产一区二区电影| 女人精品久久久久毛片| 国产在线观看jvid| 在线播放国产精品三级| 一二三四社区在线视频社区8| 免费观看精品视频网站| 一个人免费在线观看的高清视频| 国产精品乱码一区二三区的特点 | 少妇粗大呻吟视频| 日本vs欧美在线观看视频| 天天躁狠狠躁夜夜躁狠狠躁| svipshipincom国产片| 国产精品,欧美在线| 啦啦啦观看免费观看视频高清 | 亚洲va日本ⅴa欧美va伊人久久| 69av精品久久久久久| 精品不卡国产一区二区三区| 99香蕉大伊视频| 亚洲伊人色综图| 久久草成人影院| 精品一品国产午夜福利视频| xxx96com| 淫秽高清视频在线观看| 757午夜福利合集在线观看| 日韩av在线大香蕉| 激情视频va一区二区三区| 欧美日韩一级在线毛片| 午夜影院日韩av| 熟女少妇亚洲综合色aaa.| 国产一卡二卡三卡精品| 丁香六月欧美| 制服丝袜大香蕉在线| 9热在线视频观看99| 一个人观看的视频www高清免费观看 | 久久精品国产清高在天天线| 窝窝影院91人妻| 国产av精品麻豆| 久久精品亚洲熟妇少妇任你| 这个男人来自地球电影免费观看| ponron亚洲| 女人精品久久久久毛片| 男女做爰动态图高潮gif福利片 | 午夜免费观看网址| 日日摸夜夜添夜夜添小说| 老司机福利观看| 此物有八面人人有两片| 久久久久国产一级毛片高清牌| 两个人免费观看高清视频| 50天的宝宝边吃奶边哭怎么回事| 国产精品自产拍在线观看55亚洲| 色老头精品视频在线观看| 久久久久九九精品影院| 黑人巨大精品欧美一区二区蜜桃| 91麻豆av在线| 欧美黄色片欧美黄色片| 99久久99久久久精品蜜桃| 欧美成人性av电影在线观看| 亚洲电影在线观看av| 国产成人av教育| 人人妻人人澡欧美一区二区 | 亚洲精品美女久久av网站| 91九色精品人成在线观看| 久久亚洲真实| 国产高清视频在线播放一区| 中出人妻视频一区二区| 99热只有精品国产| 丝袜美足系列| 最近最新中文字幕大全免费视频| 动漫黄色视频在线观看| 免费不卡黄色视频| 国产蜜桃级精品一区二区三区| 久久青草综合色| 日韩欧美免费精品| 亚洲人成网站在线播放欧美日韩| 久久这里只有精品19| 男人舔女人下体高潮全视频| 啦啦啦观看免费观看视频高清 | 亚洲欧美日韩另类电影网站| 国产麻豆成人av免费视频| 免费少妇av软件| 久久热在线av| 亚洲狠狠婷婷综合久久图片| 国产精品99久久99久久久不卡| 久9热在线精品视频| 91成人精品电影| 亚洲精品国产色婷婷电影| av有码第一页| 老熟妇乱子伦视频在线观看| 好男人在线观看高清免费视频 | 精品免费久久久久久久清纯| 亚洲 欧美 日韩 在线 免费| 国内精品久久久久久久电影| 丰满的人妻完整版| 色播在线永久视频| 最近最新免费中文字幕在线| 国产高清视频在线播放一区| 成熟少妇高潮喷水视频| 亚洲精品美女久久av网站| 熟妇人妻久久中文字幕3abv| 一区二区三区精品91| av天堂在线播放| www.熟女人妻精品国产| 久久久久久久午夜电影| 777久久人妻少妇嫩草av网站| 99香蕉大伊视频| 免费少妇av软件| 我的亚洲天堂| 日本a在线网址| 久久久久久免费高清国产稀缺| 免费在线观看亚洲国产| 他把我摸到了高潮在线观看| 一级毛片高清免费大全| av超薄肉色丝袜交足视频| 国产成人欧美| 91麻豆av在线| 变态另类丝袜制服| 亚洲一区中文字幕在线| 欧美色视频一区免费| 亚洲第一av免费看| 久久青草综合色| 国产高清有码在线观看视频 | 国产精品一区二区免费欧美| 欧美激情高清一区二区三区| 亚洲精品在线美女| 久久精品国产99精品国产亚洲性色 | 欧美成人一区二区免费高清观看 | 欧洲精品卡2卡3卡4卡5卡区| 亚洲av日韩精品久久久久久密| 老熟妇乱子伦视频在线观看| 一进一出抽搐动态| 久久婷婷人人爽人人干人人爱 | 一个人观看的视频www高清免费观看 | 变态另类丝袜制服| 美女国产高潮福利片在线看| bbb黄色大片| 国产蜜桃级精品一区二区三区| 色综合婷婷激情| 最近最新免费中文字幕在线| 亚洲伊人色综图| 国产aⅴ精品一区二区三区波| 亚洲九九香蕉| 不卡一级毛片| 91麻豆av在线| 亚洲中文av在线| 国产精品免费视频内射| 老司机午夜十八禁免费视频| 精品乱码久久久久久99久播| 免费在线观看视频国产中文字幕亚洲| 国产av又大| 亚洲第一av免费看| 可以在线观看毛片的网站| 男女下面插进去视频免费观看| 午夜视频精品福利| 亚洲国产精品久久男人天堂| 亚洲狠狠婷婷综合久久图片| 激情视频va一区二区三区| 狂野欧美激情性xxxx| 99精品欧美一区二区三区四区| 欧美国产精品va在线观看不卡| 99香蕉大伊视频| 久久精品aⅴ一区二区三区四区| 色综合婷婷激情| 男人的好看免费观看在线视频 | 亚洲专区中文字幕在线| 免费久久久久久久精品成人欧美视频| 视频区欧美日本亚洲| 在线观看免费视频日本深夜| 性欧美人与动物交配| 亚洲精品美女久久久久99蜜臀| 欧美激情久久久久久爽电影 | 男人舔女人下体高潮全视频| 久久久久久久久中文| 嫁个100分男人电影在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲色图综合在线观看| 色精品久久人妻99蜜桃| 午夜影院日韩av| 免费在线观看日本一区| 电影成人av| 免费看a级黄色片| 高潮久久久久久久久久久不卡| cao死你这个sao货| 黑人巨大精品欧美一区二区蜜桃| 久久热在线av| 69av精品久久久久久| 国产精品影院久久| 淫妇啪啪啪对白视频| 免费搜索国产男女视频| 国产av在哪里看| 高潮久久久久久久久久久不卡| 一个人观看的视频www高清免费观看 | 女性生殖器流出的白浆| 一边摸一边做爽爽视频免费| 大码成人一级视频| 久久久久久大精品| 久久精品91蜜桃| 亚洲精品国产一区二区精华液| 久久久精品欧美日韩精品| 亚洲精品中文字幕在线视频| 欧美色欧美亚洲另类二区 | 午夜成年电影在线免费观看| 亚洲av美国av| 国产熟女xx| 午夜免费激情av|