徐傳飛, 伍仕鑫, 孫磊, 蔡欣
(西南科技大學(xué)生命科學(xué)與工程學(xué)院,四川綿陽 621010)
MicroRNA在哺乳動物精子發(fā)生中的作用
徐傳飛, 伍仕鑫, 孫磊, 蔡欣*
(西南科技大學(xué)生命科學(xué)與工程學(xué)院,四川綿陽 621010)
MicroRNAs(miRNAs)是一類長20~24 nt的單鏈非編碼調(diào)控RNA序列。miRNA作為基因轉(zhuǎn)錄后表達調(diào)控分子,通過堿基互補配對的方式與靶mRNA結(jié)合,從而導(dǎo)致靶mRNA的降解或抑制其翻譯過程。從最早發(fā)現(xiàn)存在于秀麗隱桿線蟲Caenorhabditiselegans中的miRNAlin-4和let-7至今20多年里,研究人員已陸續(xù)從不同的種屬中發(fā)現(xiàn)了大量的miRNA。近年來隨著基因克隆、表達和功能研究技術(shù)的應(yīng)用和發(fā)展,通過分析不同動物物種睪丸組織中miRNA的變化表明miRNA與精子發(fā)生過程密切相關(guān)。此外,miRNA相關(guān)的Dicer、Drosha等蛋白在初級精母細胞減數(shù)分裂粗線期所發(fā)揮的調(diào)控功能通過大量嚙齒動物基因敲除模型得到證實。本文從miRNA的合成、作用機制和精子發(fā)生過程中的調(diào)控作用進行綜述。
miRNA;哺乳動物;精子發(fā)生;轉(zhuǎn)錄后調(diào)控
哺乳動物不育的發(fā)病機制以及相關(guān)的致病因素一直以來都是動物育種中的難點問題,且大多數(shù)哺乳動物的不育都是由雄性生殖障礙引起,如弱精癥、無精癥,而這些生殖障礙通常是由于雄性生殖細胞的形成以及成熟缺陷導(dǎo)致。哺乳動物精子發(fā)生是一個多步驟發(fā)展的復(fù)雜過程,并涉及錯綜復(fù)雜的基因表達調(diào)控過程,包括轉(zhuǎn)錄和轉(zhuǎn)錄后水平的調(diào)控,其中任何一個環(huán)節(jié)出錯都可能導(dǎo)致雄性不育。二倍體生殖細胞經(jīng)過一系列細胞分裂、分化過程后形成成熟的精子,并通過精卵細胞的結(jié)合才能發(fā)育成成熟個體,所以哺乳動物精子發(fā)生在生殖發(fā)育以及物種延續(xù)中具有重要作用。近年來,對microRNA(miRNA)越來越多的研究表明其在精子發(fā)生以及早期胚胎發(fā)育等過程中發(fā)揮著重要作用,闡明miRNA在哺乳動物生命活動中的作用及其機理將對轉(zhuǎn)錄后基因調(diào)節(jié)領(lǐng)域的發(fā)展具有深遠影響。本文著重圍繞miRNA的合成及作用機制以及其在精子發(fā)生過程中的調(diào)控作用進行綜述。
1.1 miRNA的發(fā)現(xiàn)
miRNA是一類來源于內(nèi)源性基因長20~24 nt的單鏈非編碼調(diào)控RNA序列,是非編碼RNA家族的重要成員之一。對miRNA的研究最早始于1993年,在秀麗隱桿線蟲Caenorhabditiselegans的胚后發(fā)育階段,一種22 nt的RNA分子lin-4通過與lin-14 mRNA的3’端堿基配對的方式抑制核蛋白lin-14的表達來調(diào)控線蟲的發(fā)育進程(Leeetal.,1993;Wightmanetal.,1993)。此后,在2000年又發(fā)現(xiàn)存在于線蟲幼蟲時期的miRNAlet-7通過下調(diào)基因lin-41來減緩基因lin-29的抑制作用(Slacketal.,2000)。隨著在動植物中發(fā)現(xiàn)的miRNA種類和數(shù)量的增多,研究者也越來越重視其轉(zhuǎn)錄后水平對靶基因的調(diào)控作用。
1.2 miRNA的來源
成熟的miRNA是長約22 nt的不編碼蛋白質(zhì)的短序列RNA,其合成過程主要包括2個步驟:miRNA基因轉(zhuǎn)錄形成的初級miRNA(pri-miRNA)通過剪切形成長約70 nt的前體miRNA(pre-miRNA)以及pre-miRNA通過剪切形成長約22 nt的成熟miRNA(圖1)。大多數(shù)人類miRNA和普通mRNA的形成過程一樣,是在RNA聚合酶Ⅱ的作用下先形成雙鏈pri-miRNA,后在5’端加M7G帽以及3’端加ploy(A)尾結(jié)構(gòu)(Kim,2005)。但并不是所有的pri-miRNA都在RNA聚合酶Ⅱ的催化下形成,如分布在人類19號染色體上Alu重復(fù)序列中的miRNA簇的轉(zhuǎn)錄依賴于RNA聚合酶Ⅲ的催化(Borchertetal.,2006)。核糖核酸酶Drosha RNase Ⅲ(Leeetal.,2003)的RⅢDa和RⅢDb兩亞基分別對pri-miRNA的5’和3’端進行剪切后形成具有發(fā)夾結(jié)構(gòu)的pre-miRNA,長度約70 nt,且在3’端懸掛2 nt的核糖核苷酸(Hanetal.,2004)。動物中的Drosha酶是約160 kDa的保守蛋白,其二級結(jié)構(gòu)包括2個串聯(lián)的RNase Ⅲ區(qū)域(RⅢDs)和1個具有結(jié)合催化作用的雙鏈RNA區(qū)域(dsRBD)(Hanetal.,2004)。在黑腹果蠅Drosophilamelanogaster和人類細胞中,Drosha酶可以與DGCR8蛋白分別形成約500 kDa和650 kDa的復(fù)合體,并且該復(fù)合體對pri-miRNA剪切過程被稱為“Microprocess”(Denlietal.,2004;Gregoryetal.,2004),而DGCR8蛋白具有與雙鏈RNA結(jié)合的能力,通過與Drosha酶氨基端脯氨酸富集區(qū)域的表面相互作用,能穩(wěn)定Drosha酶對pri-miRNA的結(jié)合作用,從而促進Drosha酶的剪切作用(Hanetal.,2004;Wangetal.,2007)。有一種假設(shè)認為DGCR8蛋白能夠識別pri-miRNA在發(fā)夾結(jié)構(gòu)單鏈與雙鏈的結(jié)合區(qū)域,并使Drosha酶在此解旋約1個螺旋結(jié)構(gòu)后形成直鏈(Hanetal.,2006)。此外,也有假設(shè)認為pri-miRNA的終端環(huán)狀結(jié)構(gòu)也能影響Drosha酶的剪切作用(Zhang & Zeng,2010)。除一些特別的miRNA由單獨的基因轉(zhuǎn)錄通過剪切形成,形成大多數(shù)miRNA的基因既可編碼miRNA簇又可編碼一種miRNA或者一種蛋白(Bartel,2004)。除上述過程之外,在非典型miRNA的形成路徑中,一些內(nèi)含子miRNA不需要核糖核酸酶的作用,而是在一種miRNA新亞型mirtron的作用下,通過拼接形成具有發(fā)夾結(jié)構(gòu)的pre-miRNA,從而跳過Drosha酶/DGCR8蛋白復(fù)合體的處理過程(Westholm & Lai,2011;Lietal.,2012)。
以上過程都發(fā)生在細胞核內(nèi),而pre-miRNA必須通過核孔復(fù)合體進入到細胞質(zhì)內(nèi)才能形成成熟的miRNA。轉(zhuǎn)運蛋白Exportin-5(Exp5)通過識別懸掛在3’端的2 nt結(jié)構(gòu)并結(jié)合在pre-miRNA發(fā)夾結(jié)構(gòu)上,在Ran-GTP(the GTP bound form of Ran GTPase)的供能下,pre-miRNA通過核孔進入細胞質(zhì)內(nèi)(Yietal.,2003)。正是由于Exp5的功能才能確保pre-miRNA向細胞質(zhì)的有效釋放以及pre-miRNA的完整性;而Ran-GTP在細胞質(zhì)中的濃度低于在細胞核中的濃度,pre-miRNA又與Exp5相分離(Lundetal.,2004)。在細胞質(zhì)中,Dicer RNase Ⅲ酶能識別pre-miRNA并剪切形成約22 nt的miRNA(Grishoketal.,2001;Kettingetal.,2001)。然后miRNA先后在Dicer RNase Ⅲ酶和其他一些蛋白質(zhì)的作用下形成單鏈的成熟miRNA(Hutvagneretal.,2001)。正常條件下,成熟的miRNA只有一條鏈能對轉(zhuǎn)錄后的RNA產(chǎn)生相應(yīng)的調(diào)控作用,剩下的一條鏈通常在酶的作用下水解,水解鏈主要取決于每條鏈5’端的相對熱力學(xué)穩(wěn)定性(Schwarzetal.,2003)。內(nèi)部具有相對較低穩(wěn)定性的單鏈能與核糖核蛋白結(jié)合形成非對稱性的miRNA誘導(dǎo)的基因沉默復(fù)合物(miRNA-induced silencing complex,miRISC)(Khvorovaetal.,2003;Schwarzetal.,2003),而pre-miRNA的發(fā)夾結(jié)構(gòu)能影響Dicer酶的識別作用,從而剪切形成不同對稱性的小干擾RNA (small interfering RNA, siRNA)樣的“莖臂結(jié)構(gòu)”(stem-arm construct),正是由于這種結(jié)構(gòu)的不對稱性才影響在形成有效miRISC過程中不同成熟miRNA的挑選作用(Linetal.,2005)。
1.3 miRNA的作用機制
miRISC對于miRNA的處理以及RNA的干擾必不可少,并且至少由miRNA、蛋白Dicer、TRBP和AGO四種物質(zhì)構(gòu)成。TRBP蛋白是人類免疫缺陷病反式激活RNA結(jié)合蛋白(human immunodeficiency virus trans-activating response RNA-binding protein),是Dicer復(fù)合體不可或缺的物質(zhì)(Chendrimadaetal.,2005)。在哺乳動物細胞中,AGO蛋白是唯一行使mRNA分解功能的蛋白質(zhì),它在抑制翻譯過程也具有重要作用(Liuetal.,2004;Pratt & MacRae,2009)。大多數(shù)miRNA同靶mRNA的3’端相互作用,且?guī)缀跛械膍iRNA通過與靶mRNA部分互補配對的方式抑制該mRNA的翻譯過程(Olsen & Ambros,1999;Millar & Waterhouse,2005;Behm-Ansmantetal.,2006;Ameres & Zamore,2013)。因此,人們猜測哺乳動物miRNA主要通過抑制翻譯過程或者降解mRNA而不是內(nèi)切核苷酸降解的方式發(fā)揮其調(diào)控功能(Ameres & Zamore,2013)。在哺乳動物中,一些miRISC能夠識別靶mRNA的5’端M7G帽子部位并抑制翻譯過程(Pillaietal.,2005),隨后則引起mRNA的降解(Ameres & Zamore,2013),但對于miRNA作用機制的真實調(diào)控過程還有待進一步揭示。有趣的是,盡管哺乳動物miRNA通常在miRISC其他組成部分的協(xié)助下,抑制翻譯過程或者直接使靶mRNA降解,但miRNA也可能促進轉(zhuǎn)錄和翻譯過程。例如,在神經(jīng)元細胞發(fā)育過程中,
圖1 miRNA的合成及作用機制示意圖(Olde Loohuis et al.,2012)Fig.1 The biogenesis and mechanism of miRNA(Olde Loohuis et al.,2012)
由基因間區(qū)或基因編碼區(qū)或非編碼區(qū)轉(zhuǎn)錄形成的pri-miRNA在Drosha酶/DGCR8蛋白復(fù)合體的作用下形成長度約70 nt且具有發(fā)夾結(jié)構(gòu)的pre-miRNA,并通過轉(zhuǎn)運蛋白Exportin-5進入細胞質(zhì); pre-miRNA經(jīng)Dicer酶作用形成成熟miRNA,并通過與含AGO蛋白的復(fù)合體結(jié)合形成miRISC; miRNA通過同靶mRNA的3’端相互作用調(diào)控基因的表達。
Pri-miRNA transcripts, transcribed from intergenic genes or genes coded within introns of coding or non-coding genes, are processed into a pre-miRNA by the Drosha/DGCR8 complex, creating a 70~80 nts, hairpin-looped molecule, which is then shuttled out of the nucleus via the exportin-5 mediated transport; cytoplasmatic digestion of the pre-miRNA is facilitated by Dicer, resulting in mature miRNAs which associate with Argonaute-containing complexes to form the RNA induced silencing complex; miRNAs modulate gene expression by pairing with sequences in the 3’UTRs of target mRNAs.
miR-128通過抑制無義介導(dǎo)的衰變途徑(the nonsense-mediated decay pathway)來促進mRNA的表達(Brunoetal.,2011)。在細胞周期停滯期間,有一些miRNA,如miR-369-3調(diào)控AU序列同AGO蛋白以及脆性X智力遲鈍蛋白1(fragile X mental retardation protein 1)的結(jié)合,從而上調(diào)正常增殖細胞的翻譯過程(Vasudevanetal.,2007)。此外,與動物miRNA相反,植物miRNA對于靶mRNA表現(xiàn)出更多的互補性且比動物miRNA具有更高同源性(Millar & Waterhouse,2005;Ameres & Zanore,2013)。
精子發(fā)生是一個高度復(fù)雜協(xié)調(diào)的過程,成熟的精子都來源于共同的精原干細胞(spermatogonia stem cells, SSCs)。SSCs是一群位于生精上皮底部,具有高度自我更新和多向分化潛能的細胞,是精子發(fā)生的起始細胞。而SSCs的自我更新能維持干細胞數(shù)量穩(wěn)定以及精子發(fā)生的持續(xù)進行。在成年哺乳動物中,SSCs能通過重復(fù)的有絲分裂形成Apaired(Apr)和Aligned(Aal)精原細胞,Aal精原細胞經(jīng)有絲分裂形成Aal(4)、Aal(8)、Aal(16)精原細胞,進一步分化形成A1型精原細胞,再經(jīng)過增殖分裂形成A2型、A3型、A4型精原細胞,而A4型精原細胞成熟形成B型精原細胞,再經(jīng)過有絲分裂形成初級精母細胞,最終經(jīng)過減數(shù)分裂分化形成成熟精子(Oatley & Brinster,2008)。
近年來,通過miRNA的微陣列以及逆轉(zhuǎn)錄PCR等技術(shù),在小鼠的睪丸中發(fā)現(xiàn)大量的miRNA表達譜,并且有許多miRNA在精原細胞的自我更新以及分化過程中具有重要作用。Niu等(2011)利用高通量測序技術(shù)發(fā)現(xiàn),相比Thy1-睪丸支持細胞以及間質(zhì)細胞等多種睪丸體細胞,miR-34c、miR-182、miR-183以及miR-146a都在體外Thy1+SSCs中優(yōu)先表達。在SSCs的培養(yǎng)中發(fā)現(xiàn),miR-21的短暫抑制增加了生殖細胞凋亡的數(shù)量,并且在通過移植手術(shù)的受體小鼠睪丸組織中,減少了供體生殖細胞精子發(fā)生的數(shù)量。此外,在體外SSCs的生殖細胞培養(yǎng)中發(fā)現(xiàn),miR-21受轉(zhuǎn)錄因子ETV5的調(diào)控,而轉(zhuǎn)錄因子ETV5對SSCs的自我更新至關(guān)重要(Tyagietal.,2009),并且miR-21的增強子區(qū)域具有轉(zhuǎn)錄因子ETV5的結(jié)合區(qū)域。這表明miR-21在調(diào)控SSCs的自我更新中具有重要作用。通過對患隱睪癥動物的睪丸研究發(fā)現(xiàn),miR-135a通過調(diào)控foxO1(fork head box protein 1)來影響SSCs的數(shù)目恒定(Moritokietal.,2014)。除此之外,miR-20和miR-106a在轉(zhuǎn)錄后的水平上通過靶向基因STAT3(signal transducer and activator of transcription 3)和Ccnd1(CyclinD1)促進SSCs的更新(圖 2)。
精原細胞分化是一個涉及維甲酸(retinoic acid,RA)信號并受基因表達精確調(diào)控的過程。RA是維生素A(vitamin A)的代謝產(chǎn)物,在由Aal精原細胞分化形成A1型精原細胞過程中,RA具有至關(guān)重要的作用,對于缺乏維生素A的小鼠,其精原細胞分化受阻于此過程(Griswoldetal.,1989)。而miRNA也是精原細胞分化過程中的重要調(diào)控因子。RA通過抑制Lin28基因的表達能顯著引起mirlet7 miRNAs的感應(yīng),從而抑制精原細胞分化過程中靶基因Mycn(N-myc)、Ccnd1、Col1a2(collagen type Ⅰ alpha 2 chain)的表達(Tongetal.,2011)。miR-17-92(Mirc1)以及miR-106b-25(Mirc3)在RA誘導(dǎo)的精原細胞分化過程中明顯受到抑制,但卻能反過來促進基因Bim(BCL2-Like 11)、Kit(CD117)、Socs3(suppressor of cytokine signaling 3)、Stat3的表達,小鼠胚胎miR-17-92敲除后導(dǎo)致小鼠的睪丸縮小、附睪少精以及精子發(fā)生缺陷(Tongetal.,2012)。而基因Kit是精原細胞的標(biāo)識,也涉及精原細胞的分化過程。雖然這些基因是否是miR-17-92以及miR-106b-25的靶基因還有待進一步研究,但這些與精原細胞分化有關(guān)的基因在未分化的精原細胞中受到miR-17-92以及miR-106b-25的抑制,而在精原細胞分化的過程中,miR-17-92以及miR-106b-25的抑制又誘導(dǎo)這些基因的表達則得到證實(Tongetal.,2012)。miR-146在精原細胞分化的過程中具有調(diào)節(jié)RA的作用效果,miR-146過表達時具有阻礙精原細胞中RA信號的作用效果,而miR-146的表達抑制時則會導(dǎo)致協(xié)同效應(yīng)。miR-146能直接與基因Med1(mediator不同miRNA(miR-34c、 -182、 -183、 -146a、 miR-21、 miR-20、 miR-106a、 miR-135a、 miR-221 和 miR-222)參與SSCs的自我更新; miR-17-92基因簇和 miR-106b-25、let7家族、miR-146則參與調(diào)控SSCs的分化; miR-449、miR-34b/c、miR-469則存在于精母細胞和精子細胞中; 而miR-34a、-34b、-34c 和 miR-122則與精子發(fā)育相關(guān)(Yaoetal.,2015)。
圖 2 不同miRNA在哺乳動物睪丸中不同的表達方式Fig.2 The expression patterns of miRNAs in various types of cells in mammalian testis
Numerous miRNAs (e.g.miR-34c, -182, -183 and -146a, miR-21, miR-20, miR-106a, miR-135a, miR-221,and miR-222) have been shown to regulate SSCs self-renewal; miR-17-92 cluster, miR-106b-25, let-7 family and miR-146 are involved in the regulation of mouse spermatogonial differentiation; miR-449, miR-34b/c and miR-469 are located in mouse spermatocytes and spermatids, while miR-34a, -34b, -34c and miR-122 are associated with sperm development (Yaoetal., 2015).
complex subunit 1)結(jié)合并抑制其表達,MED1主要通過調(diào)控來自于細胞核激素的受體信號來影響細胞的分化,且還能直接與RA受體相結(jié)合,但是對于RA誘導(dǎo)的轉(zhuǎn)錄效果影響還有待進一步研究,而miR-146表達或抑制將改變Med1基因的表達。對于RA處理過的精原細胞,當(dāng)miR-146的過量表達時,會抑制基因Kit、Stra8(stimulated by retinoic acid gene 8)以及Sohlh2(spermatogenesis- and oogenesis-specific basic helix-loop-helix 2)的上調(diào),當(dāng)miR-146表達受到抑制時,會促進這些基因的上調(diào)(Huszar & Pavne,2013)。這就表明了miR-146在RA誘導(dǎo)的精原細胞分化路徑中通過調(diào)控靶基因來影響精原細胞的分化過程。此外,miR-34c在不同的物種細胞增殖、細胞凋亡以及細胞分化的過程中發(fā)揮作用(Corneyetal.,2007)。Yu等(2014)發(fā)現(xiàn),miR-34c通過靶向基因Nanos2調(diào)控SSCs的分化,并且促進Nanos3、Scp3(single-cell protein 3)和Stra8等減數(shù)分裂相關(guān)基因的表達。以往的研究已表明,Nanos2基因?qū)儆谠谶M化上保守且具有能與RNA結(jié)合局域的NANOS家族,能夠抑制SSCs的分化且維持SSCs的自我更新(Shen & Xie,2010)。在小鼠雄性生殖干細胞中,Nanos2基因能夠抑制減數(shù)分裂,反過來維持SSCs的穩(wěn)定(Suzuki & Saga,2008;Sadaetal.,2012)。Stra8基因的表達是雌雄生殖細胞進入減數(shù)分裂的標(biāo)志,并且是減數(shù)分裂開始不可或缺的。而Nanos3基因在不同物種的生殖細胞發(fā)育過程中發(fā)揮作用,如果蠅、青蛙、老鼠以及人類(Julaton & Reijopera,2011)。在未分化的精原細胞中,Nanos2基因在抑制基因Nanos3、Scp3、Stra8的表達,并使SSCs或者精原細胞保持未分化的狀態(tài)上具有重要作用。當(dāng)小鼠睪丸組織成熟時,miR-34c通過靶向基因Nanos2消除基因Nanos3、Scp3、Stra8的抑制狀態(tài),并促進SSCs或者精原細胞向分化狀態(tài)轉(zhuǎn)變(Yuetal.,2014)。
減數(shù)分裂是有性生殖個體在形成生殖細胞過程中發(fā)生的一種特殊分裂方式,在個體的繁殖和生命周期中處于核心地位。在減數(shù)分裂期間,染色體會經(jīng)歷一系列錯綜復(fù)雜的結(jié)構(gòu)變化。在經(jīng)過一個較有絲分裂更長的S期后,生殖細胞進入第一次減數(shù)分裂的前期(Zickler & Kleckner,1998)。根據(jù)染色體在此期間的形態(tài)特征,分為細線期、偶線期、粗線期、雙線期以及終變期。最近研究發(fā)現(xiàn),在小鼠睪丸中顯著表達的miR-449主要存在于精母細胞和圓形精子細胞中,并且在減數(shù)分裂過程中能夠抑制E2F-pRb(E2F transcription factor-retinoblastoma protein pathway)路徑的活性,而miR-34b/c和miR-449表現(xiàn)出相同的調(diào)控作用(Bouhallieretal.,2010;Baoetal.,2012;Wuetal.,2014)。對于缺少miR-34b/c或者miR-449的個體沒有造成任何明顯的可識別表型,但是miR-34b/c以及miR-449的同時缺陷則會導(dǎo)致不育(Wuetal.,2014)。這就表明,對于特定miRNA調(diào)控的表型,需要采用二倍或者三倍的miRNA敲除法才可能消除不同miRNA功能冗余的影響。而miRNA-34簇也在牛精子中被發(fā)現(xiàn)(Tscherneretal.,2014)。此外miR-34c在小鼠粗線期精母細胞中通過靶向轉(zhuǎn)錄因子1(activating transcription factor 1,ATF1)調(diào)控精母細胞的凋亡(Liangetal.,2012)。而ATF1在小鼠早期胚胎發(fā)育階段調(diào)節(jié)維持細胞活性的信號是必不可少的(Bleckmannetal.,2002;Persengiev & Green, 2003)。這些研究都表明miR-34家族在精子發(fā)生過程中的重要性。
精母細胞經(jīng)過減數(shù)分裂后產(chǎn)生圓形的單倍體精子細胞,再經(jīng)過變態(tài)發(fā)育分化形成成熟精子,而染色質(zhì)的濃縮是細胞核濃縮形成成熟精子必不可少的。這一過程通過過渡蛋白(transition protein,TP)替換組蛋白,反過來又被精蛋白(protamine,Prm)替換來實現(xiàn),所以TP和Prm在精子細胞延伸的變態(tài)發(fā)育過程至關(guān)重要。在小鼠粗線期的精母細胞以及圓形精子細胞中,miR-469通過與基因TP2和Prm2的mRNA編碼區(qū)域相結(jié)合,從而造成mRNA的降解并抑制其表達,這對于精子發(fā)生后期精子成熟具有重要作用(Daietal.,2011)。而miR-122a在減數(shù)分裂以及減數(shù)分裂后的精子細胞中大量存在,通過與TP2基因mRNA的3’端非翻譯區(qū)相結(jié)合來抑制其表達,這表明miR-122a在精子發(fā)生后期具有重要作用(Yuetal.,2005)。在小鼠的睪丸中發(fā)現(xiàn)大量miR-18,并在精子發(fā)生的過程中呈特定細胞表達,通過下調(diào)熱休克轉(zhuǎn)錄因子2(heat shock transcription factor 2)來影響胚胎發(fā)育以及配子的形成(Bjorketal.,2010)。除此之外,更多的可能調(diào)控精子變態(tài)發(fā)育過程的miRNA還有待研究。
miRNA相關(guān)的Dicer、Drosha等蛋白在初級精母細胞減數(shù)分裂的粗線期發(fā)揮功能,其調(diào)控作用已通過大量嚙齒動物基因敲除模型得到證實。由于缺少Dicer,生殖細胞的早期發(fā)育、精原細胞分化、精子變態(tài)發(fā)育及其穩(wěn)定性也受到影響(Maatouketal.,2008;Romeroetal.,2011)。小鼠胚胎細胞和精原細胞由于缺少Dicer表現(xiàn)出低下的增生能力,而精子發(fā)生也停滯于精原細胞的早期增殖與分化階段(Hayashietal.,2008)。此外,通過敲除AMH基因(anti-Mullerian hormone)導(dǎo)致小鼠睪丸支持細胞中Dicer的缺失,并引起精子的缺陷和附睪的持續(xù)退化以及小鼠的不育(Papaioannouetal.,2009)。在出生后小鼠的精原細胞早期發(fā)育過程中,特定生殖細胞中Dicer的敲除將導(dǎo)致睪丸的萎縮以及曲細精管中精子發(fā)生阻滯,但最明顯的缺陷表現(xiàn)在精子細胞的延伸階段(Korhonenetal.,2011)。而出生后小鼠精原細胞中Dicer的敲除將導(dǎo)致精子發(fā)生阻滯,并伴隨大量miRNA的缺失、睪丸轉(zhuǎn)錄組的表達失調(diào)以及性染色體基因的過度表達(Greenleeetal.,2012)。而小鼠表達有缺陷的DGCR8蛋白會增加精母細胞的凋亡以及精子細胞成熟過程中的缺陷,從而產(chǎn)生畸形精子甚至無精癥(Zimmermannetal.,2014)。除Dicer和DGCR8外,Drosha和AGO4在精子的發(fā)生過程中也具有重要作用。Drosha對于正常精子形態(tài)的形成至關(guān)重要,其缺陷能夠造成生殖細胞在減數(shù)分裂和減數(shù)分裂后的畸形(Wuetal.,2012)。而AGO4富集于精母細胞的細胞核中,使精母細胞從有絲分裂到減數(shù)分裂順利完成,其功能的喪失將會抑制生殖細胞在減數(shù)分裂Ⅰ階段某些特定miRNA的表達(Mathioudakisetal.,2012)。
近年來大量研究已表明,miRNA在哺乳動物精子發(fā)生過程,包括有絲分裂、減數(shù)分裂以及精子變態(tài)發(fā)育階段,都具有重要的調(diào)控作用。雖然部分miRNA的某些調(diào)控功能已得到確定,但大部分miRNA的功能尚不明確,而miRNA的詳細作用機制也尚未完全闡明。在哺乳動物精子發(fā)生過程中,不同miRNA調(diào)控作用表達的空間連續(xù)性以及交互作用也有待進一步研究。此外,大部分miRNA的調(diào)控作用都是通過研究嚙齒動物模型取得的,是否這些miRNA在人類及其他哺乳動物的精子發(fā)生過程中具有同樣的調(diào)控作用還有待考證。最近的研究表明隱睪癥患者的精原干細胞在體外能通過誘導(dǎo)分化形成單倍體精子并成功受精形成能發(fā)育到八細胞階段的胚胎細胞(Yangetal.,2014),闡明其中涉及miRNA的調(diào)控作用可能為男性不育提供新的治療方法。作為重要表觀遺傳調(diào)控因子的miRNA是在不改變基因序列的情況下調(diào)控基因表達,因此更多新miRNA的發(fā)現(xiàn)有利于開發(fā)靈活且安全的男性避孕新技術(shù)。
Ameres SL, Zamore PD. 2013.Diversifying microRNA sequence and function[J]. Nature Reviews Molecular Cell Biology, 14(8): 475-488.Bao J, Li D, Wang L,etal. 2012. MicroRNA-449 and microRNA-34b/c function redundantly in murine testes by targeting E2F transcription factor retinoblastoma protein (E2F-pRb) pathway[J]. The Journal of Biological Chemistry, 287(26): 21686-21698.
Bartel DP. 2004. MicroRNAs: genomics, biogenesis, mechanism, and function[J]. Cell, 116(2): 281-297.
Behm-Ansmant I, Rehwinkel J, Doerks T,etal. 2006. MiRNA degradation by miRNAs and GW182 requires both CCR4: NOT deadenlase and DCPI: DCP2 decapping complexes[J]. Genes Development, 20(14): 1885-1898.
Bjork JK, Sandqvist A, Elsing AN,etal. 2010. miR-18, a member of Oncomir-1, targets heat shock transcription factor 2 in spermatogenesis[J]. Development, 137(19): 3177-3184.
Bleckmann SC, Blendy JA, Rudolph D,etal. 2002. Activating transcription factor 1 and CREB are important for cell survival during early mouse development[J]. Molecular and Cellular Biology, 22(6): 1919-1925.
Borchert GM, Lanier W, Davidson BL. 2006. RNA polymerase Ⅲ transcribes human microRNAs[J]. Nature Structural & Molecular Biology, 13(12): 1097-1101.
Bouhallier F, Allioli N, Lavial F,etal. 2010. Role of miR-34c microRNA in the late steps of spermatogenesis[J]. RNA, 16(4): 720-731.
Bruno IG, Karam R, Huang L,etal. 2011. Identification of a microRNA that activates gene expression by re-pressing nonsense-mediated RNA decay[J]. Molecular Cell, 42(4): 500-510.
Chendrimada TP, Gregory RI, Kumaraswamy E,etal. 2005. TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing[J]. Nature, 436(7051): 740-744.
Corney DC, Flesken-Nikitin A, Godwin AK,etal. 2007. MicroRNA-34b and microRNA-34c are targets of p53 and cooperate in control of cell proliferation and adhesion-independent growth[J]. Cancer Research, 67(18): 8433-8438.
Dai L, Tsai-Morris CH, Sato H,etal. 2011. Testis-specific miRNA-469 up-regulated in gonadotropin-regulated testicular RNA helicase(GRTH/DDX25)-null mice silences transition protein 2 and protamine 2 messages at sites within coding region: implications of its role in germ cell development[J]. The Journal of Biological Chemistry, 286(52): 44306-44318.
Denli AM, Tops BB, Plasterk RH,etal. 2004. Processing of primary microRNAs by the microprocessor complex[J]. Nature, 432(7014): 231-235.
Greenlee AR, Shiao MS, Snyder E,etal. 2012. Deregulated sex chromosome gene expression with male germ cell-specific loss of Dicer1[J]. PLoS ONE, 7(10): e46359.
Gregory RI, Yan KP, Amuthan G,etal. 2004. The microprocessor complex mediates the genesis of microRNAs[J]. Nature, 432(7014): 235-240.
Grishok A, Pasquinelli AE, Conte D,etal. 2001. Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that controlC.elegansdevelopmental timing[J]. Cell, 106(1): 23-34.
Griswold MD, Bishop PD, Kim KH,etal. 1989. Function of vitamin A in normal and synchronized seminiferous tubules[J]. Annals of the New York Academy of Sciences, 564: 154-172.
Han J, Lee Y, Yeom KH,etal. 2004. The Drosha-DGCR8 complex in primary microRNA processing[J]. Genes & Development, 18(24): 3016-3027.
Han J, Lee Y, Yeom KH,etal. 2006. Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex[J]. Cell, 125(5): 887-901.
Hayashi K, Chuva de Sousa Lopes SM, Kaneda M,etal. 2008. MicroRNA biogenesis is required for mouse primordial germ cell development and spermatogenesis[J]. PLoS ONE, 3(3): e1738.
Huszar JM, Pavne CJ. 2013. MicroRNA 146 (Mir146) modulates spermatogonial differentiation by retinoic acid in mice[J]. Biology of Reproduction, 88(1): 15.
Hutvaqner G, McLachlan J, Pasquinelli AE,etal. 2001. A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA[J]. Science, 293(5531): 834-838.
Julaton VT, Reijo Pera RA. 2011. NANOS3 function in human germ cell development[J]. Human Molecular Genetics, 20(11): 2238-2250.
Ketting RF, Fischer SE, Bernstein E,etal. 2001. Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing inC.elegans[J]. Genes & Development, 15(20): 2654-2659.
Khvorova A, Reynolds A, Jayasena SD. 2003. Functional siRNAs and miRNAs exhibit strand bias[J]. Cell, 115(2): 209-216.
Kim VN. 2005. MicroRNA biogenesis: coordinated cropping and dicing[J]. Nature Reviews Molecular Cell Biology, 6(5): 376-385.
Korhonen HM, Meikar O, Yadav RP,etal. 2011. Dicer is required for haploid male germ cell differentiation in mice[J]. PLoS ONE, 6(9): e24821.
Lee RC, Feinbaum RL, Ambros V. 1993. TheC.elegansheterochronic gene lin-4 encodes small rnas with antisense complementarity to lin-14[J]. Cell, 75(5): 843-854.
Lee Y, Ahn C, Han J,etal. 2003. The nuclear RNase Ⅲ Drosha initiates microRNA processing[J]. Nature, 425(6956): 415-419.
Li Y, Wang HY, Wan FC,etal. 2012. Deep sequencing analysis of small non-coding RNAs reveals the diversity of microRNAs and piRNAs in the human epididymis[J]. Gene, 497(2): 330-335.
Liang X, Zhou D, Wei C,etal. 2012. MicroRNA-34c enhances murine male germ cell apoptosis through targeting ATF1[J]. PLoS ONE, 7(3): e33861.
Lin SL, Chang D, Ying SY. 2005. Asymmetry of intronic pre-miRNA structures in functional RISC assembly[J]. Gene, 356: 32-38.
Liu J, Carmell MA, Rivas FV,etal. 2004. Argonaute2 is the catalytic engine of mammalian RNAi[J]. Science, 305(5689): 1437-1441.
Lund E, Guttinger S, Calado A,etal. 2004. Nuclear export of microRNA precursors[J]. Science, 303(5654): 95-98.
Maatouk DM, Loveland KL, McManus MT,etal. 2008. Dicer1 is required for differentiation of the mouse male germline[J]. Biology of Reproduction, 79(4): 696-703.
Mathioudakis N, Palencia A, Kadlec J,etal. 2012. The multiple Tudor domain-containing protein TDRD1 is a molecular scaffold for mouse Piwi proteins and piRNA biogenesis factors[J]. RNA, 18(11): 2056-2072.
Millar AA, Waterhouse PM. 2005. Plant and animal microRNAs: similarities and differences[J]. Functional & Integrative Genomics, 5(3): 129-135.
Moritoki Y, Hayashi Y, Mizuno K,etal. 2014. Expression profiling of microRNA in cryptorchid testes: miR-135a contributes to the maintenance of spermatogonial stem cells by regulating FoxO1[J]. The Journal of Urology, 191(4): 1174-1180.
Niu Z, Goodyear SM, Rao S,etal. 2011. MicroRNA-21 regulates the self-renewal of mouse spermatogonial stem cells[J]. Proceedings of the National Academy of Sciences, 108(31): 12740-12745.
Oatley JM, Brinster RL. 2008. Regulation of spermatogonial stem cell self-renewal in mammals[J]. Annual Review of Cell and Developmental Biology, 24: 263-286.
Olde Loohuis NF, Kos A, Martens GJ,etal. 2012. MicroRNA networks direct neuronal development and plasticity[J]. Cellular and Molecular Life Sciences, 69(1): 89-102.
Olsen PH, Ambros V. 1999. The lin-4 regulatory RNA controls developmental timing inCaenorhabditiselegansby blocking LIN-14 protein synthesis after the initiation of translation[J]. Developmental Biology, 216(2): 671-680.
Papaioannou MD, Pitetti JL, Ro S,etal. 2009. Sertoli cell dicer is essential for spermatogenesis in mice[J]. Developmental Biology, 326(1): 250-259.
Persengiev SP, Green MR. 2003. The role of ATF/CREB family members in cell growth, survival and apoptosis[J].Apoptosis, 8(3): 225-228.
Pillai RS, Bhattacharyya SN, Artus CG. 2005. Inhibition of translational initiation by let-7 microRNA in human cells[J]. Science, 309(5740): 1573-1576.
Pratt AJ, MacRae IJ. 2009. The RNA-induced silencing complex: a versatile gene-silencing machine[J].The Journal of Biological Chemistry, 284(27): 17897-17901.
Romero Y, Meikar O, Papaioannou MD,etal. 2011. Dicer1 depletion in malegerm cells leads to infertility due to cumulative meiotic and spermatogenic defects[J]. PLoS ONE, 6(10): e25241.
Sada A, Hasegawa K, Pin PH,etal. 2012. NANOS2 acts downstream of glial cell line-derived neurotrophic factor signaling to suppress differentiation of spermatogonial stem cells[J]. Stem Cells, 30(2): 280-291.
Schwarz DS, Hutvagner G, Du T,etal. 2003. Asymmetry in the assembly of the RNAi enzyme complex[J]. Cell, 115(2): 199-208.
Shen R, Xie T. 2010. NANOS: a germline stem cell’s guardian angel[J]. Journal of Molecular Cell Biology, 2(2):76-77.
Slack FJ, Basson M, Liu Z,etal. 2000. The lin-41 RBCC gene acts in theC.elegansheterochronic pathway between the let-7 regulatory RNA and the LIN-29 transcription factor[J]. Molecular Cell, 5(4): 659-669.
Suzuki A, Saga Y. 2008. Nanos2 suppresses meiosis and promotes male germ cell differentiation[J].Genes Development, 22(4): 430-435.
Tong MH, Mitchell D, Evanoff R,etal. 2011. Expression of Mirlet7 family microRNAs in response to retinoic acid-induced spermatogonial differentiation in mice[J]. Biology of Reproduction, 85(1): 189-197.
Tong MH, Mitchell DA, McGowan SD,etal. 2012. Two miRNA clusters, Mir-17-92 (Mi-rc1) and Mir-106b-25 (Mirc3), are involved in the regulation of spermatogonial differentiation in mice[J]. Biology of Reproduction, 86(3): 72.
Tscherner A, Gilchrist G, Smith N,etal. 2014. MicroRNA-34 family expression in bovine gametes and preimplantation embryos[J]. Reproductive Biology and Endocrinology, 12: 85.
Tyagi G, Carnes K, Morrow C,etal. 2009. Loss of Etv5 decreases proliferation and RET levels in neonatal mouse testicular germ cells and causesan abnormal first wave of spermatogenesis[J]. Biology of Reproduction, 81(2): 258-266.
Vasudevan S, Tong Y, Steitz JA. 2007.Switching from repression to activation: micro-RNAs can up-regulate translation[J]. Science, 318(5858): 1931-1934.
Wang Y, Medvid R, Melton C,etal. 2007. DGCR8 is essential for microRNA biogenesis and silencing of embryonic stem cell self-renewal[J]. Nature Genetics, 39(3): 380-385.
Westholm JO, Lai EC. 2011. Mirtrons: microRNA biogenesis via splicing[J].Biochimie, 93(11): 1897-1904.
Wightman B, Ha I, Ruvkun G. 1993. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation inC.elegans[J]. Cell, 75(5): 855-862.
Wu J, Bao J, Kim M,etal. 2014. Two miRNA clusters, miR34b/c and miR-449, are essential for normal brain development, motile ciliogenesis, and spermatogenesis[J]. Proceedings of the National Academy of Sciences of the United States of Ameria, 111(28): E2851-7.
Wu Q, Song R, Ortogero N,etal. 2012. The RNase Ⅲ enzyme DROSHA is essential for microRNA production and spermatogenesis[J]. The Journal of Biological Chemistry, 287(30): 25173-25190.
Yang S, Ping P, Ma M,etal. 2014. Generation of haploid spermatids with fertilization and development capacity from human spermatogonial stem cells of cryptorchid patients[J]. Stem Cell Reports, 3(4): 663-675.
Yao C, Liu Y, Sun M,etal. 2015. MicroRNAs and DNA methylation as epigenetic regulators of mitosis, meiosis and spermiogenesis[J]. Reproduction, 150(1): R25-34.
Yi R, Qin Y, Macara IG,etal. 2003. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs[J]. Genes Development, 17(24): 3011-3016.
Yu M, Mu H, Niu Z,etal. 2014. miR-34c enhances mouse spermatogonial stem cells differentiation by targeting Nanos2[J]. Journal of Cellular Biochemistry, 115(2): 232-242.
Yu Z, Raabe T, Hecht NB. 2005. MicroRNA Mirn122a reduces expression of the posttranscriptionally regulated germ cell transition protein 2 (Tnp2) messenger RNA (mRNA) by mRNA cleavage[J]. Biology of Reproduction, 73(3): 427-433.
Zhang X, Zeng Y. 2010. The terminal loop region controls microRNA processing by Drosha and Dicer[J]. Nucleic Acids Research, 38(21): 7689-7697.
Zickler D, Kleckner N. 1998. The leptotene-zygotene transition of meiosis[J].Annual Review of Genetics, 32: 619-754.
Zimmermann C, Romero Y, Warnefors M,etal. 2014. Germ cell-specific targeting of DICER or DGCR8 reveals a novel role for endo-siRNAs in the progression of mammalian spermatogenesis and male fertility[J]. PLoS ONE, 9(9): E107023.
The Roles of MicroRNAs in Mammalian Spermatogenesis
XU Chuanfei, WU Shixin, SUN Lei, CAI Xin*
(College of Life Science and Engineering, Southwest University of Science and Technology,Mianyang, Sichuan Province 621010, China)
MicroRNAs (miRNAs) are single-stranded noncoding RNAs about 20~24 nt in length. It has been suggested that miRNAs function as guide molecules in post-transcriptional regulation by base pairing with target mRNAs, and lead to mRNA cleavage or translational repression. Since the first miRNAs (lin-4 andlet-7 ) discovered inCaenorhabditiselegans, a larger number of miRNAs have been identified from different species in the past 20 years. Along with the application and development of gene cloning, expression and functional analysis in recent years, several evidences suggested that miRNAs were closely related to spermatogenesis by the analysis of miRNA changes in testicular tissue from different animal species. In addition, such miRNA associated proteins as Dicer and Drosha play regulatory roles in pachytene spermatocyte during meiosis as confirmed by a lot of gene-knockout rodent models. This article summarized the recent progress in the studies of synthesis and function mechanism of miRNAs as well as their regulation roles in spermatogenesis.
miRNA; mammal; spermatogenesis; post-transcriptional regulation
2016-04-12 接受日期:2016-07-20
國家自然科學(xué)基金項目(31572396)
徐傳飛(1993—), 男, 碩士研究生, 主要從事動物分子遺傳學(xué)研究, E-mail:1982978434@qq.com
*通信作者Corresponding author, E-mail:caixin2323@126.com
10.11984/j.issn.1000-7083.20160081
Q78
A
1000-7083(2016)05-0789-08