殷鴻波,鄧應(yīng)平
(四川大學(xué)華西醫(yī)院眼科,四川成都 610041)
角膜生物力學(xué)特性的研究進(jìn)展
殷鴻波,鄧應(yīng)平
(四川大學(xué)華西醫(yī)院眼科,四川成都 610041)
所謂生物力學(xué),是指在分子、細(xì)胞、組織、器官或整體水平將力學(xué)原理應(yīng)用于生物學(xué)[1]。具體而言,即發(fā)展、延伸和應(yīng)用力學(xué)知識以更好地理解疾病和創(chuàng)傷的生理和病理生理過程及其診斷、治療和預(yù)后。目前,生物力學(xué)已經(jīng)在心血管疾病、整形和康復(fù)等領(lǐng)域成功實現(xiàn)了臨床轉(zhuǎn)化,如治療血管瘤和動脈硬化的血管支架、治療心臟瓣膜疾病的人工心臟瓣膜以及治療骨關(guān)節(jié)炎的人工膝關(guān)節(jié)等[2]。遺憾的是,眼球及其附屬器通常被認(rèn)為是一個光學(xué)而非機(jī)械力學(xué)系統(tǒng),因此,生物力學(xué)在眼科領(lǐng)域的研究和應(yīng)用相當(dāng)有限。近年來,角膜、鞏膜和篩板[2]、虹膜[3]和小梁網(wǎng)[4]、玻璃體[5]以及晶狀體[6]等的生物力學(xué)特性開始被關(guān)注,尤其是角膜生物力學(xué)(corneal biomechanical properties,CBPs)與多種眼部疾病的關(guān)系成為研究的熱點。
角膜位于眼球最外層,是光線傳輸?shù)母叨忍厥饨M織,提供眼球2/3的屈光力,它還可以保護(hù)眼內(nèi)容物免受外界物質(zhì)的干擾和抵御眼內(nèi)外壓力。這種光學(xué)和屏障作用有賴于角膜正常形態(tài)的維持,微小的變化都將影響其功能。事實上,角膜承受著來自眼內(nèi)外的多重負(fù)荷,如眼瞼運(yùn)動、眼外肌牽拉、眼壓等,因具有獨(dú)特的生物力學(xué)特性才不至于喪失其正常形態(tài),而這種特性是以角膜的成分和結(jié)構(gòu)為基礎(chǔ)的。角膜具有五層解剖結(jié)構(gòu),其中,基質(zhì)層占角膜厚度的90%,也是決定角膜透明度和生物力學(xué)特性的關(guān)鍵。角膜基質(zhì)包含250~400層高度有序、層疊排列的膠原纖維板層,每層由直徑相同、同向排列的膠原纖維束組成,層間有薄而扁平的角膜基質(zhì)細(xì)胞[7],蛋白多糖存在于膠原纖維之間以及纖維板層之間充當(dāng)粘合劑[8]。膠原纖維在角膜基質(zhì)中的分布具有異向性,由所在位置和深度決定,如前部基質(zhì)的膠原纖維板層較中后部而言排列更加致密、層間交織更多[9]。如果說角膜基質(zhì)膠原賦予角膜彈性,那么角膜基質(zhì)80%的含水量則賦予角膜粘性,這種獨(dú)特的粘彈性使角膜受應(yīng)力作用時,即刻產(chǎn)生彈性反應(yīng),隨后產(chǎn)生延遲的、時間依賴的粘性反應(yīng),即角膜遲滯現(xiàn)象[10]。角膜生物力學(xué)特性受年齡、種族、性激素水平等多種因素影響,如隨年齡增長,角膜膠原自發(fā)交聯(lián),角膜硬度增加[11];女性懷孕期間或月經(jīng)周期的不同階段,性激素水平波動,角膜生物力學(xué)特性亦發(fā)生相應(yīng)改變[12]。我中心曾對一批健康育齡期女性志愿者進(jìn)行觀察,發(fā)現(xiàn)其角膜生物力學(xué)特性隨雌激素水平變化而變化,排卵期雌激素水平達(dá)到峰值而角膜硬度最低。
最初對角膜生物力學(xué)特性的測量采用離體方法,從全息干涉技術(shù)[13-14]到電子散斑干涉技術(shù)再到徑向剪切散斑干涉技術(shù)[15]。盡管這些測量方法可將離體角膜組織暴露于各種負(fù)荷條件下,從而獲得一系列力學(xué)參數(shù),但是樣本制作可能破壞角膜膠原的自然走行,加之測量過程中角膜脫水,導(dǎo)致測量結(jié)果與真實值存在差異。目前市售的活體角膜生物力學(xué)測量儀包括眼反應(yīng)分析儀 (ORA)和動態(tài)角膜地形圖(CORVIS ST)。眼反應(yīng)分析儀監(jiān)測受空氣脈沖作用后角膜形變和恢復(fù)的動態(tài)過程,獲得角膜遲滯性(corneal hysteresis,CH)和角膜阻力因子(corneal resistance factor,CRF)兩個力學(xué)參數(shù)[16]。在這一過程中,角膜第一次被壓平時測得的眼壓為P1,第二次被壓平時為P2,兩者之間的差異即為CH,代表了角膜粘性阻力所致的能量損失。CRF通過線性公式計算所得,理論上可代表角膜彈性,但是CH與角膜彈性模量并沒有直接關(guān)系[17]。在正常眼,CH波動于9.3±1.4~11.4±1.5 mmHg,CRF波動于9.2±1.4~11.9±1.5 mmHg。近年來,研究人員開始對采集的紅外線信號曲線和壓力信號曲線進(jìn)行分析,獲得了一系列新的參數(shù)[18-19],聯(lián)合CH和CRF,拓展了眼反應(yīng)分析儀臨床應(yīng)用。動態(tài)角膜地形圖集成了角膜地形圖、非接觸式眼壓計和高速照相系統(tǒng),記錄受空氣脈沖作用后角膜形變和恢復(fù)的影像,可提供角膜形變幅度以及兩次被壓平出現(xiàn)的時間、長度和速率等力學(xué)參數(shù)[20],其中角膜的形變幅度和第一次被壓平出現(xiàn)的時間可重復(fù)性好且最具臨床意義。目前,還有一些活體測量角膜生物力學(xué)特性的新技術(shù)正在研究當(dāng)中,將來可能應(yīng)用于臨床,包括超聲剪切成像技術(shù)[21]、光學(xué)相干彈性成像技術(shù)[22]以及Brillouin光散射顯微鏡技術(shù)[23]等。
2.1 角膜生物力學(xué)與角膜擴(kuò)張性疾病
隨著對角膜生物力學(xué)認(rèn)識的深入和活體測量方法的改進(jìn),人們?nèi)諠u意識到角膜生物力學(xué)的重要性并開始研究其與多種眼部疾病的關(guān)系。其中,角膜生物力學(xué)特性在擴(kuò)張性角膜疾病中的應(yīng)用是最早且最成功的例子。擴(kuò)張性角膜疾病,包括圓錐角膜和屈光手術(shù)后角膜擴(kuò)張,其角膜基質(zhì)膠原排列紊亂、前彈力層斷裂、膠原在前彈力層的錨定缺失直接導(dǎo)致角膜硬度降低和板層滑動[24-25],最終表現(xiàn)為角膜進(jìn)行性變薄、前突和視力下降。利用眼反應(yīng)分析儀比較正常角膜和圓錐角膜的生物力學(xué)特性,發(fā)現(xiàn)后者的CH和CRF顯著下降[16,26-28],且降幅與疾病嚴(yán)重程度相關(guān)[28]。然而,對于輕型或隱匿型圓錐角膜,這兩個力學(xué)參數(shù)的敏感性和特異性較低[29],如聯(lián)合對信號和壓力曲線的分析,則敏感性和特異性提高,可用于圓錐角膜的早期診斷[19,30]。角膜膠原交聯(lián)(corneal cross-linking,CXL)是治療擴(kuò)張性角膜疾病最具前景的措施之一,通過光化學(xué)反應(yīng)促進(jìn)角膜膠原之間和膠原板層之間發(fā)生交聯(lián),可直接改善角膜生物力學(xué)特性,進(jìn)而降低角膜曲率和高階像差。多項臨床研究結(jié)果顯示,圓錐角膜經(jīng)過膠原交聯(lián)后其CRF可短期升高[31-33],以圓錐為中心的小范圍交聯(lián)效果優(yōu)于角膜中央9 mm區(qū)域的交聯(lián)[34]。眼反應(yīng)分析儀信號和壓力曲線分析[35]或動態(tài)角膜地形圖檢測[36]的結(jié)果較CRF重復(fù)性好,能更準(zhǔn)確地評價治療效果和監(jiān)測疾病進(jìn)展。角膜生物力學(xué)特性在擴(kuò)張性角膜疾病患者中呈現(xiàn)明顯的個體差異,在同一角膜呈不對稱分布,因此,研究人員采用有限元模型預(yù)測特定患者對不同屈光手術(shù)方式[37]或交聯(lián)方案[38-39]的角膜生物力學(xué)反應(yīng),使未來開展擴(kuò)張性角膜疾病的個體化診斷和治療成為可能。
2.2 角膜生物力學(xué)與眼壓測量
角膜屈光手術(shù)是矯正近視、遠(yuǎn)視或散光的手段之一,僅2010年,全世界范圍內(nèi)就開展了800 000例手術(shù)。然而,屈光手術(shù)后發(fā)生青光眼并導(dǎo)致永久視功能損傷的病例屢見不鮮[40],因此有必要長期監(jiān)測患者眼壓,尤其是高危人群,如有青光眼家族史、薄角膜和高度近視等。遺憾的是,目前臨床最常用的Goldmann壓平式眼壓計 (goldmann applanation tonometry,GAT)往往低估了術(shù)后眼壓[41],因為術(shù)后角膜厚度、形態(tài)和生物力學(xué)特性改變,而GAT測量值與這些角膜特征密切相關(guān),尤其是角膜生物力學(xué)特性[42-43]。眼反應(yīng)分析儀和動態(tài)角膜地形圖不僅可以測量角膜生物力學(xué)特性,同時也是非接觸壓平式眼壓計,且眼壓測量值不依賴角膜厚度和生物力學(xué)特性。研究發(fā)現(xiàn),利用眼反應(yīng)分析儀測量的術(shù)前術(shù)后眼壓變化值明顯低于GAT測量的變化值且與CH和CRF密切相關(guān)[44],動態(tài)角膜地形圖測量的術(shù)前術(shù)后眼壓值也較GAT測量值穩(wěn)定[41]。有趣的是,有角膜屈光手術(shù)史的青光眼患者和沒有手術(shù)史的青光眼患者對降眼壓的藥物反應(yīng)相同[45]。
2.3 角膜生物力學(xué)與眼部其它結(jié)構(gòu)力學(xué)相關(guān)性
有大量的研究探索角膜與眼球其它結(jié)構(gòu)在生物力學(xué)方面的相關(guān)性,如鞏膜、視神經(jīng)頭等。鞏膜和角膜共同組成了眼球的纖維結(jié)締組織外殼,維持眼球的正常形態(tài)。當(dāng)這個整合系統(tǒng)中某部分的生物力學(xué)特性改變,則會引起另一部分的相應(yīng)改變。角膜遲滯性低則鞏膜可能軸向延長,形成或加深近視[46],因此,對兒童進(jìn)行常規(guī)角膜生物力學(xué)特性篩查有助于預(yù)測發(fā)生軸性近視的風(fēng)險。視神經(jīng)頭是后部鞏膜的組成部分,研究發(fā)現(xiàn)低CH伴隨深視杯、大杯盤比[47]和視盤小凹的形成[48],CH與盤沿面積、神經(jīng)纖維層厚度成正比,與杯盤比成反比[49]。視神經(jīng)頭的這些形態(tài)學(xué)改變可能因為眼壓升高時,高CH患者的篩板容易變形,變形過程中分散了機(jī)械力,從而保護(hù)了視網(wǎng)膜神經(jīng)纖維,反之,則造成視神經(jīng)的損傷。研究還比較了正常眼和多種類型青光眼患者的角膜生物力學(xué)特性,發(fā)現(xiàn)原發(fā)性開角型[50]、原發(fā)性閉角型[51]、正常眼壓性[52]、假性剝脫性[53]和先天性[54]青光眼患者的CH較正常眼低,與疾病嚴(yán)重程度成正比[55],且能夠預(yù)測疾病進(jìn)展的風(fēng)險[56]。
總之,生物力學(xué)在多種眼科疾病的發(fā)生和發(fā)展過程中發(fā)揮重要作用,近年來,除角膜外,關(guān)于虹膜、小梁網(wǎng)、晶狀體等的生物力學(xué)研究也取得了長足進(jìn)展。眼科醫(yī)生應(yīng)重視生物力學(xué),和基礎(chǔ)研究人員相互合作,實現(xiàn)其從實驗室向臨床應(yīng)用的轉(zhuǎn)化,造福眼病患者。
1.Hatze H.Letter:The meaning of the term“biomechanics”[J]. J Biomech,1974,7(2):189-190.
2.Girard MJ,Dupps WJ,Baskaran M,et al.Translating ocular biomechanics into clinical practice:current state and future prospects[J].Curr Eye Res,2015,40(1):1-18.
3.Amini R,Whitcomb JE,Al-Qaisi MK,et al.The posterior location of the dilator muscle induces anterior iris bowing during dilation,even in the absence of pupillary block[J].Invest Ophthalmol Vis Sci,2012,53(3):1188-1194.
4.Camras LJ,Stamer WD,Epstein D,et al.Differential effects of trabecular meshwork stiffness on outflow facility in normal human and porcine eyes[J].Invest Ophthalmol Vis Sci,2012,53(9):5242-5250.
5.Repetto R,Siggers JH,Stocchino A.Mathematical model of flow in the vitreous humor induced by saccadic eye rotations:effect of geometry[J].Biomech Model Mechanobiol,2010,9(1):65-76.
6.Pedrigi RM,Dziezyc J,Humphrey JD.Altered mechanical behavior and properties of the human anterior lens capsule after cataract surgery[J].Exp Eye Res,2009,89(4):575-580.
7.MauriceDM.Thestructureandtransparencyof the cornea[J]. J Physiol,1957,136(2):263-286.
8.Chakravarti S,Magnuson T,Lass JH,et al.Lumican regulates collagen fibril assembly:skin fragility and corneal opacity in the absence of lumican[J].J Cell Biol,1998,141(5):1277-1286.
9.Komai Y,Ushiki T.The three-dimensional organization of collagen fibrils in the human cornea and sclera[J].Invest Ophthalmol Vis Sci,1991,32(8):2244-2258.
10.Roberts C.The cornea is not a piece of plastic[J].J Refract Surg,2000,16(4):407-413.
11.Elsheikh A,Wang D,Brown M,et al.Assessment of corneal biomechanical properties and their variation with age[J].Curr Eye Res,2007,32(1):11-19.
12.Goldich Y,Barkana Y,Pras E,et al.Variations in cornealbiomechanicalparametersand centralcorneal thickness during the menstrual cycle[J].J Cataract Refract Surg,2011,37(8):1507-1511.
13.Smolek MK.Holographic interferometry of intact and radially incised human eye-bank corneas[J].J Cataract Refract Surg,1994,20(3):277-286.
14.Kasprzak H,F(xiàn)?rster W,von Bally G.Measurement of elastic modulus of the bovine cornea by means of holographic interferometry.Part 1.Method and experiment[J]. Optom Vis Sci,1993,70(7):535-544.
15.Knox Cartwright NE,Tyrer JR,Marshall J.In vitro quantification of the stiffening effect of corneal cross-linking in the human cornea using radial shearing speckle pattern interferometry[J].J Refract Surg,2012,28(7):503-508.
16.Luce DA.Determining in vivo biomechanical properties of the cornea with an ocular response analyzer[J].J Cataract Refract Surg,2005,31(1):156-162.
17.Glass DH,Roberts CJ,Litsky AS,et al.A viscoelastic biomechanical model of the cornea describing the effect of viscosity and elasticity on hysteresis[J].Invest Ophthalmol Vis Sci,2008,49(9):3919-3926.
18.Touboul D,Bénard A,Mahmoud AM,et al.Early biomechanical keratoconus pattern measured with an ocular response analyzer:curve analysis[J].J Cataract Refract Surg,2011,37(12):2144-2150.
19.Mikielewicz M,Kotliar K,Barraquer RI,et al.Airpulse corneal applanation signal curve parameters for the characterisation of keratoconus[J].Br J Ophthalmol,2011,95(6):793-798.
20.Hon Y,Lam AK.Corneal deformation measurement using scheimpflug noncontact tonometry[J].Optom Vis Sci,2013,90(1):e1-e8.
21.Tanter M,Touboul D,Gennisson JL,et al.High-resolution quantitative imaging of cornea elasticity using supersonic shear imaging[J].IEEE Trans Med Imaging,2009,28(12):1881-1893.
22.Ford MR,Dupps WJ Jr,Rollins AM,et al.Method for optical coherence elastography of the cornea[J].J Biomed Opt,2011,16(1):016005.
23.Scarcelli G,Yun SH.In vivo Brillouin optical microscopy of the human eye[J].Opt Express,2012,20(8):9197-9202.
24.Meek KM,Tuft SJ,Huang Y,et al.Changes in collagen orientation and distribution in keratoconus corneas[J].Invest Ophthalmol Vis Sci,2005,46(6):1948-1956.
25.Dawson DG,Randleman JB,Grossniklaus HE,et al. Corneal ectasia after excimer laser keratorefractive surgery: histopathology,ultrastructure,and pathophysiology[J]. Ophthalmology,2008,115(12):2181-2191.
26.Ortiz D,Pi?ero D,Shabayek MH,et al.Corneal biomechanical properties in normal,post-laser in situ keratomileusis,and keratoconic eyes[J].J Cataract Refract Surg,2007,33(8):1371-1375.
27.Gefen A,Shalom R,Elad D,et al.Biomechanical analysis of the keratoconic cornea[J].J Mech Behav Biomed Mater,2009,2(3):224-236.
28.Shah S,Laiquzzaman M,Bhojwani R,et al.Assessment of the biomechanical properties of the cornea with the ocular response analyzer in normal and keratoconic eyes[J]. Invest Ophthalmol Vis Sci,2007,48(7):3026-3031.
29.Kirwan C,O'Malley D,O'Keefe M.Corneal hysteresis and corneal resistance factor in keratoectasia:findings using the reichert ocular response analyzer[J].Ophthalmologica,2008,222(5):334-337.
30.Schweitzer C,Roberts CJ,Mahmoud A M,et al. Screening of forme fruste keratoconus with the ocular response analyzer[J].Invest Ophthalmol Vis Sci,2010,51(5):2403-2410.
31.Greenstein SA,F(xiàn)ry KL,Hersh PS.In vivo biomechanical changes after corneal collagen cross-linking for keratoconus and corneal ectasia:1-year analysis of a randomized,controlled,clinical trial[J].Cornea,2012,31(1): 21-25.
32.Gkika M,Labiris G,Giarmoukakis A,et al.Evaluation of corneal hysteresis and corneal resistance factor after corneal cross-linking for keratoconus[J].Graefes Arch Clin Exp Ophthalmol,2012,250(4):565-573.
33.Goldich Y,Marcovich AL,Barkana Y,et al.Clinical and corneal biomechanical changes after collagen crosslinking with riboflavin and UV irradiation in patients with progressive keratoconus:results after 2 years of follow-up[J]. Cornea,2012,31(6):609-614.
34.Roy AS,Dupps WJ.Patient-specific computational modeling of keratoconus progression and differential responses to collagen cross-linking[J].Invest Ophthalmol Vis Sci,2011,52(12):9174-9187.
35.Hallahan KM,Rocha K,Roy AS,et al.Effects of corneal cross-linking on ocular response analyzer waveform-derived variables in keratoconus and postrefractive surgery ectasia[J].Eye Contact Lens,2014,40(6):339-344.
36.Tian L,Ko MW,Wang LK,et al.Assessment of ocular biomechanics using dynamic ultra high-speed Scheimpflug imaging in keratoconic and normal eyes[J].J Refract Surg,2014,30(11):785-791.
37.Roy AS,Dupps WJ.Effects of altered corneal stiffness on native and postoperative LASIK corneal biomechanical behavior:a whole-eye finite element analysis[J].J Refract Surg,2009,25(10):875-887.
38.Seven I,Sinha Roy A,Dupps WJ.Patterned corneal collagen crosslinking for astigmatism:computational modeling study[J].J Cataract Refract Surg,2014,40(6):943-953.
39.Seven I,Dupps WJ.Patient-Specific finite element simulations of standard incisional astigmatism surgery and a novel patterned collagen crosslinking approach to astigmatism treatment[J].J Med Device,2013,7(4):0409131-0409132.
40.Shaikh NM,Shaikh S,Singh K,et al.Progression to end-stage glaucoma after laser in situ keratomileusis[J].J Cataract Refract Surg,2002,28(2):356-359.
41.Aristeidou AP,Labiris G,Katsanos A,et al.Comparison between pascal dynamic contour tonometer and goldmann applanation tonometer after different types of refractive surgery[J].Graefes Arch Clin Exp Ophthalmol,2011,249(5):767-773.
42.Liu J,Roberts CJ.Influence of corneal biomechanical properties on intraocular pressure measurement:quantitative analysis[J].J Cataract Refract Surg,2005,31(1): 146-155.
43.Tranchina L,Lombardo M,Oddone F,et al.Influence of corneal biomechanical properties on intraocular pressure differences between an air-puff tonometer and the Goldmann applanation tonometer[J].J Glaucoma,2013,22(5):416-421.
44.Shin J,Kim TW,Park SJ,et al.Changes in biomechanical properties of the cornea and intraocular pressure after myopic laser in situ keratomileusis using a femtosecond laser for flap creation determined using ocular response analyzer and Goldmann applanation tonometry[J].J Glaucoma,2015,24(3):195-201.
45.Sung KR,Lee JY,Kim MJ,et al.Clinical characteristics of glaucomatous subjects treated with refractive corneal ablation surgery[J].Korean J Ophthalmol,2013,27(2): 103-108.
46.Chang PY,Chang SW,Wang JY.Assessment of corneal biomechanical properties and intraocular pressure with the ocular response analyzer in childhood myopia[J].Br J Ophthalmol,2010,94(7):877-881.
47.Prata TS,Lima VC,Guedes LM,et al.Association between corneal biomechanical properties and optic nerve head morphology in newly diagnosed glaucoma patients[J]. Clin Experiment Ophthalmol,2012,40(7):682-688.
48.Bochmann F,Ang GS,Azuara-Blanco A.Lower corneal hysteresis in glaucoma patients with acquired pit of the optic nerve(APON)[J].Graefes Arch Clin Exp Ophthalmol,2008,246(5):735-738.
49.Khawaja AP,Chan MP,Broadway DC,et al.Corneal biomechanical properties and glaucoma-related quantitative traits in the EPIC-Norfolk Eye Study[J].Invest Oph-thalmol Vis Sci,2014,55(1):117-124.
50.Abitbol O,Bouden J,Doan S,et al.Corneal hysteresis measured with the Ocular Response Analyzer in normal and glaucomatous eyes[J].Acta Ophthalmol,2010,88(1):116-119.
51.Narayanaswamy A,Su DH,Baskaran M,et al.Comparison of ocular response analyzer parameters in Chinese subjects with primary angle-closure and primary openangle glaucoma[J].Arch Ophthalmol,2011,129(4): 429-434.
52.Morita T,Shoji N,Kamiya K,et al.Corneal biomechanical properties in normal-tension glaucoma[J].Acta Ophthalmol,2012,90(1):e48-e53.
53.Ayala M.Corneal hysteresis in normal subjects and in patients with primary open-angle glaucoma and pseudoexfoliation glaucoma[J].Ophthalmic Res,2011,46(4):187-191.
54.Kirwan C,O'Keefe M,Lanigan B.Corneal hysteresis and intraocular pressure measurement in children using the reichert ocular response analyzer[J].Am J Ophthalmol,2006,142:990-992.
55.Mansouri K,Leite MT,Weinreb RN,et al.Association between corneal biomechanical properties and glaucoma severity[J].Am J Ophthalmol,2012,153(3):419-427. e1.
56.Medeiros FA,Meira-Freitas D,Lisboa R,et al.Corneal hysteresis as a risk factor for glaucoma progression:a prospective longitudinal study[J].Ophthalmology,2013, 120(8):1533-1540.
(2016-04-20收稿)
R770.4
A
10.3969/j.issn.1000-2669.2016.03.004
鄧應(yīng)平,男,教授。E-mail:dyp558@163.com