• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Role of calcium-activated potassium channels in neuronal pacemaker activity

    2016-02-16 01:43:16NancyDONGZhongpingFENG
    關(guān)鍵詞:中平離子通道調(diào)節(jié)劑

    Nancy DONG,Zhong-ping FENG

    (Department of Physiology,University of Toronto,1 King′s College Circle, Toronto,Ontario,Canada M5S 1A8)

    ·REVIEW·

    Role of calcium-activated potassium channels in neuronal pacemaker activity

    Nancy DONG,Zhong-ping FENG

    (Department of Physiology,University of Toronto,1 King′s College Circle, Toronto,Ontario,Canada M5S 1A8)

    Spontaneous rhythmic activity of pacemaker neurons in the central nervous system underlies fundamental neurological processes such as locomotion,cognition and circadian rhythm. Among the wide range of ion channels required for its generation,the Ca2+-activated K+(KCa)channels play a prominent role in maintaining physiologically-relevant frequency and pattern of pacemaker activity. Much of our understanding of the functions of KCachannels in pacemaker neurons have been derived from pharmacological studies using channel modulators,such as iberiotoxin and apamin. Despite the significant advances made,recent studies have painted an increasingly complex picture of the effects of widely used KCachannel modulators on unintended targets that may confound our under?standing of their functions.In this review,we discussed the utility and shortcomings of the KCachannel modulators,and highlighted the significance of these findings,because the KCachannel modulators have been used in early clinical trials to treat disorders ranging from Parkinson disease to alcoholism.

    potassium channels,calcium-activated;pacemaker neurons;rhythmic activity;channel modulators

    Pacemaker neurons are capable of generating rhythmic activity in the absence of external inputs[1].They play a key role in many neurological functions,including locomotion,cognition and circadian rhythm[2].The computational advantage of spontaneous firing lies in that both excitatory and inhibitory synaptic inputs can be coded in a timely fashion in changes in the frequency and/or pattern of rhythmic activity.Therefore,the ability to maintain stable and precise rhythmic activity is fundamental to the physiological functions of pacemaker neurons.

    Pacemaker activity arises from an intricate interplay between the complement of ion channels present on the pacemaker neuron membrane, including hyperpolarization cyclic nucleotide(HCN)-activatedchannels[3],Na+leakchannels(NALCN)[4], voltage-gated Ca2+and Na+channels[5],and Ca2+-activated K+(KCa) channels[6]. KCachannels contribute to the repolarization and after-hyperpo?larization(AHP)phases of the action potential, thereby providing the negative feedback mechanism that stabilizes rhythmic activity in pacemaker neurons.Pharmacologicalmodulators ofKCachannels,such as iberiotoxin(IbTX)and periciazine (apamin),have been instrumental in elucidating the physiological functions of the large-conduc?tance(BK) and small-conductance(SK) KCachannels as regulators of pacemaker neuron activity[6]and as potential therapeutic targets in the treatment of neurological disorders[7-8].The goal of this article is to discuss the utility and potential caveats of commonly used pharmaco?logical agents in investigating the physiological function and therapeutic potential of KCachannels as regulators of pacemaker neuron activity.

    1 LARGE-CONDUCTANCE KCaCHANNELS

    1.1Structure and biophysical properties of BK channels

    BK channels are composed of both a tetra?meric α pore-forming subunit[9]and modulatory β subunits[10].Each monomer of the α-subunit, encodedbytheSlo1gene,consistsofan N-terminal transmembrane pore forming region (S0-S6)and a C-terminal cytoplasmic regulatory domain(S7-S10).The S0 domain is required for interaction with β-subunits,which greatly diversify the channel properties.The S1-S4 domains make up the voltage sensor,by virtue of charged amino acid residues in the S2-S4 domains[11-13]. The P-loop is likewise found in between the S5 and S6 domains,and together with the other three subunits to form the pore region that con?tains the signature K+selectivity GYG motif and binding sites for the pore blockers charybdotoxin (ChTX)and IbTX[14-15].The C-terminal cytoplasmic domain can be divided into two regulator of K+conductance domains(RCK1 and RCK2)that each contain one low affinity Ca2+binding site[16-17]. The C-terminaldomains of all four subunits come together to form a″gating ring″[18]that makes Ca2+-dependent activation of BK channels possible.Multiple promoters and splicing variants of the subunits have been identified to give rise to diversity in the structure and properties of the pore forming domain[19].

    The properties of a BK channel can be wideranging depending on the β-subunits associated with it.Currently,four β-subunits have been cloned[20-23]:β1is found in the smooth muscles,β2and β3specifically in neurons,and β4in the brain. The β-subunits associate in equal stoichiometric ratio with monomers of the α-subunits via the S0 segment to significantly modify the gating[24-25], pharmacological[26],and kinetic properties of the channel[27].For example,whereas BK channels containing the α-subunit alone or associated with the β1or β4-subunit do not inactivate,those with β2and β3-subunit show rapid inactivation[22-23].There?fore,careful biochemical characterization of the BK channels under examination is imperative before proceeding onto pharmacological studies.

    BK channels activate rapidly in the coincident presence of membrane depolarization and an intracellular Ca2+concentration>10 μmol·L-1[28]. The ensuing large K+current rapidly repolarizes the action potential and hyperpolarizes the membrane potential by mediating the fast component of the AHP(fAHP).The feedback loop is terminated with equal rapidity when BK channels are deactivated by membrane hyperpolarization and deactivation of voltage-gated Ca2+channels.

    1.2 Pharmacological modulators of BK channels

    As the structure and pharmacological prop?erties of BK channel modulators have been extensively reviewed elsewhere[29-30],only the most commonly used compounds in studying pacemaker neurons will be briefly introduced here.The earliest generation of BK channel blocker is ChTX,a potent yet largely non-selective K+channel blocker that is derived from the venom of the scorpionLeiurus quinquestriatus[31].It is now rarely used due to its additional activity inhibiting the voltage-gated K channels and inter?mediate-conductance KCa(IK)channels.

    Currently two BK channel blockers have been used extensively(Tab.1).IbTX,the most commonly used BK channel blocker,was later isolated from the venom of another species of scorpionsButhus tamulus[32].Like ChTX,IbTX acts by binding to the external opening of BK channels.However,the latter exhibits higher affinity and selectivity for BK channels than the former,possibly due to slight differences in the amino acid make-up and resultant charge[32-33]. One potentially serious pitfall of IbTX is that β4-subunit-containing BK channels are shown to be resistant to it.

    The tremorgenic indole alkaloid paxilline, produced byPenicillium paxilli,is the most widely used non-peptide BK channel blocker,due to itshigh potency,selectivity and reversibility of action[53]. Unlike ChTX and IbTX,paxilline acts on the αsubunit from the cytoplasmic side[54].The recently

    Tab.1 Pharmacology of KCachannel blockers commonly used in studies of central pacemaker neurons in vitro and in vivo

    isolated non-peptidergic BK channel blocker 1-〔1-hexyl-6-(methyloxy)-1H-indazol-3-yl〕-2-methyl-1-propanone(HMIMP)holds considerable promise, as it inhibits both the IbTX-sensitive and-resistant BK channel isoforms at nanomolar range and does not appear to affect human voltage-gated Na+,Ca2+and K+channels[55].

    While activators of BK channels have long been identified,such as the benzoimidazolones NS004 and NS1619,their usefulness is limited because of their poor potency and selectivity[56-57]. Furthermore,these compounds are designed to act at membrane potentials~50-100 mV,which are more positive than the physiological range[58]. To address these shortcomings,the Hollywood group[59]synthesized a family of anthraquinone analogues,named GoSlo-SR,that are capable ofactivating BK channels atphysiological membrane potentials.

    1.3 BK channels regulate central neuronal activities

    As BK channel activity is time-locked to the action potential,itis particularly suited to shaping the spike profile.Indeed,in excised patch recordings of cerebellar Purkinje neurons, a significant amount of BK current is activated during action potential-like waveforms[34].IbTX is the most widely used tool to study the role of BK channels in regulating rhythmic firing frequency in several central pacemaker neuron populations, though with varied results.Currently,the best understood system is arguably the suprachias?matic nucleus(SCN),which is the central circadian pacemaker of the mammalian brain.Spontaneous firing frequency of the SCN neurons is modulated in a diurnal fashion to mark the day/night cycle,i.e.high during the subjective day and low during the subjective night[60].Downstream of the circadian clock genePer1[37],BK channel expression andactivity in SCN neurons peak during the middle of the night phase in order to suppress the frequency of spontaneous firing[38].This circadian pattern of rhythmic activity is blunted when BK channel activity is inhibited by IbTX[38],a result that is replicated in a global BK channel knock?out model[61].

    A more complex picture is seen in the cerebellarPurkinje neurons,which highlights potential caveats of IbTX that should be taken into consideration when interpreting findings.In slice recordings,these neurons exhibit high frequency spontaneous firing(~40-50 Hz)[34].As the sole output neurons of the cerebellar cortex,the Purkinje neurons integrate a myriad of sensory, cortical and vestibular information needed to guide and coordinate voluntary motor behaviour[62]and encode them with high fidelity in the rate and precision of their firing activity.The discharge frequency is found to alternate over a wide range between rates higher and lower than the resting frequency in a consistent temporal relationship with the movement cycle[63].Indeed,recent studies have shown that the firing frequency is tightly controlled on the scale of milliseconds[64].Consistent with the role of BK channels in contributing to the fAHP,in vitrorecordings from acute cerebellar slices show that IbTX reduced the AHP[41]and increased the spontaneous firing activity[34,44].

    Paradoxically,Purkinje neurons of global BK channel knockout animals exhibit reduced spon?taneous activity[65].While developmental compen?sation in the knockout animals is a possibility,it may be prudent to employ multiple BK channel blockers to control for potential off-target effects. Interestingly,the abnormal Purkinje cell firing pattern and ataxic behaviour in BK channel knockout mice were reproduced in wildtype mice byin vivomicroinjection of paxilline into the vermis[66],suggesting that paxilline may be an effective alternative to IbTX.On a related note, an IbTX-resistant but 1-ethyl-2-benzimidazolinone (1-EBIO)-sensitive BK current has recently been identified in Purkinje neurons[67].IbTX-and ChTX-resistant BK channels contain the β4-subunit, whose extracellular loop results in a~1000 fold decrease in toxin association,rendering them insensitive to nanomolar concentrations of these blockers that are normally sufficient to inhibit BK channels[23].The β4-subunit mRNA is abundant in the mammalian brain[23],suggesting that effects of IbTX may not be entirely attributable to inhibition ofBK channels.Furtherinvestigations are required to provide additional evidence.

    1.4 Therapeutic potential of BK channels

    From the evidences summarized above,BK channels are potential drug targets in the treatment of motor and circadian rhythm disorders,such as ataxia,narcolepsy and insomnia.However,rescue of BK channel function in disease states is hindered by the lack of effective channel activators, for the efficacy of GoSlo-SR compounds have yet to be testedin vivo.Conversely,the toxin BK channel blockers are poor drug candidates,for in addition to potential off-target effects,the pepti?dergic nature of ChTX and IbTX means that they are not active orally,have short half-lives and poor blood-brain permeability[29].Nevertheless, paxilline may be a promising target for future studies,as no major side-effects were detected in a study examining its efficacy as a systemicallyadministered anti-convulsant in rodents[68].

    2 SMALL-CONDUCTANCE KCaCHANNELS

    2.1Structure and biophysical properties of SK channels

    Comparatively much more similar to voltagegated K+channels than BK channels,all three members of the SK family,SK1,SK2 and SK3, are homomeric tetramers of 6-transmembrane domain subunits[39].Thus it is the more surprising that SK channels are entirely voltage-independent, for the S4 segment contains only three positively charged residues as compared to many in most voltage-gated channels[69-70]. Instead,they are activated by submicromolar elevation in intracellular Ca2+by virtue of the constitutively bound calmodulin at the C-terminal calmodulin-binding domain (CaMBD)of each subunit[71-72].While the exactmechanism of gating is not yet clear,it is currently believed that Ca2+binding to calmodulin induces a conformational change in the arrangement of the tetramer that is translated into a mechanical force that opens the activation gate[73].This indirect coupling of Ca2+binding to channel opening results in slower activation kinetics as compared to BK channels,so that SK channels are fully open~5 ms after the action potential to mediate the medium AHP(mAHP)that lasts over hundreds of milliseconds[19].

    2.2 Pharmacological modulators of SK channels

    Excellent discussions of SK channel modulators can be found in two recent reviews[74-75],so only those most commonly used in studies of pacemaker neurons will be summarized here(Tab.1,channel blockers and Tab.2,channel activators).

    The isolation of apamin,from the honeybee venom,as a selective blocker of SK2 and SK3 channels has been of immeasurable significance in elucidating the physiological function of SK channels[69,86].Initially believed to be a simple pore blocker based on the finding that several critical amino acid residues in the outer pore region are critical to sensitivity to apamin[40],there is recent evidence that apamin binding to the outer pore causes a conformational change in the selectivity pore that prevents K+conductance[87]. However,SK3 channels have been shown to be less sensitive than SK2 channels to blockade by apamin[88].It may therefore be advisable to prop?erly characterize the biochemical profile of the SK channel under examination and employ multiple pore blockers to control for theeffects of subtype specificity.To more selectively manipulate SK2 channels,the synthetic peptide toxin Lei Dab7 may be employed[43,52].

    Tab.2 Pharmacology of KCachannel activators commonly used in studies of central pacemaker neurons in vitro and in vivo

    Both 1-EBIO and chlorzoxazone(CZX)potentiate SK channel activity by increasing channel open probability[76].Interestingly,CZX is already an FDA-approved central muscle relaxant,making it an attractive drug candidate in modulation of SK channels in pacemaker neurons.Nevertheless, the lack ofspecificity/selectivity remains a challenge as 1-EBIO activates SK1,SK2,and SK3 channels equally[89]and both 1-EBIO and CZX activate IK channels,which are not expressed in neurons,in a concentration-dependent manner[76]. The most recently discovered activator,CyPPA, is ineffective against IK channels but cannot differentiate between SK2 and SK3 subtypes[80].

    A recent study reported that the transient receptor potential melastatin member 7(TRPM7) channel is inhibited by SK channel activators derived from plant alkaloid quinine,including CyPPA,NS8593,SKA31 and UCL1684[81]. TRPM7channelsareubiquitouslyexpressed and implicated in a wide range of physiological functions including synaptic neurotransmission, intestinal peristalsis,regulation of vascular tone, bone growth and embryonic development[90],thus the effects of the plant alkaloid SK channel activators on related functions should be interpreted with caution.There is considerable promise in the CyPPA structural derivative NS13001,which is shown to be highly selective of the SK3 subtype and exhibit none of the off-target effects of CyP?PA in the micromolarconcentration range[43](Tab.2).

    2.3 SK channels regulate pacemaker neuronal activities

    In comparison with BK channels,the greater variety and selectivity of the SK channel modulators have allowed for better characterization of the role of SK channels in regulating pacemaker neuron activity.Through its contribution to the mAHP,SK channels control the firing threshold and thus regulate single spike in pacemaker cells.Its role is critical as a consistent mAHP after each spike ensures both that voltage-gated ion channels recover during each cycle and that cellular excitability remains low enough so random synaptic noises would not alter firing pattern.In addition to the frequency of firing,the precision/ regularity of rhythmic activity is another important component of the physiological functions of pace?maker neurons.

    In cerebellar Purkinje neurons,precise rhythmic firing is required to accurately reflect the strength and timing of excitatory and inhibitory synaptic inputs that shape the final output of the cerebellum. In addition to BK channels,SK channels are highly expressed in cerebellar Purkinje neurons[91]. Pharmacological blockade of SK channels by apamin[6,35]or UCL1684[92]both resulted in decreased regularity of tonic spiking in Purkinje neurons.Enhancement of SK channel activity using 1-EBIO,riluzole or CZX restores regular Purkinje neuron firing in mice with either SK channel knockout[93]or with mutations in P/Q-type voltage-gated Ca2+channels[78],to which SK channels are closely coupled.

    Spontaneously active dopaminergic(DA) neurons found in the substantia nigra pars com?pacta(SNc)and ventral tegmental area(VTA) exhibit two possible modes of firing,regular simple spiking and bursting.Changes in the firing patterns of these DA neurons impact the spatiotemporal profile of dopamine release in different regions of the brain,thereby affecting motor, motivation and memory processes in both physi?ological and pathological conditions,such as schizophrenia and Parkinson′s disease.Inhibition of SK channels in these neurons by apamin not only disrupts the precision of tonic firing but also causes transition to burst firing;and the effects of SK channel blockers were reversed by SK channel activators[46,48,94-95].Multiple subtypes of SK channels are expressed in these neurons,with SK3 channels being the most abundant[96].Deignan,et al[47]demonstrated SK2 and SK3 channels contribute differently to the pacemaker activity of SNc DA neurons,where the former is found primarily in the distal dendrites and regulates theprecision of spike firing,and the latter is mainly somatic and modulates the frequency of firing. While specific blockers to the channel subtypes are needed to elucidate the subtype-specific function of SK channels,it would be of interest to see if NS13001 can be used to selectively modulate SK3 channels in midbrain DA neurons.

    Membrane depolarization and irregular firing due blockade of SK channels have also been reported in several other pacemaker neuron populations,such as the subthalamic nucleus[49], dorsalraphe nuclei[51]and externalglobus pallidus[50],suggesting that SK channels may play a conserved role as regulatorofpacemaker activity in the central nervous system.

    2.4 Therapeutic potential of SK channels

    Several SK channel modulators are currently showing promise as drug candidates.In the cerebellum,abnormal Purkinje neuron pacemaker activity and thus loss of its information encoding ability results in ataxia,a feature of many conditions characterized by gaitdisturbances,postural instability and degraded fine motor coordination. In rodent models of spinocerebellar ataxia types 2[43]and 3[97],episodic ataxia type 2[78,82],and ataxia caused by CACNA1A mutation[79],SK channel activators are shown to be able to restore regular Purkinje neuron pacemaker activity and improve motor performancein vivo.Most recently,a randomized,double-blind,placebo-controlled trial found that riluzole,another FDA-approved muscle relaxant and SK channel activator,can alleviate motor symptoms in some human patients of spinocerebellar ataxia or Friedreich′s ataxia with few side effects[85].

    The basal ganglia are also critically involved in motor control,such that their neurodegeneration results in Parkinson′s disease,a progressive disorderthataffects generation ofvoluntary movements.Whereas neurons in both the SNc and subthalamic nucleus exhibit spontaneous rhythmic,single-spike activity in healthy subjects, burst-firing activity predominates in patients with Parkinson′s disease[98-99].Reduction in SK channel activity is hypothesized to underlie such a change,as they play a fundamental role in main?taining regular spiking behaviour and oppose the transition to burst firing[48-49].Consistent with such an idea,it has recently been shown that apamin alleviates some motor deficits in a rat model of Parkinson′s disease[42].

    In addition to motor processes,midbrain DA neurons also play an important role in cognitive functions such as memory,reward and motivation. The KCNN3 gene,which encodes the SK3 channel,contains a polymorphic CAG repeat in the amino-terminal cording region whose length has been implicated in schizophrenia[100-101]and anorexia nervosa[102].SK channels may also be a drug target in the treatment of addiction,for it has recently been shown that the systemic administration of the FDA-approved muscle relaxant CZX reduces excessive alcohol intake in rats[7].

    Nevertheless,the potential for widespread side-effects is a concern for systemically adminis?tered SK channel modulators.All three subtypes of SK channels are widely expressed throughout the brain[103-104]and the body,including vascular endothelium,skeletal muscle,smooth muscle, and cardiac myocytes[105].In addition,as mentioned above,the SK channel activators 1-EBIO and CZX also potentiate IK channel activity due to their structural similarities[76-77].While IK channels are not expressed in neurons,they are widely expressed in peripheral tissues,such as the colon,placenta,lungs and pancreas.Indeed, reported side effects of orally administered CZX and riluzole are mild but wide ranging,including nausea,diarrhea,hypertension,and somno?lence[106].Memory impairments are also possible, given studies showing that transgenic animals over-expressing SK2 channels exhibitimpaired performance in hippocampal-dependent memory tasks[107-108]and the systemic administration of CyPPA impairs encoding of object recognition memory in mice[109].

    3 CONCLUSION

    Pharmacologicalactivators and blockershave been instrumental in advancing our under?standing of the role of KCachannels as regulators of pacemaker neuron activity in the central nervous system.Nevertheless,as with all experimental approaches,knowledge of their limitations is necessary for proper interpretation of the findings. This is all the more important now as several of these compounds are being tested in human clinical trials.The discovery of increasingly more potent and selective KCachannel modulators holds great promise for unraveling the mechanism and physiological functions of pacemaker neuron activity in future studies.

    REFERENCES:

    [1] H?usserM,RamanIM,OtisT,SmithSL,Nelson A,du Lac S,et al.The beat goes on:spontaneous firing in mammalian neuronal microcircuits[J].J Neurosci,2004,24(42):9215-9219.

    [2] Ramirez JM,Tryba AK,Pena F.Pacemaker neurons and neuronal networks:an integrative view[J].Curr Opin Neurobiol,2004,14(6):665-674.

    [3] Atkinson SE,Maywood ES, Chesham JE,Colwell CS,Hastings MH,Williams SR.Cyclic AMP signaling control of action potential firing rate and molecular circadian pacemaking in the suprachiasmatic nucleus[J].J Biol Rhythms,2011,26(3):210-220.

    [4] Lu TZ,F(xiàn)eng ZP.A Sodium leak current regu?lates pacemaker activity of adult central pattern generator neurons in Lymnaea stagnalis[J]. PLoS One,2011,6(4):384-384.

    [5] Jackson AC,Yao GL,Bean BP.Mechanism of spontaneous firing in dorsomedial suprachias?matic nucleus neurons[J].J Neurosci,2004,24(37):7985-7998.

    [6] Edgerton JR,Reinhart PH.Distinct contributions of small and large conductance Ca2+-activated K+channels to rat Purkinje neuron function[J].J Physiol-London,2003,548(1):53-69.

    [7] Hopf FW, Simms JA, Chang SJ,Seif T,Bartlett SE,Bonci A.Chlorzoxazone,an SK-type potassium channel activator used in humans,reduces excessive alcohol intake in rats[J].Biol Psychiatry,2011,69(7):618-624.

    [8] Ristori G,Romano S,Visconti A,Cannoni S,Spadaro M,F(xiàn)rontaliM,etal.Riluzolein cerebellar ataxia:a randomized,double-blind,placebo-controlled pilot trial[J].Neurology,2010,74(10):839-845.

    [9] Atkinson NS,Robertson GA,Ganetzky B.A component of calcium-activated potassium channels encoded by the Drosophila-slo locus[J].Science,1991,253(519):551-555.

    [10] Shen KZ,Lagrutta A,Davies NW,Standen NB,Adelman JP,North RA.Tetraethylammonium block of slowpoke calcium-activated potassium channels expressed in Xenopus oocytes:evidence for tetrameric channel formation[J]. Pflugers Arch,1994,426(5):440-445.

    [11] Papazian DM,Timpe LC,Jan YN,Jan LY. Alteration ofvoltage-dependence ofshaker potassium channelbymutationsin the S4 sequence[J].Nature,1991,349(6307):305-310.

    [12] Papazian DM,Shao XM,Seoh SA,Mock AF,Huang YA.Electrostatic interactions of S4 voltage sensor in shaker K+channel[J].Neuron,1995,14(6):1293-1301.

    [13] Seoh SA,Sigg D,Papazian DM,Bezanilla F. Voltage-sensing residues in the S2 and S4 segments of the shaker K+channel[J].Neuron,1996,16(6):1159-1167.

    [14] Mullmann TJ, MunujosP, Garcia ML,Giangiacomo KM.Electrostatic mutations in iberiotoxin as a unique tool for probing the electrostatic structure of the maxi-K channel outer vestibule[J].Biochemistry,1999,38(8):2395-2402.

    [15] Vergara C,Moczydlowski E,Latorre R.Conduc?tion,blockade and gating in a Ca2+-activated K+channel incorporated into planar lipid bilayers[J].Biophys J,1984,45(1):73-76.

    [16] Schreiber M,Salkoff L.A novel calcium-sensing domain in the BK channel[J].Biophys J,1997,73(3):1355-1363.

    [17] Xia XM,Zeng XH,CJ L.Multiple regulatory sites in large-conductance calcium-activated potassium channels[J].Nature,2002,418(6900):880-884.

    [18] Yuan P,Leonetti MD,Pico AR,Hsiung Y,Mackinnon R.Structure of the human BK channel Ca2+-activation apparatus at 3.0 angstr?m reso?lution[J].Science,2010,329(5988):182-186.

    [19] Lancaster B,Nicoll RA.Properties of two calciumactivated hyperpolarizations in rat hippocampal neurones[J].J Physiol,1987,389(1987):187-203.

    [20] KnausHG,F(xiàn)olanderK,Garcia-CalvoM,Garcia ML,Kaczorowski GJ,Smith M,et al. Primary sequence and immunological character?ization of beta-subunit of high conductance Ca2+-activated K+channel from smooth muscle[J].J Biol Chem,1994,269(25):17274-17278.

    [21] Brenner R,Chen QH,Vilaythong A,Toney GM,Noebels JL,Aldrich RW.BK Channel beta4 subunit reduces dentate gyrus excitability and protects against temporal lobe seizures[J].Nat Neurosci,2005,8(12):1752-1759.

    [22] Wallner M,Meera P,Toro L.Molecular basis of fast inactivation in voltage and Ca2+-activated K+channels:A transmembrane beta-subunit homolog[J].Proc Natl Acad Sci USA,1999,96(7):4137-4142.

    [23] Meera P,Wallner M,Toro L.A neuronal beta subunit(KCNMB4)makes the large conduc?tance,voltage-and Ca2+-activated K+channel resistant to charybdotoxin and iberiotoxin[J].P Natl Acad Sci Proc USA,2000,97(10):5562-5567.

    [24] Cox DH,Cui J,Aldrich RW.Allosteric gating of a large conductance Ca-activated K+channel[J].J Gen Physiol,1997,110(3):257-281.

    [25] Wallner M,Meera P,Ottolia M,Kaczorowski GJ,Latorre R,Garcia ML,et al.Characterization of and modulation by a beta-subunit of a human maxi KCachannel cloned from myometrium[J]. Receptors Channels,1995,3(3):185-199.

    [26] Meera P,Jiang ZTL,Wallner M.A calcium switch for the functional coupling between alpha(hslo)and beta subunits(Kv,cabeta)of maxi K channels[J].Febs Lett,1996,382(1-2):84-88.

    [27] Sah P,F(xiàn)aber ES.Channels underlying neuronal calcium-activated potassium currents[J].Prog Neurobiol,2002,66(5):345-353.

    [28] Pallotta BS.Calcium-activated potassium channels in rat muscle inactivate from a short-duration open state[J].J Physiol,1985,363(1):501-516.

    [29] Nardi A,Olesen SP.BK Channel modulators:a comprehensive overview[J].Curr Med Chem,2008,15(11):1126-1146.

    [30] Yu M,Liu SL,Sun PB,Pan H,Tian CL,Zhang LH.Peptide toxins and small-molecule blockers of BK channels[J].Acta Pharmacol Sin,2016,37(1):56-66.

    [31] Miller C,Moczydlowski E,Latorre R,Phillips M. Charybdotoxin,a protein inhibitor of single Ca2+-activated K+channels from mammalian skeletal muscle[J].Nature,1985,313(6000):316-318.

    [32] Galvez A,Gimenez-Gallego G,Reuben J P, Roy-Contancin L,F(xiàn)eigenbaum P,Kaczorowski GJ,etal.Purification and characterization ofa unique,potent,peptidyl probe for the high conductance calcium-activated potassium channel from venom of the scorpion Buthus tamulus[J]. J Biol Chem,1990,265(19):11083-11090.

    [33] Candia S,Garcia ML,Latorre R.Mode of action of iberiotoxin,a potent blocker of the large conductance Ca2+-activated K+channel[J]. Biophys J,1992,63(2):583-590.

    [34] Womack MD,Khodakhah K.Characterization of large conductance Ca2+-activated K+channels in cerebellar Purkinje neurons[J].Eur J Neurosci,2002,16(7):1214-1222.

    [35] Womack MD,Khodakhah K.Dendritic control of spontaneous bursting in cerebellar Purkinje cells[J].J Neurosci,2004,24(14):3511-3521.

    [36] Womack MD,Carolyn C,Kamran K.Calciumactivated potassium channels are selectively coupled to P/Q-type calcium channels in cerebellar Purkinje neurons[J].J Neurosci,2004,24(40):8818-8822.

    [37] Takashi K,Block GD,Colwell CS.The circadian clock GenePeriod1 connects the molecular clock to neural activity in the suprachiasmatic nucleus[J].ASN Neuro,2015,7(6):e103309.

    [38] Pitts GR,Ohta H,Mcmahon DG.Daily rhythmicity of large-conductance Ca2+-activated K+currents in suprachiasmatic nucleus neurons[J].Brain Res,2006,1071(1):54-62.

    [39] K?hler M,Hirschberg B,Bond CT,Kinzie JM,Marrion NV,Maylie J,et al.Small-conductance,calcium-activated potassium channels from mammalian brain[J].Science,1996,273(5282):1709-1714.

    [40] Ishii TM,Maylie J,Adelman JP.Determinants of Apamin and d-tubocurarine block in SK potassium channels[J].J Biol Chem,1997,272(37):23195-23200.

    [41] Teshima K,Kim SH,Allen CN.Characterization of an apamin-sensitive potassium currentin suprachiasmatic nucleus neurons[J].Neuroscience,2003,120(1):65-73.

    [42] Maurice N,Deltheil T,Melon C,Degos B,Mourre C,Amalric M,et al.Bee venom alleviates motor deficits and modulates the transfer of cortical information through the basal ganglia in rat models of Parkinson′s disease[J].PLoS One,2015,10(11):e0142838.

    [43] Kasumu AW,Hougaard C,Rode F,Jacobsen TA,Sabatier JM,Eriksen BL,et al.Selective positive modulator of calcium-activated potassium channels exerts beneficial effects in a mouse model of spinocerebellar ataxia type 2[J].Chem Biol,2012,19(10):1340-1353.

    [44] Womack MD,Hoang C,Khodakhah K.Large conductance calcium-activated potassium channels affect both spontaneous firing and intracellular calcium concentration in cerebellarPurkinje neurons[J].Neuroscience,2009,162(4):989-1000.

    [45] Karina A, Kamran K.Selective regulation of spontaneous activity of neurons of the deep cerebellar nuclei by N-type calcium channels in juvenile rats[J].J Physiol,2008,586(10):2523-2538.

    [46] Wolfart J,Neuhoff H, Franz O, Roeper J. Differential expression of the small-conductance,calcium-activated potassium channelSK3 is critical for pacemaker control in dopaminergic midbrain neurons[J].J Neurosci,2001,21(10):3443-3456.

    [47] Deignan J,LujánR,BondC,RiegelA,Watanabe M,Williams JT,et al.SK2 and SK3 expression differentially affect firing frequency and precision in dopamine neurons[J].Neurosci?ence,2012,217(2012):67-76.

    [48] Ji H,Shepard PD.SK Ca2+-activated K+Channel ligands alter the firing pattern of dopaminecontaining neurons in vivo[J].Neuroscience,2006,140(2):623-633.

    [49] Hallworth NE,Wilson CJ,Bevan MD.Apaminsensitive small conductance calcium-activated potassium channels, through theirselective coupling to voltage-gated calcium channels,are critical determinants of the precision,pace,and pattern ofaction potentialgeneration in rat subthalamic nucleus neurons in vitro[J].J Neurosci,2003,23(23):7525-7542.

    [50] Deister CA,Chan CD.Calcium-activated SK channels influence voltage-gated ion channels to determine the precision of firing in globus pallidus neurons[J].J Neurosci,2009,29(26):8452-8461.

    [51] Rouchet N,Waroux O,Lamy C,Massotte L,Scuvée-Moreau J,Liégeois JF,et al.SK channel blockade promotes burst firing in dorsal raphe serotonergic neurons[J].Eur J Neurosci,2008,28(6):1108-1115.

    [52] Shakkottai VG,Regaya I,Wulff H,F(xiàn)ajloun Z,Tomita H,F(xiàn)athallah M,et al.Design and characterization of a highly selective peptide inhibitor ofthe smallconductance calciumactivated K+channel,SkCa2[J].J Biol Chem,2001,276(46):43145-43151.

    [53] KnausHG, McmanusOB, Lee SH,Schmalhofer WA,Garcia-Calvo M,Helms LM,et al.Tremorgenic indole alkaloids potently inhib?it smooth muscle high-conductance calcium-acti?vated potassium channels[J].Biochemistry,1994,33(19):5819-5828.

    [54] DefariasFP, Carvalho MF, Lee SH,Kaczorowski GJ,Suarez-Kurtz G.Effects of the K+channel blockers paspalitrem-C and paxilline on mammalian smooth muscle[J].Eur J Pharmacol,1996,314(1-2):123-128.

    [55] Zeng H,Gordon EZ,Lozinskaya I,Willette R,Xu X.1-〔1-Hexyl-6-(methyloxy)-1H-indazol-3-yl〕-2-methyl-1-propanone,a potent and highly selective small molecule blocker of the largeconductance voltage-gated and calcium-depen?dent K+channel[J].J Pharmacol Exp Ther,2008,327(1):168-177.

    [56] Gribkoff VK,Lum-Ragan JT,Boissard CG,Post-Munson DJ,Meanwell NA,Starrett JE,et al.Effects of channel modulators on cloned large-conductance calcium-activated potassium channels[J].Mol Pharmacol,1996,50(1):206-217.

    [57] Dérand R,Bulteau-Pignoux L,Becq F.Compar?ative pharmacology of the activity of wild-type and G551D mutated CFTR chloride channel:effect of the benzimidazolone derivative NS004[J].J Membr Biol,2003,194(2):109-117.

    [58] Bentzen BH,Nardi A,Calloe K,Madsen LS,Olesen SP,Grunnet M.The small molecule NS11021 is a potent and specific activator of Ca2+-activated big-conductance K+channels[J]. Mol Pharmacol,2007,72(4):1033-1044.

    [59] Roy S,Morayo Akande A,Large RJ,Webb TI,Camarasu C,Sergeant GP,et al.Structureactivity relationships of a novel group of largeconductance Ca2+-activated K+(BK)channel modulators:the GoSlo-SR family[J].Chem Med Chem,2012,7(10):1763-1769.

    [60] Schwartz WJ.Further evaluation of the tetrodo?toxin-resistant circadian pacemaker in the supra?chiasmatic nuclei[J].J Biol Rhythms,1991,6(2):149-158.

    [61] Kent J,Meredith AL.BK channels regulate spon?taneous action potential rhythmicity in the supra?chiasmatic nucleus[J].PLoS One,2008,3(12):e3884.

    [62] Ito M.The modifiable neuronal network of the cerebellum[J].Jpn J Physiol,1984,34(5):781-792.

    [63] Thach WT.Discharge of Purkinje and cerebellar nuclear neurons during rapidly alternating arm movements in the monkey[J].J Neurophysiol,1968,31(5):785-797.

    [64] Person AL,Raman IM.Synchrony and neural coding in cerebellar circuits[J].Front Neural Circuits,2012,6(50):97.

    [65] Sausbier M,Hu H,Arntz C,F(xiàn)eil S,Kamm S,Adelsberger H,et al.Cerebellar ataxia and Purkinje cell dysfunction caused by Ca2+-activated K+channel deficiency[J].Proc Natl Acad Sci USA,2004,101(25):9474-9478.

    [66] Cheron G,Sausbier M,Sausbier U,Neuhuber W,Ruth P,Dan B,et al.BK channels control cerebellar Purkinje and Golgi cell rhythmicity in vivo[J].PLoS One,2009,4(11):e7991.

    [67] Benton MD,Lewis AH,Bant JS,Raman IM. Iberiotoxin-sensitive and-insensitive BK currents in Purkinje neuron somata[J].J Neurophysiol,2013,109(10):2528-2541.

    [68] Sheehan JJ,Benedetti BL,Barth AL.Anticon?vulsant effects of the BK-channel antagonist paxilline[J].Epilepsia,2009,50(4):711-720.

    [69] Blatz AL,Magleby KL.Single apamin-blocked Ca-activated K+channels of small conductance in cultured rat skeletal muscle[J].Nature,1986,323(690):718-720.

    [70] Hirschberg B,Maylie J,Adelman JP,Marrion NV.Gating of recombinant small-conductance Ca-activated K+channels by calcium[J].J Gen Physiol,1998,111(4):565-581.

    [71] Xia XM,F(xiàn)akler B,Rivard A,Wayman G,Johnson-Pais T,Keen JE,et al.Mechanism of calcium gating in small-conductance calciumactivated potassium channels[J].Nature,1998,395(671):503-507.

    [72] Keen JE,Khawaled R,F(xiàn)arrens DL,Neelands T,Rivard A,Bond CT,et al.Domains responsible for constitutive and Ca2+-dependent interactions between calmodulin and small conductance Ca2+-activated potassium channels[J].J Neurosci,1999,19(20):8830-8838.

    [73] Schumacher MA,Crum M,Miller MC.Crystal structures of apocalmodulin and an apocalmodulin/ SK potassium channel gating domain complex[J].Structure,2004,12(5):849-860.

    [74] Christophersen P,Wulff H.Pharmacological gating modulation of small-and intermediate-conduc?tance Ca2+-activated K+channels(KCa2.x and KCa3.1)[J].Channels,2015,9(6):336-343.

    [75] Cui M,Qin GR,Yu KQ,Bowers M.Targeting the small-and intermediate-conductance Ca2+-activated potassium channels:the drug-binding pocket at the channel/calmodulin interface[J]. Neurosignals,2014,22(2):65-78.

    [76] Syme CA,Gerlach AC,Singh AK,Devor DC. Pharmacological activation of cloned intermediateand small-conductance Ca2+-activated K+channels[J].Am J Physiol Cell Physiol,2000,278(3):C570-C581.

    [77] Lappin SC,Dale TJ,Brown JT,Trezise DJ,Davies CH.Activation of SK channels inhibits epileptiform bursting in hippocampal CA3 neurons[J].Brain Res,2005,1065(1065):37-46.

    [78] Walter JT,Alvina K,Womack MD,Chevez C,Khodakhah K.Decreases in the precision of Purkinje cellpacemaking cause cerebellar dysfunction and ataxia[J].Nat Neurosci,2006,9(3):389-397.

    [79] Gao Z,Todorov B,Barrett CF,Van Dorp S,F(xiàn)errari MD,Van Den Maagdenberg AM,et al. Cerebellarataxia by enhanced Ca(V)2.1 currents is alleviated by Ca2+-dependent K+-channel activators in Cacna1a(S218L)mutant mice[J]. J Neurosci,2012,32(44):15533-15546.

    [80] Hougaard C, Eriksen BL, J?rgensen S,Johansen TH,Dyhring T,Madsen LS,et al. Selective positive modulation of the SK3 and SK2 subtypes of small conductance Ca2+-activated K+channels[J].Br J Pharmacol,2007,151(5):655-665.

    [81] ChubanovV,MederosYSchnitzlerM,Mei?nerM,Sch?fer S,Abstiens K,Hofmann T,et al.Natural and synthetic modulators of SK(Kca2)potassium channels inhibit magnesium-dependent activity ofthe kinase-coupled cation channel TRPM7[J].Br J Pharmacol,2012,166(4):1357-1376.

    [82] Alvi?a K,Khodakhah K.KCachannels as thera?peutic targets in episodic ataxia type-2[J].J Neurosci,2010,30(21):7249-7257.

    [83] Str?baek D,Teuber L,J?rgensen TD,Ahring PK,Kjaer K,Hansen RS,et al.Activation of human IK and SK Ca2+-activated K+channels by NS309(6,7-dichloro-1H-indole-2,3-dione 3-oxime)[J].Biochim Biophys Acta,2004,1665(1-2):1-5.

    [84] Cao YJ,Dreixler JC,Couey JJ,Houamed KM. Modulation of recombinant and native neuronalSK channels by the neuroprotective drug riluzole[J].Eur J Pharmacol,2002,449(1-2):47-54.

    [85] Romano S,Coarelli G,Marcotulli C,Leonardi L,Piccolo F,Spadaro M,et al.Riluzole in patients with hereditary cerebellar ataxia:a randomised,double-blind,placebo-controlled trial[J].Lancet Neurol,2015,14(10):985-991.

    [86] Habermann E.Apamin[J].Pharmacol Ther,1984,25(2):255-270.

    [87] Lamy C,Goodchild SJ,Weatherall KL,Jane DE,Liégeois JF,Seutin V,et al.Allosteric block of KCa2 channels by apamin[J].J Biol Chem,2010,285(35):27067-27077.

    [88] Pedarzani P,Stocker M.Molecular and cellular basis of small-and intermediate-conductance,calcium-activated potassium channel function in the brain[J].Cell Mol Life Sci,2008,65(20):3196-3217.

    [89] PedarzaniP, Mccutcheon JE, RoggeG,Jensen BS,Christophersen P,Hougaard C,et al. Specific enhancement of SK channel activity selectively potentiates the afterhyperpolarizing currentⅠ(AHP)and modulates the firing properties of hippocampal pyramidal neurons[J].J Biol Chem,2005,280(50):41404-41411.

    [90] Yee NS,Kazi AA,Yee RK.Cellular and devel?opmentalbiologyof TRPM7 channel-kinase:implicated roles in cancer[J].Cells,2014,3(3):751-777.

    [91] Hosy E,Piochon C,Teuling E,Rinaldo L,Hansel C.SK2 channel expression and function in cerebellar Purkinje cells[J].J Physiol,2011,589(Pt14):3433-3440.

    [92] Kaffashian M,Shabani M,Goudarzi I,Behzadi G,Zali A,Janahmadi M.Profound alterations in the intrinsic excitability of cerebellar Purkinje neurons following neurotoxin 3-acetylpyridine(3-AP)-induced ataxia in rat:new insights into the role of small conductance K+channels[J]. Physiol Res,2011,60(2):355-365.

    [93] Shakkottai VG,Chou CH,Oddo S,Sailer CA,Knaus HG,Gutman GA,et al.Enhanced neuronal excitability in the absence of neurodegeneration induces cerebellar ataxia[J].J Clin Invest,2004,113(4):582-590.

    [94] Wolfart J,Roeper J.Selective coupling of T-type calcium channels to SK potassium channels prevents intrinsic bursting in dopaminergic midbrain neurons[J].J Neurosci,2002,22(9):3404-3413.

    [95] Waroux O,Massotte L,Alleva L,Graulich A,Thomas E,Liégeois JF,et al.SK channels control the firing pattern of midbrain dopaminergic neurons in vivo[J].Eur J Neurosci,2005,22(12):3111-3121.

    [96] Tacconi S,Carletti R,Bunnemann B,Plumpton C,Merlo Pich E,Terstappen GC.Distribution of the messenger RNA for the small conductance calciumactivated potassium channel SK3 in the adult rat brain and correlation with immunoreactivity[J]. Neuroscience,2001,102(1):209-215.

    [97] Shakkottai VG,do Carmo Costa M,Dell′Orco JM,Sankaranarayanan A,Wulff H,Paulson HL. Early changes in cerebellar physiology accompany motor dysfunction in the polyglutamine disease spinocerebellar ataxia type 3[J].J Neurosci,2011,31(36):13002-13014.

    [98] Schiemann J,Schlaudraff F,Klose V,Bingmer M,Seino S,Magill PJ,et al.K-ATP channels in dopamine substantia nigra neurons control bursting and novelty-induced exploration[J].Nat Neurosci,2012,15(9):1272-1280.

    [99] Zaghloul KA,BlancoJA,WeidemannCT,Mcgill K,Jaggi JL,Baltuch GH,et al.Human substantia nigra neurons encode unexpected financial rewards[J].Science,2009,323(5920):1496-1499.

    [100] Ivkovic′M,Rankovic′V,Tarasjev A,Orolicki S,Damjanovic′A,Paunovic′VR,et al.Schizophrenia and polymorphic CAG repeats array of calciumactivated potassium channel(KCNN3)gene in Serbian population[J].Int J Neurosci,2006,116(2):157-164.

    [101] Grube S,Gerchen MF,Adamcio B,Pardo LA,Martin S,Malzahn D,et al.A CAG repeat poly?morphism of KCNN3 predicts SK3 channel function and cognitive performance in schizophrenia[J]. EMBO Mol Med,2011,3(6):309-319.

    [102] Koronyo-Hamaoui M,Gak E,Stein D,F(xiàn)risch A,Danziger Y,Leor S,et al.CAG repeat polymor?phism within the KCNN3 gene is a significant contributor to susceptibility to anorexia nervosa:a case-control study of female patients and several ethnic groups in the Israeli Jewish population[J].Am J Med Genet B Neuropsychiatr Genet,2004,131B(1):76-80.

    [103] Sailer CA,Hu H,Kaufmann WA,Trieb M,Schwarzer C,Storm JF,et al.Regional differ?ences in distribution and functional expression of small-conductance Ca2+-activated K+channels in ratbrain[J].J Neurosci,2002,22(22):9698-9707.

    [104] SailerCA,KaufmannWA,MarksteinerJ,Knaus HG.Comparative immunohistochemical distribution ofthree small-conductance Ca2+-activated potassium channel subunits,SK1,SK2,and SK3 in mouse brain[J].Mol Cell Neurosci,2004,26(3):458-469.

    [105] Ledoux J,Werner ME,Brayden JE,Nelson MT.Calcium-activated potassium channels and the regulation of vascular tone[J].Physiology,2006,21(1):69-78.

    [106] Bensimon G,Doble A.The tolerability of riluzole in the treatment of patients with amyotrophic lateral sclerosis[J].Expert Opin Drug Saf,2004,3(6):525-534.

    [107] HammondRS,BondCT,StrassmaierT, Ngo-Anh TJ, Adelman JP, Maylie J, et al. Small-conductance Ca2+-activated K+channel type 2(SK2)modulates hippocampal learning,memory,and synaptic plasticity[J].J Neurosci,2006,26(6):1844-1853.

    [108] Stackman RW,Bond CT,Adelman JP.Contex?tual memory deficits observed in mice overex?pressing smallconductance Ca2+-activated K+type 2(KCa2.2,SK2)channels are caused by an encoding deficit[J].Learn Mem,2008,15(4):208-213.

    [109] Vick KA,Michael G,Stackman RW.In vivo pharmacological manipulation of small conduc?tance Ca2+-activated K+channels influences motor behavior,object memory and fear conditioning[J].Neuropharmacology,2010,58(3):650-659.

    鈣離子激活鉀通道對(duì)起搏神經(jīng)元活性的作用

    Nancy DONG,馮中平

    (Department of Physiology,University of Toronto,1 King′s College Circle,Toronto,Ontario,Canada M5S 1A8)

    中樞起搏神經(jīng)元的自發(fā)節(jié)律活動(dòng)是神經(jīng)功能的基礎(chǔ),這些神經(jīng)功能例如體位移動(dòng),晝夜節(jié)律和認(rèn)識(shí)知覺。神經(jīng)元的自發(fā)節(jié)律活動(dòng)的生成涉及多種離子通道,鈣離子激活鉀通道(KCa通道)在維持生理性起博頻率和規(guī)律中起著的突出的作用。根據(jù)對(duì)iberiotoxin和蜂毒明肽類的KCa通道調(diào)節(jié)藥物的藥理研究,我們對(duì)KCa通道在起搏神經(jīng)元功能中的作用的認(rèn)識(shí)獲得很大的提高。盡管近年的研究取得了顯著的進(jìn)步,鈣激活鉀通道調(diào)節(jié)劑的廣泛使用增加了非特異性藥物作用意想不到的復(fù)雜性。由于KCa通道調(diào)節(jié)劑已經(jīng)用于帕金森病和乙醇中毒等多種疾病的早期臨床試驗(yàn)治療,本文強(qiáng)調(diào)了這些藥物作用和不足在使用中的重要性。

    鉀通道鈣激活;自發(fā)起搏神經(jīng)元;節(jié)律活動(dòng);通道調(diào)節(jié)劑

    馮中平,E-mail:zp.feng@utoronto.ca,Tel:+1(416)946-0671

    2016-03-16 接受日期:2016-06-13)

    R966

    :A

    :1000-3002-(2016)06-0627-13

    10.3867/j.issn.1000-3002.2016.06.003

    Biography:Nancy DONG,female,HBSc,graduate student, main research field is neuroscience,E-mail:nancy.dong@ mail.utoronto.ca

    Zhong-ping FENG,Tel:+1(416) 946-0671,E-mail:zp.feng@utoronto.ca

    (本文編輯:喬 虹)

    猜你喜歡
    中平離子通道調(diào)節(jié)劑
    顛倒村
    電壓門控離子通道參與紫杉醇所致周圍神經(jīng)病變的研究進(jìn)展
    “中平穴”定位考辨
    蝎毒肽作為Kv1.3離子通道阻滯劑研究進(jìn)展
    植物生長調(diào)節(jié)劑在園藝作物上的應(yīng)用
    Management of The Government for Public Facilities in The New Rural Communities
    哮喘治療中白三烯調(diào)節(jié)劑的應(yīng)用觀察
    疼痛和離子通道
    等離子通道鉆井技術(shù)概況和發(fā)展前景
    斷塊油氣田(2013年2期)2013-03-11 15:32:53
    抗腫瘤藥及免疫調(diào)節(jié)劑的醫(yī)院用藥現(xiàn)狀
    一个人看视频在线观看www免费| 亚洲av在线观看美女高潮| 久久久国产一区二区| 99热网站在线观看| 欧美日韩精品成人综合77777| 国产免费一级a男人的天堂| av专区在线播放| 久久精品熟女亚洲av麻豆精品| 国产一区有黄有色的免费视频| 又爽又黄a免费视频| 亚洲av在线观看美女高潮| 精品人妻一区二区三区麻豆| 国产午夜精品一二区理论片| 一级毛片aaaaaa免费看小| 亚洲成人手机| 久久精品久久精品一区二区三区| 91久久精品国产一区二区成人| 成人特级av手机在线观看| 日本猛色少妇xxxxx猛交久久| 日韩av免费高清视频| 亚洲av男天堂| 搡女人真爽免费视频火全软件| 久久久亚洲精品成人影院| 午夜福利在线在线| 日本免费在线观看一区| 免费观看在线日韩| 中国美白少妇内射xxxbb| 成年av动漫网址| 欧美日韩亚洲高清精品| 久久精品国产鲁丝片午夜精品| 久久久久久久国产电影| 国产无遮挡羞羞视频在线观看| 国产乱来视频区| 男人爽女人下面视频在线观看| 久久久色成人| 狂野欧美白嫩少妇大欣赏| 97精品久久久久久久久久精品| 老司机影院成人| 中文字幕精品免费在线观看视频 | 欧美另类一区| 一级毛片 在线播放| 日日撸夜夜添| 国产精品免费大片| 激情 狠狠 欧美| 久久99热这里只频精品6学生| av国产精品久久久久影院| 国产成人免费无遮挡视频| 插阴视频在线观看视频| 久久久久精品性色| 少妇人妻精品综合一区二区| 国产精品久久久久久精品古装| 成年av动漫网址| 新久久久久国产一级毛片| 欧美97在线视频| 一级毛片aaaaaa免费看小| 99久久精品一区二区三区| 国产伦理片在线播放av一区| 伦理电影大哥的女人| 全区人妻精品视频| 久久人妻熟女aⅴ| 精品人妻偷拍中文字幕| av在线观看视频网站免费| 亚洲熟女精品中文字幕| 七月丁香在线播放| 国产精品爽爽va在线观看网站| av卡一久久| 婷婷色综合www| 中文乱码字字幕精品一区二区三区| 一级二级三级毛片免费看| 免费人成在线观看视频色| 一个人免费看片子| 香蕉精品网在线| 国产无遮挡羞羞视频在线观看| 国产视频内射| 久久久久性生活片| 国产视频内射| 啦啦啦啦在线视频资源| 乱系列少妇在线播放| 欧美xxxx性猛交bbbb| 性色av一级| 成人二区视频| 高清毛片免费看| 国产高清三级在线| 国产亚洲av片在线观看秒播厂| 中文在线观看免费www的网站| videos熟女内射| 国产亚洲av片在线观看秒播厂| 精品久久久噜噜| 午夜视频国产福利| 亚洲在久久综合| 午夜福利在线观看免费完整高清在| 日韩欧美 国产精品| 久久久午夜欧美精品| 日韩制服骚丝袜av| 久久影院123| 精品久久久久久久末码| 免费在线观看成人毛片| 中文字幕人妻熟人妻熟丝袜美| 不卡视频在线观看欧美| 日本wwww免费看| 午夜老司机福利剧场| 亚洲国产毛片av蜜桃av| 国内少妇人妻偷人精品xxx网站| 精品一区在线观看国产| 99热这里只有是精品在线观看| av在线app专区| 久久这里有精品视频免费| 伦理电影大哥的女人| 亚洲真实伦在线观看| 免费大片18禁| 欧美性感艳星| 国产精品久久久久久av不卡| 卡戴珊不雅视频在线播放| 色视频在线一区二区三区| 一级毛片久久久久久久久女| 成人影院久久| 国产高清有码在线观看视频| 欧美成人a在线观看| 一级毛片我不卡| 在线免费观看不下载黄p国产| av线在线观看网站| 美女中出高潮动态图| 黄色一级大片看看| 制服丝袜香蕉在线| av播播在线观看一区| 免费不卡的大黄色大毛片视频在线观看| 青青草视频在线视频观看| av不卡在线播放| 性色av一级| 少妇的逼水好多| 人人妻人人澡人人爽人人夜夜| 永久免费av网站大全| 日日撸夜夜添| 美女福利国产在线 | 麻豆乱淫一区二区| 伊人久久国产一区二区| 欧美日本视频| 日本午夜av视频| 六月丁香七月| 午夜免费观看性视频| 一区二区三区精品91| 国产黄片视频在线免费观看| 夜夜爽夜夜爽视频| 3wmmmm亚洲av在线观看| 在线免费十八禁| 日韩成人伦理影院| 亚洲一级一片aⅴ在线观看| 欧美精品亚洲一区二区| 黄色一级大片看看| 欧美国产精品一级二级三级 | 尾随美女入室| 99久久中文字幕三级久久日本| 国产精品久久久久久精品电影小说 | 日韩一区二区视频免费看| 国产精品偷伦视频观看了| 高清不卡的av网站| 80岁老熟妇乱子伦牲交| 九九久久精品国产亚洲av麻豆| 久久97久久精品| 麻豆乱淫一区二区| 国产淫语在线视频| 亚洲色图av天堂| 午夜福利高清视频| 少妇裸体淫交视频免费看高清| 亚洲精品一区蜜桃| 亚洲真实伦在线观看| 男男h啪啪无遮挡| 日韩视频在线欧美| 日韩伦理黄色片| 久久国内精品自在自线图片| 国产探花极品一区二区| 久久久久视频综合| 男人狂女人下面高潮的视频| 国产成人精品久久久久久| 国产高清国产精品国产三级 | 一本色道久久久久久精品综合| 51国产日韩欧美| 国产在线免费精品| 2018国产大陆天天弄谢| 国产v大片淫在线免费观看| 国产熟女欧美一区二区| 日韩成人av中文字幕在线观看| 精品亚洲成国产av| 五月伊人婷婷丁香| 少妇 在线观看| 久久久久久久久久久免费av| 国产高清国产精品国产三级 | 亚洲内射少妇av| 妹子高潮喷水视频| 永久免费av网站大全| 欧美日韩视频高清一区二区三区二| 久久久久久久久久久丰满| 日韩欧美 国产精品| 精品少妇久久久久久888优播| 在线观看人妻少妇| 最黄视频免费看| 老司机影院成人| 国产成人freesex在线| 最近最新中文字幕免费大全7| 久久久久国产精品人妻一区二区| 夫妻性生交免费视频一级片| 丰满迷人的少妇在线观看| 精品亚洲乱码少妇综合久久| 国产精品成人在线| 男人爽女人下面视频在线观看| 亚洲最大成人中文| 成人特级av手机在线观看| 亚洲美女搞黄在线观看| 汤姆久久久久久久影院中文字幕| 在现免费观看毛片| 成人亚洲欧美一区二区av| 国产精品爽爽va在线观看网站| 久久精品国产a三级三级三级| 亚洲精品乱码久久久久久按摩| 国精品久久久久久国模美| 日本欧美视频一区| 91aial.com中文字幕在线观看| 免费观看的影片在线观看| 日日摸夜夜添夜夜添av毛片| 九色成人免费人妻av| 如何舔出高潮| 婷婷色麻豆天堂久久| 国产成人a∨麻豆精品| 国产v大片淫在线免费观看| .国产精品久久| 啦啦啦在线观看免费高清www| 性色avwww在线观看| 赤兔流量卡办理| 日韩制服骚丝袜av| 欧美 日韩 精品 国产| av在线蜜桃| av在线播放精品| 男女无遮挡免费网站观看| 日韩精品有码人妻一区| a级毛色黄片| 日本-黄色视频高清免费观看| 色视频在线一区二区三区| 成人美女网站在线观看视频| 亚洲国产精品专区欧美| 女的被弄到高潮叫床怎么办| 交换朋友夫妻互换小说| 高清欧美精品videossex| 99re6热这里在线精品视频| 国产亚洲欧美精品永久| 免费黄网站久久成人精品| 91午夜精品亚洲一区二区三区| 好男人视频免费观看在线| 中文资源天堂在线| 久久人人爽人人爽人人片va| 丝袜喷水一区| 99久久精品热视频| 国产精品嫩草影院av在线观看| 不卡视频在线观看欧美| 亚洲av电影在线观看一区二区三区| 极品少妇高潮喷水抽搐| 3wmmmm亚洲av在线观看| 日本黄色片子视频| 亚洲激情五月婷婷啪啪| 一本一本综合久久| 99精国产麻豆久久婷婷| 午夜福利视频精品| 成人高潮视频无遮挡免费网站| 男女边吃奶边做爰视频| 欧美一级a爱片免费观看看| 又大又黄又爽视频免费| 欧美 日韩 精品 国产| 久久精品人妻少妇| 国产人妻一区二区三区在| 久久国产精品大桥未久av | 久久精品久久久久久久性| 亚洲av日韩在线播放| 91精品伊人久久大香线蕉| 欧美日本视频| 久久ye,这里只有精品| 国产日韩欧美在线精品| 国产精品国产三级国产av玫瑰| 欧美成人精品欧美一级黄| 亚洲精品自拍成人| 下体分泌物呈黄色| 亚洲国产高清在线一区二区三| 最近中文字幕高清免费大全6| 99久久精品一区二区三区| 十分钟在线观看高清视频www | 国产 一区 欧美 日韩| 哪个播放器可以免费观看大片| 国产精品99久久99久久久不卡 | 久久鲁丝午夜福利片| 欧美国产精品一级二级三级 | 亚洲电影在线观看av| 欧美xxⅹ黑人| 久久国产亚洲av麻豆专区| 中国美白少妇内射xxxbb| 久久久国产一区二区| 国产日韩欧美亚洲二区| 国产精品av视频在线免费观看| 韩国高清视频一区二区三区| 22中文网久久字幕| 少妇人妻 视频| 亚洲精品aⅴ在线观看| 欧美精品国产亚洲| 简卡轻食公司| 人妻一区二区av| 最新中文字幕久久久久| 最后的刺客免费高清国语| 在线观看免费视频网站a站| 2022亚洲国产成人精品| 午夜福利视频精品| 精品久久久噜噜| 亚洲真实伦在线观看| 91精品伊人久久大香线蕉| 国产日韩欧美在线精品| 亚洲av国产av综合av卡| av国产精品久久久久影院| 夜夜爽夜夜爽视频| 在线观看三级黄色| 欧美97在线视频| 免费观看a级毛片全部| 欧美成人a在线观看| 久久久久久久久久成人| 国产亚洲欧美精品永久| 久久久久久久大尺度免费视频| 国产永久视频网站| 亚洲欧美一区二区三区国产| 亚洲激情五月婷婷啪啪| 亚洲欧美日韩另类电影网站 | 免费av中文字幕在线| 欧美97在线视频| 亚洲精品乱久久久久久| 国产亚洲av片在线观看秒播厂| 日韩制服骚丝袜av| av黄色大香蕉| 一本—道久久a久久精品蜜桃钙片| 老熟女久久久| 少妇人妻久久综合中文| 九九爱精品视频在线观看| 成人黄色视频免费在线看| 在线免费观看不下载黄p国产| av天堂中文字幕网| 成人特级av手机在线观看| 干丝袜人妻中文字幕| 全区人妻精品视频| 亚洲国产精品一区三区| 国产成人精品一,二区| 国产精品无大码| 成人特级av手机在线观看| 男人狂女人下面高潮的视频| 肉色欧美久久久久久久蜜桃| 视频中文字幕在线观看| 中文在线观看免费www的网站| 亚洲精品乱码久久久久久按摩| 女人十人毛片免费观看3o分钟| av在线老鸭窝| 欧美日韩视频精品一区| 2021少妇久久久久久久久久久| 亚洲性久久影院| 大片电影免费在线观看免费| 国产精品蜜桃在线观看| 九九在线视频观看精品| 亚洲欧洲日产国产| 国产精品久久久久久精品古装| 亚洲欧美一区二区三区黑人 | 成人毛片a级毛片在线播放| 视频中文字幕在线观看| 美女中出高潮动态图| 亚洲欧洲国产日韩| 丝袜脚勾引网站| 免费看光身美女| 欧美精品国产亚洲| 国产精品久久久久久久久免| 在线天堂最新版资源| 亚洲精品国产色婷婷电影| 亚洲精品国产av蜜桃| av网站免费在线观看视频| 少妇猛男粗大的猛烈进出视频| 蜜桃在线观看..| 日韩大片免费观看网站| 在线观看一区二区三区激情| 又粗又硬又长又爽又黄的视频| 国产色婷婷99| 多毛熟女@视频| 久久久精品免费免费高清| 精品久久久久久久久av| 亚洲欧美成人精品一区二区| 观看美女的网站| 亚洲久久久国产精品| 欧美日韩视频高清一区二区三区二| 欧美+日韩+精品| 青青草视频在线视频观看| 精品少妇黑人巨大在线播放| 亚洲欧美日韩卡通动漫| 欧美日韩综合久久久久久| 一区二区三区乱码不卡18| 欧美日韩综合久久久久久| 亚洲va在线va天堂va国产| 国产有黄有色有爽视频| 亚洲国产精品成人久久小说| 午夜日本视频在线| 婷婷色av中文字幕| 成人国产麻豆网| 尤物成人国产欧美一区二区三区| 一本色道久久久久久精品综合| 国产免费又黄又爽又色| 成人特级av手机在线观看| 亚洲欧美成人精品一区二区| 免费观看性生交大片5| 国产在线免费精品| 亚洲va在线va天堂va国产| 午夜福利在线观看免费完整高清在| 五月天丁香电影| 日韩欧美 国产精品| 最近2019中文字幕mv第一页| 只有这里有精品99| 中文字幕免费在线视频6| 日韩制服骚丝袜av| 夜夜爽夜夜爽视频| 久久久久人妻精品一区果冻| 国产欧美亚洲国产| 亚洲综合精品二区| 国产成人精品久久久久久| a 毛片基地| 蜜臀久久99精品久久宅男| 国产亚洲一区二区精品| 看非洲黑人一级黄片| 精品亚洲乱码少妇综合久久| 久久久国产一区二区| 久久毛片免费看一区二区三区| 美女xxoo啪啪120秒动态图| 亚洲国产日韩一区二区| 性色avwww在线观看| 人妻夜夜爽99麻豆av| 最近的中文字幕免费完整| 一区二区三区精品91| 欧美成人精品欧美一级黄| 亚洲怡红院男人天堂| 国产 一区 欧美 日韩| 一边亲一边摸免费视频| 久久毛片免费看一区二区三区| 99九九线精品视频在线观看视频| 成人免费观看视频高清| 一本一本综合久久| 日产精品乱码卡一卡2卡三| 欧美 日韩 精品 国产| 久久久成人免费电影| 免费黄频网站在线观看国产| 丰满乱子伦码专区| 久久鲁丝午夜福利片| 成人无遮挡网站| av在线蜜桃| 久久人人爽人人片av| 美女主播在线视频| 观看免费一级毛片| 97超视频在线观看视频| 新久久久久国产一级毛片| 日韩精品有码人妻一区| 免费看av在线观看网站| freevideosex欧美| 国产黄色视频一区二区在线观看| 插逼视频在线观看| 日韩成人av中文字幕在线观看| 99久久精品一区二区三区| 色吧在线观看| 91精品国产九色| 一区二区三区精品91| 日韩人妻高清精品专区| 精品少妇久久久久久888优播| 亚洲人成网站在线观看播放| 自拍欧美九色日韩亚洲蝌蚪91 | av专区在线播放| 少妇裸体淫交视频免费看高清| 亚洲成色77777| 五月天丁香电影| 只有这里有精品99| 久久久久性生活片| 日日啪夜夜撸| 简卡轻食公司| 人妻夜夜爽99麻豆av| 国内精品宾馆在线| 人体艺术视频欧美日本| 国产成人a∨麻豆精品| 高清视频免费观看一区二区| 日韩av免费高清视频| 国产成人a区在线观看| 日本vs欧美在线观看视频 | 久久久久久久亚洲中文字幕| 一边亲一边摸免费视频| 在线观看免费视频网站a站| 啦啦啦在线观看免费高清www| 成年女人在线观看亚洲视频| 天堂8中文在线网| 亚洲性久久影院| 深爱激情五月婷婷| 人妻制服诱惑在线中文字幕| 国产精品熟女久久久久浪| 亚洲精品,欧美精品| 国产在线一区二区三区精| 有码 亚洲区| 亚洲欧美日韩东京热| 毛片女人毛片| 黄片无遮挡物在线观看| 乱码一卡2卡4卡精品| av一本久久久久| 国产欧美亚洲国产| 五月天丁香电影| 深夜a级毛片| 久久久a久久爽久久v久久| 日韩强制内射视频| h日本视频在线播放| 国产老妇伦熟女老妇高清| 自拍偷自拍亚洲精品老妇| 99久久人妻综合| 精品久久国产蜜桃| 国产欧美亚洲国产| 亚洲国产色片| 精品国产乱码久久久久久小说| 在线观看一区二区三区激情| 青青草视频在线视频观看| 国产有黄有色有爽视频| 天堂俺去俺来也www色官网| 国产精品av视频在线免费观看| 日韩一区二区视频免费看| 久久6这里有精品| 午夜福利网站1000一区二区三区| 女的被弄到高潮叫床怎么办| 午夜激情久久久久久久| 看免费成人av毛片| 国产高清有码在线观看视频| 身体一侧抽搐| 晚上一个人看的免费电影| 亚洲自偷自拍三级| 欧美人与善性xxx| 高清欧美精品videossex| 日本与韩国留学比较| 最近最新中文字幕大全电影3| 亚洲国产精品一区三区| 亚洲国产高清在线一区二区三| 成年免费大片在线观看| 久久久久视频综合| 伊人久久精品亚洲午夜| 国产老妇伦熟女老妇高清| 五月伊人婷婷丁香| 一级毛片aaaaaa免费看小| 国产成人免费无遮挡视频| 午夜福利高清视频| 亚洲成人一二三区av| 日韩伦理黄色片| 直男gayav资源| 一级毛片 在线播放| 久久久久久久亚洲中文字幕| 五月玫瑰六月丁香| 一级爰片在线观看| 一级片'在线观看视频| 联通29元200g的流量卡| 高清av免费在线| 久久久久久久亚洲中文字幕| av又黄又爽大尺度在线免费看| h视频一区二区三区| 美女福利国产在线 | 久久久成人免费电影| 国产日韩欧美亚洲二区| 亚洲自偷自拍三级| 中文字幕久久专区| 国产精品免费大片| h视频一区二区三区| 久久人人爽av亚洲精品天堂 | 少妇 在线观看| 少妇人妻久久综合中文| 亚洲性久久影院| 我要看黄色一级片免费的| 日本色播在线视频| 国产精品麻豆人妻色哟哟久久| 欧美国产精品一级二级三级 | 伊人久久精品亚洲午夜| 亚洲,一卡二卡三卡| 色综合色国产| 国产免费一区二区三区四区乱码| 成人亚洲欧美一区二区av| 成年免费大片在线观看| 自拍欧美九色日韩亚洲蝌蚪91 | 久久久久精品久久久久真实原创| 小蜜桃在线观看免费完整版高清| 插阴视频在线观看视频| 国产 一区精品| 国产色婷婷99| av卡一久久| 只有这里有精品99| 日韩视频在线欧美| 嫩草影院入口| 免费高清在线观看视频在线观看| 国产亚洲av片在线观看秒播厂| 嫩草影院新地址| 日韩一本色道免费dvd| 国产大屁股一区二区在线视频| 黄色怎么调成土黄色| 国内少妇人妻偷人精品xxx网站| 国产乱人偷精品视频| 在线观看美女被高潮喷水网站| 国产高潮美女av| 国产乱人偷精品视频| 日韩成人av中文字幕在线观看| 男的添女的下面高潮视频| 又爽又黄a免费视频| 精品少妇久久久久久888优播| 天天躁夜夜躁狠狠久久av| 老女人水多毛片| 最近中文字幕高清免费大全6| 男女啪啪激烈高潮av片| 国产色爽女视频免费观看| 女人十人毛片免费观看3o分钟| freevideosex欧美| 夜夜爽夜夜爽视频| 好男人视频免费观看在线| 少妇人妻一区二区三区视频| 人妻 亚洲 视频| 国产亚洲精品久久久com| 3wmmmm亚洲av在线观看|