• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      藥用植物黃酮類化合物防治帕金森病藥理學(xué)研究回顧和展望

      2016-02-15 04:54:17秦力悅吳曉俊
      關(guān)鍵詞:黑質(zhì)神經(jīng)細(xì)胞黃酮類

      秦力悅,吳曉俊

      (上海市復(fù)方中藥重點(diǎn)實(shí)驗(yàn)室暨上海中醫(yī)藥大學(xué)中藥研究所,上海 201203)

      ·前沿論壇·

      藥用植物黃酮類化合物防治帕金森病藥理學(xué)研究回顧和展望

      秦力悅,吳曉俊

      (上海市復(fù)方中藥重點(diǎn)實(shí)驗(yàn)室暨上海中醫(yī)藥大學(xué)中藥研究所,上海 201203)

      吳曉俊,研究員,博士生導(dǎo)師,現(xiàn)任上海中醫(yī)藥大學(xué)中藥研究所副所長(zhǎng)、上海市復(fù)方中藥重點(diǎn)實(shí)驗(yàn)室副主任、中華中醫(yī)藥學(xué)會(huì)中藥實(shí)驗(yàn)藥理學(xué)分會(huì)委員和上海市藥學(xué)會(huì)藥理學(xué)專業(yè)委員會(huì)委員。主要從事中藥活性成分在自身免疫神經(jīng)退行性疾病、精神類疾病、老年癡呆和帕金森疾病中的作用和機(jī)制研究。先后入選上海市高校特聘教授(東方學(xué)者)和浦江學(xué)者。承擔(dān)多項(xiàng)國(guó)家和省部級(jí)研究項(xiàng)目,包括國(guó)家自然科學(xué)基金、國(guó)家攻關(guān)、教育部以及上海市科委項(xiàng)目等。研究成果獲國(guó)家科技進(jìn)步獎(jiǎng)二等獎(jiǎng)和上海市科技進(jìn)步一等獎(jiǎng)各1項(xiàng)。發(fā)表科研論文80余篇,其中SCI論文45篇。獲授權(quán)專利5項(xiàng)。指導(dǎo)博士生10名,碩士生17名。

      帕金森病(PD)是一種常見(jiàn)的中樞神經(jīng)系統(tǒng)退行性疾病,發(fā)病機(jī)制尚不明確。研究表明,部分黃酮類化合物可入腦保護(hù)神經(jīng)元和改善中樞神經(jīng)系統(tǒng)微環(huán)境。黃酮類化合物對(duì)PD有較好的療效,可通過(guò)抗氧化、抗炎、抗凋亡、誘導(dǎo)自噬、促進(jìn)神經(jīng)營(yíng)養(yǎng)因子分泌和雌激素樣作用等多方面作用減少黑質(zhì)致密部多巴胺能神經(jīng)元缺失,改善PD的運(yùn)動(dòng)障礙。本文主要綜述了近期黃酮化合物在PD防治中的多種作用及相關(guān)機(jī)制研究進(jìn)展。此外,亦探討了其主要局限性,以期為PD防治藥物的研發(fā)提供參考。

      帕金森?。稽S酮;氧化應(yīng)激;細(xì)胞凋亡;自噬;神經(jīng)營(yíng)養(yǎng)因子;植物雌激素

      帕金森?。≒arkinson disease,PD)是一種常見(jiàn)的中樞神經(jīng)系統(tǒng)退行性疾病。其主要特征為黑質(zhì)致密部多巴胺能神經(jīng)元變性、缺失以及紋狀體多巴胺(dopamine,DA)耗竭,最終引起基底神經(jīng)調(diào)節(jié)功能障礙。PD的臨床特征主要為靜止震顫、肌僵直、運(yùn)動(dòng)不能或運(yùn)動(dòng)遲緩以及步態(tài)異常[1]。目前,臨床多以左旋多巴、多巴胺受體激動(dòng)劑和單胺氧化酶B抑制劑等類型的藥物進(jìn)行PD治療,對(duì)腦內(nèi)多巴胺進(jìn)行補(bǔ)充或減少多巴胺降解以緩解患者的臨床癥狀。但因?yàn)镻D的發(fā)病機(jī)制目前尚不是很明確,致使上述藥物的療效并不理想,如會(huì)引起運(yùn)動(dòng)并發(fā)癥[2]、便秘、惡心、頭痛和睡眠障礙[3]等副作用,嚴(yán)重影響患者的生活質(zhì)量。

      運(yùn)用中藥治療PD已有悠久的歷史。現(xiàn)代臨床實(shí)踐證明,中藥不僅可以輔助左旋多巴類藥物改善運(yùn)動(dòng)障礙,還可減輕左旋多巴類藥物導(dǎo)致的異動(dòng)癥,緩解PD患者的非運(yùn)動(dòng)癥狀,提高患者的生活質(zhì)量。如補(bǔ)腎活血湯與美多芭合用較單用后者療效更佳,可改善非運(yùn)動(dòng)癥狀,減少神經(jīng)障礙、認(rèn)知障礙和不明原因疼痛[4];補(bǔ)腎活血顆??筛纳芇D抑郁狀態(tài)[5]。天麻鉤藤飲與美多芭聯(lián)合治療PD效果顯著,可明顯改善患者的睡眠[6]。龜?shù)厣愋穷w粒對(duì)左旋多巴引起的異動(dòng)癥具有較好的療效,可改善患者的異動(dòng)癥,縮短異動(dòng)癥持續(xù)時(shí)間[7]。實(shí)驗(yàn)研究表明,一些單味中藥,如何首烏、天麻、肉蓯蓉、鉤藤、延胡索、銀杏、川芎和刺五加等水煎液或粗提物可改善PD模型動(dòng)物的DA釋放減少,并減少神經(jīng)細(xì)胞凋亡[8]。中藥活性部位以及單體對(duì)PD模型動(dòng)物具有較好的防治作用,如生物堿類化合物(鉤藤堿[9]和川芎嗪[10]等)、香豆素類化合物(獨(dú)活香豆素[11]和蛇床子素[12]等)、萜類化合物(銀杏內(nèi)酯[13]和雷公藤氯內(nèi)酯醇[14]等)、皂苷類化合物(人參皂苷Rg1[15]和三七皂苷R2[16]等)以及黃酮類化合物。這些研究表明,中藥及其活性成分對(duì)于PD的防治可能具有巨大的潛力。

      黃酮類化合物是一系列由2個(gè)酚羥基的苯環(huán)(A環(huán)和B環(huán))通過(guò)中間三碳環(huán)(C環(huán))連接的具有C6-C3-C6結(jié)構(gòu)的化合物,根據(jù)C環(huán)結(jié)構(gòu)、中央三碳鏈的氧化程度、成環(huán)程度和苯環(huán)連接位置等,可分為黃酮、黃酮醇、黃烷酮和異黃酮等[17],其主要的代表性化合物如表1所示。黃酮類化合物廣泛地存在于藥用植物和食物如蔬果、谷物、堅(jiān)果和茶葉中,具有抗氧化[18]、抗凋亡[19]、抗腫瘤[20]、抗炎[21]、抗病毒[22]、抗菌[23]、抗骨質(zhì)疏松[24]、降血脂和降血糖[25]等多種生物活性。此外,最近的研究表明,黃酮類化合物在多種神經(jīng)退行性疾病,如阿爾茨海默病(Alzheimer disease,AD)、PD和腦梗死,具有調(diào)節(jié)神經(jīng)功能和神經(jīng)保護(hù)的作用[26-28]。由于PD的病因多樣性、癥狀復(fù)雜性,目前尚無(wú)可治愈的方法,探尋有效的治療方法及藥物仍為PD的研究熱點(diǎn)。本文將主要對(duì)黃酮類化合物在PD防治中的抗氧化、抗炎、抗凋亡、誘導(dǎo)自噬、促神經(jīng)營(yíng)養(yǎng)因子分泌和雌激素樣作用進(jìn)行回顧,以期為PD防治藥物的研發(fā)提供參考。

      1 抗氧化應(yīng)激作用

      1.1 激活抗氧化酶

      過(guò)量自由基和及活化氧(reactive oxygen spe?cies,ROS)的產(chǎn)生是導(dǎo)致包括PD在內(nèi)多種疾病的因素之一[29]。細(xì)胞內(nèi)天然存在的抗氧化酶,包括超氧化物歧化酶(superoxide dismutase,SOD)、過(guò)氧化氫酶(catalase,CAT)、谷胱甘肽(glutathi?one,GSH)、谷胱甘肽過(guò)氧化物酶(glutathione peroxidase,GPx),可有效清除自由基,減少有毒物質(zhì)的積累。但過(guò)量存在的自由基超過(guò)細(xì)胞內(nèi)抗氧化酶清除能力時(shí),將導(dǎo)致自由基不能及時(shí)清除而堆積,細(xì)胞則進(jìn)入應(yīng)激損傷狀態(tài)(即氧化應(yīng)激),造成細(xì)胞內(nèi)DNA鏈斷裂以及某些酶(如谷氨酰胺合成酶)滅活[30]。黃酮類化合物是一類天然抗自由基的物質(zhì),其酚羥基可作為自由基的供氫體,形成自由基中間體,終止自由基連鎖反應(yīng),進(jìn)而抑制脂質(zhì)過(guò)氧化(lipid peroxidation,LPO),減少脂質(zhì)過(guò)氧化物和丙二醛(malonic dialdehyde,MDA)的產(chǎn)生[31]。在PD模型中,黃酮顯示出較強(qiáng)的抗氧化酶激活作用,可有效減輕多巴胺能神經(jīng)的損傷。如在6-羥基多巴胺(6-hydroxydopamine,6-OHDA)處理的PC-12細(xì)胞或魚藤酮誘導(dǎo)的SK-N-SH細(xì)胞中,槲皮苷、異槲皮苷、蘆丁和橘皮苷均可明顯增加SOD,CAT和GPx的活性[32-34];槲皮素、漆黃素、沒(méi)食子酸和沒(méi)食子酸丙酯等可上調(diào)氧化應(yīng)激狀態(tài)下細(xì)胞中的GSH含量[35]。銀杏黃素在1-甲基-4-苯基-1,2,3,6-四氫吡啶(1-methy-4-phenyl-1,2,3,6-tetrahydropyridine,MPTP)誘導(dǎo)的PD模型小鼠中可上調(diào)紋狀體中SOD的表達(dá),減少ROS,減輕氧化損傷[36]。鷹嘴豆素A在脂多糖誘導(dǎo)的PD模型大鼠中,可增加抗氧化酶SOD和GPx活性的作用,減少M(fèi)DA的生成[37]。

      表1 黃酮類化合物分類

      1.2 抑制脂質(zhì)過(guò)氧化

      大部分ROS如超氧陰離子、過(guò)氧化氫、一氧化氮、氫氧基和烷氧基可被抗氧化酶系統(tǒng)代謝,從而減少毒性;但當(dāng)ROS和自由基堆積過(guò)量時(shí),自身抗氧化酶系統(tǒng)不能及時(shí)清除,會(huì)抑制線粒體復(fù)合體Ⅰ系統(tǒng)活性,氧化多不飽和脂肪酸(polyunsaturatted fatty acid,PUFA),使蛋白質(zhì)三級(jí)結(jié)構(gòu)發(fā)生變化,DNA損壞[38]。脂質(zhì)過(guò)氧化產(chǎn)物之一的4-羥基壬烯醛(4-hydroxy-2-nonenal,HNE)是一種細(xì)胞毒素,可引起多種神經(jīng)退行性疾病,包括PD[39]。茶黃素多酚可抑制黃嘌呤氧化酶(xanthine oxidase,XO)活性,減少其產(chǎn)生超氧化物,保護(hù)脂質(zhì)過(guò)氧化的神經(jīng)細(xì)胞[40];槲皮素對(duì)氧化氫和黃嘌呤/黃嘌呤氧化酶導(dǎo)致的原代神經(jīng)元損傷亦有明顯的抑制作用[31]。

      1.3 改善線粒體功能障礙

      線粒體的主要功能是調(diào)節(jié)有氧呼吸和維持鈣離子的穩(wěn)態(tài),也與細(xì)胞凋亡和ROS的產(chǎn)生有關(guān),其功能障礙往往與PD的發(fā)生密切相關(guān)[41]。復(fù)合體Ⅰ在線粒體呼吸鏈中扮演各種重要的角色,其缺乏或損傷將造成線粒體功能障礙[42]。神經(jīng)毒素1-甲基-4-苯基砒啶離子(1-methyl-4-phenylpyridinium,MPP+)抑制線粒體呼吸鏈復(fù)合體Ⅰ的活性,產(chǎn)生大量過(guò)氧化自由基,導(dǎo)致氧化應(yīng)激和神經(jīng)損傷[43]。線粒體的損傷也導(dǎo)致ROS的上調(diào),繼而激活促炎因子,促進(jìn)炎癥反應(yīng)[44]。表沒(méi)食子兒茶素沒(méi)食子酸酯可激活復(fù)合體Ⅰ和三磷酸腺苷(adenosine triphosphate,ATP)合成酶,改善線粒體功能障礙[45]。槲皮素可提高魚藤酮致大鼠黑質(zhì)區(qū)線粒體復(fù)合體Ⅰ活性的下降,進(jìn)而改善大鼠PD樣癥狀[46]。芹黃素可升高M(jìn)PP+造成的PC12細(xì)胞線粒體膜電位降低,同時(shí)可減少乳酸脫氧酶(lactate dehydrogenase,LDH)的釋放和ROS的形成,從而保護(hù)神經(jīng)細(xì)胞[47]。楊梅素則可減輕線粒體功能障礙,抑制ROS生成,保護(hù)MPP+處理的多巴胺能細(xì)胞SN4741[48]。水飛薊素也可通過(guò)維持線粒體正常生理功能來(lái)保護(hù)神經(jīng)細(xì)胞,在MPTP誘導(dǎo)的PD模型小鼠中,可改善PD小鼠運(yùn)動(dòng)障礙以及減少小鼠黑質(zhì)神經(jīng)缺失。在原代神經(jīng)細(xì)胞中,水飛薊素可維持線粒體膜電位的正常,減少M(fèi)PP+對(duì)線粒體的損傷[49]。

      神經(jīng)細(xì)胞中的鐵平衡與氧化應(yīng)激密切相關(guān),線粒體過(guò)量存在的鐵通過(guò)Fenton反應(yīng)促使ROS的產(chǎn)生,導(dǎo)致線粒體功能障礙[50]。在MPTP誘導(dǎo)的PD小鼠模型中,銀杏黃素可有效螯合亞鐵離子,下調(diào)L-鐵蛋白以及運(yùn)鐵蛋白1,從而抑制細(xì)胞內(nèi)不穩(wěn)定鐵的增加[36]。水飛薊素也可有效減輕鐵導(dǎo)致的氧化應(yīng)激,抑制黑質(zhì)中GSH的降低及MDA的上升,改善喂飼羰基鐵小鼠的行為障礙[51]。

      PD相關(guān)的基因突變或表達(dá)下調(diào)也會(huì)導(dǎo)致線粒體功能障礙。Parkin基因參與損傷線粒體的清除過(guò)程,若敲除Parkin基因,則不能及時(shí)清除損傷的線粒體,影響線粒體的再生[52]。PINK1基因可增加細(xì)胞對(duì)刺激的耐受,沉默后可導(dǎo)致線粒體鈣離子濃度降低,ROS增加,ATP生成減少,通透性增加,最終細(xì)胞死亡[53]。DJ-1基因過(guò)表達(dá)可保護(hù)細(xì)胞,沉默會(huì)增加細(xì)胞對(duì)氧化應(yīng)激的敏感性,同時(shí)線粒體斷裂、產(chǎn)生氧化應(yīng)激、誘導(dǎo)自噬[54]。α突觸核蛋白為PD的致病因素之一,它與線粒體膜結(jié)合以后可抑制線粒體融合,導(dǎo)致其斷裂[55]。楊梅素可維持MPP+處理SN4741細(xì)胞的線粒體功能以及細(xì)胞形態(tài)完整,但在沉默DJ-1后,這種保護(hù)作用消失,提示楊梅素通過(guò)促進(jìn)DJ-1的表達(dá),發(fā)揮對(duì)線粒體的保護(hù)作用,從而保護(hù)神經(jīng)細(xì)胞不受神經(jīng)毒素的損傷[56]。槲皮素,尤其是其氧化形式可有效抑制α突觸核蛋白纖絲形成,并對(duì)形成的纖絲具有解聚作用[57]。黃芩素可抑制α突觸核蛋白纖維化,穩(wěn)定蛋白單體[58];而圣草酚、楊梅素也可有效抑制α突觸核蛋白纖絲形成[59],提示這些黃酮對(duì)PD具有治療作用。

      1.4 抑制內(nèi)質(zhì)網(wǎng)應(yīng)激

      內(nèi)質(zhì)網(wǎng)(endoplasmic reticulum,ER)是細(xì)胞中重要的細(xì)胞器,主要參與蛋白質(zhì)運(yùn)輸分泌表達(dá)、儲(chǔ)存鈣離子以及脂質(zhì)合成。新產(chǎn)生的蛋白被運(yùn)送到ER,進(jìn)行進(jìn)一步的修飾,包括糖基化、正確折疊和形成二硫鍵[60]。在PD中,內(nèi)質(zhì)網(wǎng)應(yīng)激(ER stress,ERS)是氧化應(yīng)激后的下游反應(yīng)。當(dāng)出現(xiàn)缺糖損傷,氧化失衡、鈣離子穩(wěn)態(tài)被打破這些有害刺激,ER中出現(xiàn)蛋白折疊錯(cuò)誤以及未折疊蛋白堆積,導(dǎo)致ER功能紊亂,最終形成ERS。在ERS初期,可啟動(dòng)自我保護(hù)機(jī)制,未折疊蛋白應(yīng)答(unfold?ed protein response,UPR)調(diào)整ER的微環(huán)境[61]。UPR可激活其下游的3條信號(hào)轉(zhuǎn)導(dǎo)途徑,Ⅰ型跨膜蛋白激酶/核糖核酸內(nèi)切酶(inositol requirin enzyme 1/ribonuclease,IRE1/RSase)途徑、轉(zhuǎn)錄激活因子6(activating transcription factor 6,AFT-6)途徑和RNA依賴的蛋白激酶樣內(nèi)質(zhì)網(wǎng)激酶(PRKR-like endoplasmic reticulum kinase,PERK)途徑,參與維持細(xì)胞內(nèi)穩(wěn)態(tài)。但持續(xù)的刺激,可激活CCAAT/增強(qiáng)子結(jié)合蛋白同源蛋白(CCAAT/enhancer protein homologous protein,CHOP)和胱天蛋白酶途徑,使細(xì)胞進(jìn)入程序性凋亡或死亡[62]。近期研究表明,在狄氏劑處理的SN4741多巴胺能神經(jīng)細(xì)胞上,槲皮素可通過(guò)抑制CHOP通路,減少狄氏劑導(dǎo)致的ERS相關(guān)分子,如葡萄糖調(diào)節(jié)蛋白78(glucose-regulated protein 78,GRP78)、血紅素氧合酶1(heme oxy?genase-1,HO-1)以及真核翻譯啟動(dòng)因子2α(α unit of eukaryotic initiation factor 2,eIF2α)的產(chǎn)生[63]。而在魚藤酮誘導(dǎo)的大鼠PD模型中,槲皮素能增加細(xì)胞自噬反應(yīng),改善ERS,繼而改善細(xì)胞微環(huán)境[64]。

      2 抗炎作用

      小膠質(zhì)細(xì)胞激活導(dǎo)致的神經(jīng)炎癥在PD發(fā)病過(guò)程中扮演重要角色。正常狀態(tài)下的神經(jīng)炎癥是一種保護(hù)中樞神經(jīng)系統(tǒng)免受感染和損傷的防御機(jī)制,當(dāng)機(jī)體恢復(fù)炎癥也隨之消失[65]。但過(guò)度的小膠質(zhì)細(xì)胞激活,加速多種促炎細(xì)胞因子生成,如白細(xì)胞介素1β(interleukin-1β,IL-1β)、腫瘤壞死因子α(tumor necrosis factor-α,TNF-α)、環(huán)氧合酶2(cyclooxygenase-2,COX-2)和誘導(dǎo)型一氧化氮合酶(inducible nitric oxide synthase,iNOS)等[66-67];同時(shí)激活煙酰胺腺嘌呤二核苷酸磷酸(nicotin?amide adenine dinucleotide phosphate hydrogen,NADPH)氧化酶并介導(dǎo)氧化應(yīng)激,造成氧化損傷,促進(jìn)多巴胺神經(jīng)細(xì)胞死亡。越來(lái)越多的證據(jù)表明,抑制小膠質(zhì)細(xì)胞激活有助于抑制PD進(jìn)一步惡化。鷹嘴豆素A、柚皮苷、水飛薊素和川皮苷[78]均可顯著抑制小膠質(zhì)細(xì)胞激活,減輕黑質(zhì)區(qū)炎癥反應(yīng)[37,69-70]。而柚皮素可激活5′-磷酸腺苷激酶α(adenosine 5′-mono?phosphate-activated protein kinase-α,AMPK-α)、蛋白激酶Cδ(protein kinase Cδ,PKCδ)調(diào)控細(xì)胞因子信號(hào)傳導(dǎo)抑制蛋白3(suppressor of cytokine signaling-3,SOCS-3)抑制iNOS和COX-2的表達(dá),減少小膠質(zhì)細(xì)胞的激活[71]。丹參酮Ⅰ則可抑制小膠質(zhì)細(xì)胞中NF-κB的激活,有效減少脂多糖刺激導(dǎo)致炎癥因子如NO,TNF-α,IL-1β和IL-6;同時(shí),它也可有效抑制MPTP誘導(dǎo)小鼠黑質(zhì)區(qū)及紋狀體區(qū)域小膠質(zhì)的激活及TNF-α的產(chǎn)生,對(duì)多巴胺能神經(jīng)具有顯著的保護(hù)作用[72]。

      3 抗凋亡作用

      黑質(zhì)致密部多巴胺能神經(jīng)細(xì)胞凋亡缺失是PD的病理特征,氧化應(yīng)激和炎癥反應(yīng)均是其誘因。Bcl-2家族與線粒體功能息息相關(guān),并在胱天蛋白酶的激活及后續(xù)的細(xì)胞凋亡中扮演著重要角色[73]。Bcl-2是一種抗凋亡蛋白,可與Bcl-2相關(guān)蛋白Bax結(jié)合形成Bcl-2/Bax異二聚體,減少Bax的促凋亡作用[74]。

      楊梅酮和白楊素可增加MPP+誘導(dǎo)的神經(jīng)細(xì)胞的存活,通過(guò)反轉(zhuǎn)Bcl-2和Bax的比例失調(diào),減少胱天蛋白酶3的表達(dá)[75-76]。葛根素在MPP+誘導(dǎo)的SH-SY5Y細(xì)胞中,可激活胞內(nèi)磷脂酰肌醇激酶/蛋白 激 酶 B(phosphoinositide 3-kinase/protein kinase B,PI3K/Akt)信號(hào)通路,抑制p53,Bax,PUMA和胱天蛋白酶3等凋亡相關(guān)分子的表達(dá)[77]。在6-OHDA誘導(dǎo)的SK-N-SH細(xì)胞模型中,染料木素表現(xiàn)出抗凋亡作用,可抑制6-OHDA上調(diào)Bax的表達(dá)和下調(diào)Bcl-2蛋白和mRNA的表達(dá)[78]。在6-OH?DA誘導(dǎo)的SN4741細(xì)胞中,異甘草素處理可顯著提高Bcl-2,減少Bax和細(xì)胞色素c的釋放,而該作用可以為PI3K/Akt/PKB信號(hào)通路抑制劑所逆轉(zhuǎn)[79]。表沒(méi)食子兒茶素沒(méi)食子酸酯可減輕6-OHDA誘導(dǎo)的神經(jīng)元缺失,其作用與阻滯促凋亡基因Bax,Bad和Mdm2表達(dá)相關(guān)[80]。而蘆丁也可通過(guò)抑制Bax蛋白上升,提高Bcl-2蛋白表達(dá),以及下調(diào)凋亡相關(guān)蛋白P53的表達(dá)等作用,減少6-OHDA誘導(dǎo)的PC12細(xì)胞凋亡[81]。

      糖原合酶激酶3β(glycogen synthase kinase-3 beta,GSK-3β)是調(diào)節(jié)糖代謝的重要激酶。誘導(dǎo)Akt磷酸化,抑制GSK-3β活性可降低MPP+誘導(dǎo)的PC12細(xì)胞胱天蛋白酶3的表達(dá),從而減少細(xì)胞凋亡[82]。白楊素可通過(guò)激活A(yù)kt/GSK-3β途徑活化肌細(xì)胞增強(qiáng)因子2D(myocyte-specific enhancer factor 2D,MEF2D),減少PD小鼠多巴胺能神經(jīng)元缺失和DA減少[76]。二氫楊梅素時(shí)間依賴性增加GSK-3β的磷酸化,可保護(hù)MPP+誘導(dǎo)的神經(jīng)細(xì)胞的凋亡[83]。

      哺乳動(dòng)物西羅莫司(雷帕霉素)靶蛋白〔mam?malian target of sirolimus(Rapamycin),mTOR〕在神經(jīng)系統(tǒng)內(nèi)受到多種神經(jīng)元膜受體和通路的調(diào)控,如PI3K/Akt信號(hào)通路,其活性的改變也影響到神經(jīng)細(xì)胞的生存與凋亡[84]。柚皮苷和楊梅苷均可激活mTORC1,從而對(duì)PD模型動(dòng)物腦內(nèi)多巴胺能神經(jīng)細(xì)胞具有保護(hù)作用[69,85]。

      4 雌激素樣作用

      流行病學(xué)研究表明,男性PD的發(fā)病率高于女性[86-89],這種性別差異可能與男性缺乏雌激素有關(guān)。已有研究證明,雌激素和與雌激素樣作用化合物對(duì)PD等神經(jīng)退行性疾病有積極的作用,其神經(jīng)保護(hù)作用與絲裂原激活蛋白激酶(mitogen-activated protein kinase,MAPK)和PI3K/AKT信號(hào)通路有關(guān)[90],可上調(diào)Bcl-2表達(dá)從而拮抗細(xì)胞凋亡[91]。黃酮類化合物如蘆丁和槲皮素均具有雌激素激動(dòng)劑樣作用[92]。大豆異黃酮的雌激素作用早已被人熟知。研究證實(shí),給予大豆飲食可改善PD大鼠黑質(zhì)多巴胺能系統(tǒng)退化導(dǎo)致的認(rèn)知障礙[93]。染料木素能有效保護(hù)MPTP誘導(dǎo)的PD小鼠黑質(zhì)紋狀體多巴胺能神經(jīng)元[94],它是一種選擇性雌激素受體β激動(dòng)劑,可通過(guò)減少鈣離子內(nèi)流,抑制促凋亡因子活性,減少炎癥反應(yīng),維持線粒體的完整性,保護(hù)神經(jīng)細(xì)胞,并且這種保護(hù)作用因加入雌激素受體拮抗劑而被抑制[95]。而我們未發(fā)表的數(shù)據(jù)表明,木犀草苷和紫檀烷苷也具有雌激素樣作用,可有效激活雌激素受體α和β介導(dǎo)的信號(hào)通路激活,對(duì)MPTP誘導(dǎo)的小鼠黑質(zhì)多巴胺能神經(jīng)具有顯著保護(hù)作用。

      5 促進(jìn)神經(jīng)營(yíng)養(yǎng)因子分泌作用

      研究表明,膠質(zhì)細(xì)胞源性神經(jīng)營(yíng)養(yǎng)因子(glial cell-derived neurotrophic factor,GDNF)和腦源性神經(jīng)營(yíng)養(yǎng)因子(brain-derived neurotrophic,factor BDNF)在PD患者黑質(zhì)多巴胺能神經(jīng)元表達(dá)降低[96],而二者已被證實(shí)在PD模型動(dòng)物中有神經(jīng)保護(hù)作用。在黑質(zhì)或紋狀體直接注射GDNF可增加多巴胺纖維的密度,同時(shí)還可改善由MPTP造成的動(dòng)物運(yùn)動(dòng)異常;GDNF敲除成年小鼠表現(xiàn)出多巴胺能神經(jīng)元逐漸缺失[97]。很多黃酮類化合物可透過(guò)血腦屏障,發(fā)揮類似GDNF和BDNF的抗神經(jīng)退化的作用。芹黃素和木犀草素在小鼠黑質(zhì)紋狀體多巴胺系統(tǒng)中使BDNF水平升高[98];柚皮苷和川皮素治療MPP+造模PD大鼠,可使其黑質(zhì)致密部GDNF的水平升高[68,99];而葛根素則可有效調(diào)控6-OHDA誘導(dǎo)的大鼠黑質(zhì)BDNF升高[100]。

      6 促自噬作用

      自噬是細(xì)胞降解錯(cuò)誤折疊蛋白、損毀細(xì)胞器和其他細(xì)胞組分的自我清除過(guò)程,它對(duì)維護(hù)神經(jīng)功能正常具有重要意義。PD和自噬密切相關(guān),在PD病變神經(jīng)中往往可發(fā)現(xiàn)包含神經(jīng)黑色素和脂褐質(zhì)的自噬體[101];而在PD疾病進(jìn)程中,自噬功能失常將導(dǎo)致神經(jīng)細(xì)胞ERS增加,并促進(jìn)其凋亡。目前約有40多個(gè)自噬相關(guān)基因被確定,其中LC3在自噬體形成過(guò)程中由Ⅰ型轉(zhuǎn)化為Ⅱ型,是自噬發(fā)生的標(biāo)志蛋白之一。黃酮類物質(zhì)可有效促進(jìn)自噬,發(fā)揮神經(jīng)保護(hù)作用。如在魚藤酮誘導(dǎo)的SH-SY5Y細(xì)胞中,雷公藤紅素可有效增加LC3-Ⅱ/LC3-Ⅰ比例,降低細(xì)胞的凋亡,該作用可為自噬抑制劑3-甲基腺嘌呤(3-methyladenine,3-MA)所拮抗[102]。而在魚藤酮誘導(dǎo)的PD大鼠模型中,槲皮素可有效增強(qiáng)自噬,減輕ERS,減少神經(jīng)凋亡,改善大鼠PD癥狀[64]。

      7 結(jié)語(yǔ)

      綜上所述,藥用植物中存在多種黃酮類化合物,可以從抗氧化應(yīng)激、抗炎、抗凋亡、表現(xiàn)雌激素樣作用、分泌神經(jīng)營(yíng)養(yǎng)因子和促自噬等多方面保護(hù)多巴胺能神經(jīng)元,改善PD的運(yùn)動(dòng)障礙癥狀。目前,對(duì)黃酮類化合物治療PD的研究盡管已取得了一定的進(jìn)展,但絕大多數(shù)黃酮類化合物尚未能成為臨床PD的直接治療藥物,其主要原因可能是:①中樞神經(jīng)系統(tǒng)藥物研發(fā)的一個(gè)重要問(wèn)題是需要足夠量藥物入腦,在病灶部位發(fā)揮相關(guān)的作用。一些黃酮,如槲皮素和橙皮素等可直接透過(guò)血腦屏障,入腦保護(hù)和調(diào)節(jié)神經(jīng)[103-105],但其他多數(shù)黃酮能否入腦尚無(wú)定論。②黃酮類化合物是否以原型、代謝物或多種類型代謝物共同作用形式發(fā)揮作用也需要進(jìn)一步的研究?,F(xiàn)有的動(dòng)物模型給藥方式目前大多為經(jīng)胃給藥,而在小腸和肝中,這些黃酮可能產(chǎn)生磺化、甲基化、葡糖醛酸化,并可能被腸道菌群代謝為酚酸類物質(zhì),因此不能明確主要的藥物活性形式。③一些黃酮類化合物可直接通過(guò)作用于雌激素受體及其下游的信號(hào)通路發(fā)揮神經(jīng)保護(hù)作用,但絕大多數(shù)黃酮類化合物的直接作用靶點(diǎn)目前并不明確,多數(shù)研究均為較為下游的藥效活性研究,不能體現(xiàn)確切的作用機(jī)制。因此,在后續(xù)的研究中,需要進(jìn)一步加強(qiáng)黃酮類化合物的入腦及代謝產(chǎn)物活性研究,引進(jìn)和發(fā)展新的實(shí)驗(yàn)技術(shù)手段和方法,如黃酮類化合物抗體制備技術(shù)、小分子修飾和標(biāo)記技術(shù),并結(jié)合親和色譜技術(shù),明確黃酮類化合物分子的直接作用分子靶點(diǎn)。此外,建立中藥不同類型黃酮類化合物庫(kù),將有助于在明確分子作用靶點(diǎn)的基礎(chǔ)上,系統(tǒng)研究化合物和靶點(diǎn)之間的構(gòu)效關(guān)系,繼而闡明其神經(jīng)保護(hù)作用的物質(zhì)基礎(chǔ)和分子機(jī)制,推動(dòng)其臨床應(yīng)用,造福PD患者。

      [1]Fernandez HH.2015 update on Parkinson disease[J].Cleve Clin J Med,2015,82(9):563-568.

      [2]Stocchi F,Marconi S.Factors associated with motor fluctuations and dyskinesia in Parkinson disease:potential role of a new melevodopa plus carbidopa formulation(Sirio)[J].Clin Neurophar?macol,2010,33(4):198-203.

      [3]Borovac JA.Side effects of a dopamine agonist therapy for Parkinson′s disease:a mini-review of clinical pharmacology[J]Yale J Biol Med,2016,89(1):37-47.

      [4]Chen SS,Ma QY,Wang RL,Hu CT.Clinical study of Parkinson disease treated with Bushen Huoxue Decoction[J].China Med Her(中國(guó)醫(yī)藥導(dǎo)報(bào)),2014,11(22):99-102.

      [5]Guo YX,Li SD,Yang MH.Bushen Huoxue Granule(BSHXG)for clinical studies of Parkinson′s disease with depression[J].Global Tradit Chin Med(環(huán)球中醫(yī)藥),2014,7(4):275-278.

      [6]Yan ZC,Mai QF.Observation on efficacy of decoction ofGastrodiacombined with madopar in treament of Parkinson[J].Eval Anal Srug-Use Hosp China(中國(guó)醫(yī)院用藥評(píng)價(jià)與分析),2016,16(6):778-780.

      [7]Chen HZ,Cai YL,Zhang J,Xu GC,Ge Q,F(xiàn)ang X,et al.Clinical observation on treating 32 cases of levodopa-induced dyskinesia byGuidi Congxing[J].Clin J Tradit Chin Med(中醫(yī)藥臨床雜志),2011,23(12):1035-1036.

      [8]Yang XJ,Hong YL,Ruan KF,F(xiàn)eng Y,Zhao HB,Gao Y.Clinical research of traditional Chinese medicine in treating Parkinson′s disease and its experimental progress in raising dopamine content in brain[J].Pharmacol Clin Chin Mater Med(中藥藥理與臨床),2012,28(2):186-190.

      [9]Wang XM,Lu XS.The regulation of rhyncho?phylline on the expression levels of dopamine,superoxide dismutase and malondialdehyde in rats with Parkinson disease[J].Chin JIntegr Med Cardio-/Cerebrova Dis(中西醫(yī)結(jié)合心腦血管病雜志)2014,12:6730-6731.

      [10]Michel HE,Tadros MG,Esmat A,Khalifa AE,Abdel-Tawab AM. Tetramethylpyrazine amelio rates rotenone-induced Parkinson′s disease in rats:involvement of its anti-inflammatory and anti-apoptotic actions[J].Mol Neurobiol,2016:1-13.

      [11]Pei Y,Ma XD,Yi J,Li S,Wang SY,Ma J. Effect of Radix Angelicae Pubeascentis′s coumarins on antioxidant function and glutamic acid content of Parkinson′s disease rats[J].Chin J Gerontol(中國(guó)老年學(xué)雜志),2014,34:1272-1274.

      [12]Liu WB,Zhou J,Qu Y,Li X,Lu CT,Xie KL,et al.Neuroprotective effect of osthole on MPP+-induced cytotoxicity in PC12 cells via inhibition of mitochondrial dysfunction and ROS production[J].Neurochem Int,2010,57(3):206-215.

      [13]Chen M,Luo HQ,Lu X,Liu CW.Effects of ginkgolides on D-Glu contents in midbrain of Par?kinsonian mice[J].Lishizhen Med Mater Med Res(時(shí)珍國(guó)醫(yī)國(guó)藥),2013,24(3):614-616.

      [14]Hong Z,Wang G,Gu J,Pan J,Bai L,Zhang S,et al.Tripchlorolide protects against MPTP-induced neurotoxicity in C57BL/6 mice[J].Eur J Neuro?sci,2007,26(6):1500-1508.

      [15]Zhou T,Zu G,Zhang X,Wang X,Li S,Gong X,et al.Neuroprotective effects of ginsenoside Rg1 through the Wnt/β-catenin signaling pathway in bothin vivoandin vitromodels of Parkinson′s disease[J].Neuropharmacology,2016,101:480-489.

      [16]Meng XB,Sun GB,Wang M,Sun J,Qin M,Sun XB. P90RSK and Nrf2 activation via mek1/2-erk1/2 pathways mediated by notoginsenoside R2 to prevent 6-hydroxydopamine-induced apoptotic death in SH-SY5Y cells[J].Evid Based Comple?ment Alternat Med,2013,2013:971712.

      [17]Cao Q,Wu H,Zhang BB,Wu XJ.Progress in prevention and treatment of neurodegenerative diseases with flavonoids[J].Chin J Pharmacol Toxicol(中國(guó)藥理學(xué)與毒理學(xué)雜志),2015,29(3):457-463.

      [18]Es-Safi NE,Ghidouche S,Ducrot PH.Flavo?noids:hemisynthesis,reactivity,characteriza?tion and free radical scavenging activity[J].Mole?cules,2007,12(9):2228-2258.

      [19]VauzourD, Vafeiadou K, Rice-Evans C,Williams RJ,Spencer JP.Activation of pro-survival Akt and ERK1/2 signalling pathways underlie the anti-apoptotic effects of flavanones in cortical neurons[J].J Neurochem,2007,103(4):1355-1367.

      [20]Mateen S,Raina K,Agarwal R.Chemopreventiveand anti-cancer efficacy of silibinin against growth and progression of lung cancer[J].Nutr Cancer,2013,65(Suppl 1):3-11.

      [21]Han MH,Lee WS,Nagappan A,Hong SH,Jung JH,Park C,et al.Flavonoids isolated from flowers ofLonicerajaponicaThunb.inhibitinflammatory responses in BV2 microglial cells by suppressing TNF-α and IL-β through PI3K/Akt/NF-κB signaling pathways[J].Phytother Res,2016,30(11):1824-1832.

      [22]Lee JS,Kim HJ,Lee YS.A new anti-HIV flavo?noid glucuronide fromChrysanthemum morifolium[J].Planta Med,2003,69(9):859-861.

      [23]Dastidar SG,Manna A,Kumar KA,Mazumdar K,Dutta NK,Chakrabarty AN,et al.Studies on the antibacterial potentiality of isoflavones[J].Int J Antimicrob Agents,2004,23(1):99-102.

      [24]Michihara S,Tanaka T,Uzawa Y,Moriyama T,Kawamura Y.Puerarin exerted anti-osteoporotic action independent of estrogen receptor-mediated pathway[J].J Nutr Sci Vitaminol(Tokyo),2012,58(3):202-209.

      [25]García-Díaz JA,Navarrete-Vázquez G,García-Jiménez S,Hidalgo-Figueroa S,Almanza-Pérez JC,Alarcón-Aguilar FJ,et al.Antidiabetic,anti?hyperlipidemic and anti-inflammatory effects of tilianin in streptozotocin-nicotinamide diabetic rats[J].Biomed Pharmacother,2016,83:667-675.

      [26]Commenges D,Scotet V,Renaud S,Jacqmin-Gadda H,Barberger-Gateau P,Dartigues JF. Intake of flavonoids and risk of dementia[J].Eur J Epidemiol,2000,16(4):357-363.

      [27]Huang P,Liu LQ,Ha Y,Zeng Y.Advances in the pharmacological effects ofGinkgo bilobaextract on central nervous system[J].Chin Hosp Pharm J(中國(guó)醫(yī)院藥學(xué)雜志),2005,25(6):553-554.

      [28]Youdim KA,Joseph JA.A possible emerging role of phytochemicals in improving age-related neuro?logical dysfunctions:a multiplicity of effects[J].Free Radic Biol Med,2001,30(6):583-594.

      [29]Jellinger KA.Cell death mechanisms in neurode?generation[J].J Cell Mol Med,2001,5(1):1-17.

      [30]Floyd RA,Carney JM.Free radical damage to protein and DNA:mechanisms involved and relevant observations on brain undergoing oxidative stress[J].Ann Neurol,1992,32(Suppl):S22-S27.

      [31]Yan Y,Ding QL.Advances in the mechanistic study on neuroprotective actions of the monomers and active components from Chinese traditional medicines[J].Prog Pharmaceuti Sci(藥學(xué)進(jìn)展),2007,31(4):154-159.

      [32]Magalingam KB,Radhakrishnan A,Haleagrahara N. A bioflavonoid antioxidant protects rat pheochro?mocytoma(PC-12)cells against 6-hydroxydopamine(6-OHDA)-induced neurotoxicity[J].Int J Mol Med,2013,32(1):235-240.

      [33]Magalingam KB,Radhakrishnan A,Haleagrahara N. Protective effects of quercetin glycosides,rutin,and isoquercetrin against 6-hydroxydopamine(6-OHDA)-induced neurotoxicity in rat pheochromocytoma(PC-12)cells[J].Int J Immunopathol Pharmacol,2016,29(1):30-39.

      [34]Tamilselvam K,Braidy N,Manivasagam T,Essa MM,Prasad NR,Karthikeyan S,et al.Neuroprotective effects of hesperidin,a plant flavanone,on rote?none-induced oxidative stress and apoptosis in a cellular model for Parkinson′s disease[J].Oxid Med Cell Longev,2013,2013:102741.

      [35]Ishige K,Schubert D,Sagara Y.Flavonoids pro?tect neuronal cells from oxidative stress by three distinct mechanisms[J].Free Radic Biol Med,2001,30(4):433-446.

      [36]Wang YQ,Wang MY,F(xiàn)u XR,Peng PY,Gao GF,F(xiàn)an YM,et al.Neuroprotective effects of ginkgetin against neuroinjury in Parkinson′s disease model induced by MPTP via chelating Iron[J].Free Radic Res,2015,49(9):1069-1080.

      [37]Wang J,He C,Wu WY,Chen F,Wu YY,Li WZ,et al.Biochanin A protects dopaminergic neurons against lipopolysaccharide-induced damage and oxidative stress in a rat model of Parkinson′s disease[J].Pharmacol Biochem Behav,2015,138:96-103.

      [38]Marella M,Seo BB,Yagi T,Matsuno-Yagi A. Parkinson′s disease and mitochondrial complexⅠ:a perspective on the Ndi1 therapy[J].J Bioenerg Biomembr,2009,41(6):493-497.

      [39]N?sstr?m T,Wahlberg T,Karlsson M,Nikolajeff F,Lannfelt L,Ingelsson M,et al.The lipid peroxida?tion metabolite 4-oxo-2-nonenal cross-links alphasynuclein causing rapid formation of stable oligo?mers[J].Biochem Biophys Res Commun,2009,378(4):872-876.

      [40]Chen C,Yu R,Owuor ED,Tony Kong AN.Acti?vation of antioxidant-response element(ARE),mitogen-activated protein kinases(MAPKs)and caspases by major green tea polyphenol compo?nents during cell survival and death[J].ArchPharm Res,2000,23(6):605-612.

      [41]van Loo G,Saelens X,van Gurp M,MacFarlane M,Martin SJ,Vandenabeele P.The role of mito?chondrial factors in apoptosis:a Russian roulette with more than one bullet[J].Cell Death Differ,2002,9(10):1031-1042.

      [42]Schapira AH.Mitochondrial dysfunction in Parkin?son′s disease[J].Cell Death Differ,2007,14(7):1261-1266.

      [43]Kawai H,Makino Y,Hirobe M,Ohta S.Novel endogenous1,2,3,4-tetrahydroisoquinoline deriv?atives:uptake by dopamine transporter and activity to induce parkinsonism[J].J Neurochem,1998,70(2):745-751.

      [44]Bulua AC,Simon A,Maddipati R,Pelletier M,Park H,Kim KY,et al.Mitochondrial reactive oxygen species promote production of proinflam?matory cytokines and are elevated in TNFR1-associated periodic syndrome(TRAPS)[J].J Exp Med,2011,208(3):519-533.

      [45]Valenti D,De Rasmo D,Signorile A,Rossi L,de Bari L,Scala I,et al.Epigallocatechin-3-gallate prevents oxidative phosphorylation deficit and pro?motes mitochondrial biogenesis in human cells from subjects with Down′s syndrome[J].Biochim Biophys Acta,2013,1832(4):542-552.

      [46]Karuppagounder SS,Madathil SK,Pandey M,Haobam R,Rajamma U,Mohanakumar KP. Quercetin up-regulates mitochondrial complex-Ⅰactivity to protect against programmed cell death in rotenone model of Parkinson′s disease in rats[J].Neuroscience,2013,236:136-148.

      [47]Liu WH,Kong SZ,Xie QF,Su JY,Li WJ,Guo HZ,et al.Protective effects of apigenin against 1-methyl-4-phenylpyridinium ion-induced neuro?toxicity in PC12 cells[J].Int J Mol Med,2015,35(3):739-746.

      [48]Cai ZB,Tao K,Wang B,Gao GD,Yang Q. Myricitrin attenuated MPP+-induced apoptosis in SN4741 cells by inhibiting mitochondrial dysfunction[J].Chin J Neuroanat(神經(jīng)解剖學(xué)雜志),2015,31(5):579-583.

      [49]Lee Y,Park HR,Chun HJ,Lee J.Silibinin pre?vents dopaminergic neuronal loss in a mouse model of Parkinson′s disease via mitochondrial stabilization[J].J Neurosci Res,2015,93(5):755-765.

      [50]Ward R,Zucca FA,Duyn JH,Crichton RR,Zecca L. The role of iron in brain ageing and neurodegener?ative disorders[J].Lancet Neurol,2014,13(10):1045-1060.

      [51]Chen H,Wang X,Wang M,Yang L,Yan Z,Zhang Y,et al.Behavioral and neurochemical deficits in aging rats with increased neonatal iron intake:silibinin′s neuroprotection by maintaining redox balance[J].Front Aging Neurosci,2015,7:206.

      [52]Stichel CC,Augustin M,Kühn K,Zhu XR,Engels P,Ullmer C,et al.Parkin Expression in the adult mouse brain[J].Eur J Neurosci,2000,12(12):4181-4194.

      [53]Akundi RS,Huang Z,Eason J,Pandya JD,Zhi L,Cass WA,et al.Increased mitochondrial calcium sensitivity and abnormal expression of innate immunity genes precededo paminergic defects inPink1-deficient mice[J].PLoS One,2011,6(1):e16038.

      [54]Krebiehl G,Ruckerbauer S,Burbulla LF,Kieper N,Maurer B,Waak J,et al.Reduced basal autophagy and impaired mitochondrial dynamics due to loss ofParkinson′s disease-associated protein DJ-1[J].PLoS One,2010,5(2):e9367.

      [55]KampF, ExnerN,LutzAK,WenderN,Hegermann J,Brunner B,et al.Inhibition of mito?chondrial fusion by α-synuclein is rescued by PINK1,Parkin and DJ-1[J].EMBO J,2010,29(20):3571-3589.

      [56]Cai ZB,Zeng WJ,Tao K,Lu FF,Gao GD,Yang Q.Myricitrin alleviates MPP+-induced mito?chondrial dysfunction in a DJ-1-dependent manner in SN4741 cells[J].Biochem Biophys Res Commun,2015,458(2):227-233.

      [57]Zhu M,Han S,F(xiàn)ink AL.Oxidized quercetin inhibits α-synuclein fibrillization[J].BiochimBiophys Acta,2013,1830(4):2872-2881.

      [58]Lu JH,Ardah MT,Durairajan SS,Liu LF,Xie LX,F(xiàn)ong W,et al.Baicalein inhibits formation of alpha-synuclein oligomers within living cells and prevents a beta peptide fibrillation and oligomeri?sation[J].Chembiochem,2011,12(4):615-624.

      [59]Korschgen CE,Gibbs HC,Mendall HL.Avian cholera in eider ducks in Maine[J].J Wildl Dis,1978,14(2):254-258.

      [60]Fewell SW,Travers KJ,Weissman JS,Brodsky JL. The action of molecular chaperones in the early secretory pathway[J].Annu Rev Genet,2001,35:149-191.

      [61]Kaufman RJ.Orchestrating the unfolded protein response in health and disease[J].J Clin Invest,2002,110(10):1389-1398.

      [62]Kim I,Xu W,Reed JC.Cell death and endoplas?mic reticulum stress:disease relevance and ther?apeutic opportunities[J].Nat Rev Drug Discov,2008,7(12):1013-1030.

      [63]Park E,Chun HS.Protective effects of quercetin on dieldrin-induced endoplasmic reticulum stress and apoptosis in dopaminergic neuronal cells[J].Neuroreport,2016,27(15):1140-1146.

      [64]El-Horany HE,El-Latif RN,ElBatsh MM,Emam MN. Ameliorative effect of quercetin on neurochemical and behavioral deficits in rotenone rat model of Parkinson′s disease: modulating autophagy(quercetin on experimental Parkinson′s disease)[J].J Biochem Mol Toxicol,2016,30(7):360-369.

      [65]Glass CK,Saijo K,Winner B,Marchetto MC,Gage FH.Mechanisms underlying inflammation in neurodegeneration[J].Cell,2010,140(6):918-934.

      [66]Largo R,Alvarez-Soria MA,Díez-Ortego I,Calvo E,Sánchez-Pernaute O,Egido J,et al.Glucosamine inhibits IL-1 beta-induced NFkappaB activation in human osteoarthritic chondrocytes[J].Osteoarthritis Cartilage,2003,11(4):290-298.

      [67]Raza SS,Khan MM,Ahmad A,Ashafaq M,Islam F,Wagner AP,et al.Neuroprotective effect of naringenin is mediated through suppression of NF-κB signaling pathway in experimental stroke[J].Neuroscience,2013,230:157-171.

      [68]Jeong KH,Jeon MT,Kim HD,Jung UJ,Jang MC,Chu JW,et al.Nobiletin protects dopaminergic neurons in the 1-methyl-4-phenylpyridinium-treated rat model of Parkinson′s disease[J].J Med Food,2015,18(4):409-414.

      [69]Kim HD,Jeong KH,Jung UJ,Kim SR.Naringin treatment induces neuroprotective effects in a mouse model of Parkinson′s diseasein vivo,but not enough to restore the lesioned dopaminergic system[J].J Nutr Biochem,2016,28:140-146.

      [70]Lee Y,Chun HJ,Lee KM,Jung YS,Lee J.Silib?inin suppresses astroglial activation in a mouse model of acute Parkinson′s disease by modulating the ERK and JNK signaling pathways[J].Brain Res,2015,1627:233-242.

      [71]Wu LH,Lin C,Lin HY,Liu YS,Wu CJ,Tsai CF,et al.Naringenin suppresses neuroinflammatory responses through inducing suppressor of cyto?kine signaling 3 expression[J].Mol Neurobiol,2016,53(2):1080-1091.

      [72]Wang S,Jing H,Yang H,Liu Z,Guo H,Chai L,et al.Tanshinone I selectively suppresses proinflammatory genes expression in activated microglia and prevents nigrostriatal dopaminergic neurode?generation in a mouse model of Parkinson′s dis?ease[J].J Ethnopharmacol,2015,164:247-255.

      [73]Renault TT,Teijido O,Antonsson B,Dejean LM,Manon S.Regulation of Bax mitochondrial local?ization by Bcl-2 and Bcl-x(L):keep your friends close but your enemies closer[J].Int J Biochem Cell Biol,2013,45(1):64-67.

      [74]Korsmeyer SJ,Shutter JR,Veis DJ,Merry DE,Oltvai ZN.Bcl-2/Bax:A rheostat that regulates an anti-oxidant pathway and cell death[J].Semin Cancer Biol,1993,4(6):327-332.

      [75]Zhang K,Ma ZG,Wang J,Xie AM,Xie JX. Myricetin attenuated MPP+-induced cytotoxicity by anti-oxidation and inhibition of MKK4 and JNK activation in MES23.5 cells[J].Neuropharmacology,2011,61(1/2):329-335.

      [76]Guo BJ,Zheng CY,Cai W,Cheng JA,Li HT,Sun YW,et al.Multifunction of chrysin in Parkinson′s model:anti-neuronal apoptosis,neuroprotection via activation of MEF2D,and inhibition of mono?amine oxidase-B[J].J Agric Food Chem,2016,64(26):5324-5333.

      [77]Zhu GQ,Wang XC,Wu SB,Li QL.Involvement of activation of PI3K/Akt pathway in the protective effects of puerarin against MPP+-induced human neuroblastoma SH-SY5Y cell death[J].Neuro?chem Int,2012,60(4):400-408.

      [78]Gao QG,Xie JX,Wong MS,Chen WF.IGF-I Receptor signaling pathway is involved in the neuroprotective effect of genistein in the neuro?blastoma SK-N-SH cells[J].Eur J Pharmacol,2012,677(1/3):39-46.

      [79]Hwang CK,Chun HS.Isoliquiritigenin isolated from licoriceGlycyrrhizauralensisprevents 6-hydroxydopamine-induced apoptosis in dopami?nergic neurons[J].Biosci Biotechnol Biochem,2012,76(3):536-543.

      [80]Levites Y,Amit T,Youdim MB,Mandel S. Involvement of protein kinase C activation and cell survival/cell cycle genes in green tea polyphenol(-)-epigallocatechin 3-gallate neuroprotective action[J].J Biol Chem,2002,277(34):30574-30580.

      [81]Guo DJ,Li F,Yu PH,Chan SW.Neuroprotec?tive effects of luteolin against apoptosis induced by 6-hydroxydopamine on rat pheochromocytoma PC12 cells[J].Pharm Biol,2013,51(2):190-196.

      [82]Wu Y,Shang Y,Sun SG,Liang HF,Liu RA.Erythropoietin prevents PC12 cells from 1-methyl-4-phenylpyridinium ion-induced apoptosis via the Akt/GSK-3 beta/caspase-3 mediated signaling pathway[J].Apoptosis,2007,12(8):1365-1375.

      [83]Ren ZX,Zhao YF,Cao T,Zhen XC.Dihydro?myricetin protects neurons in an MPTP-induced mode l of Parkinson′s disease by suppressing glycogen synthase kinase-3 beta activity[J].Acta Pharmacol Sin,2016,37(10):1315-1324.

      [84]Wu MM,Yuan YH,Chen NH.Research progress in the mTOR signaling pathway and neurodegen?erative disease[J].Chin Pharmacol Bull(中國(guó)藥理學(xué)通報(bào)),2011,27(11):1481-1483.

      [85]Kim HD,Jeong KH,Jung UJ,Kim SR.Myricitrin ameliorates 6-hydroxydopamine-induced dopami?nergic neuronal loss in the substantia nigra of mouse brain[J].J Med Food,2016,19(4):374-382.

      [86]Mayeux R,Denaro J,Hemenegildo N,Marder K,Tang MX,Cote LJ,et al.A population-based investigation of Parkinson′s disease with and without dementia.Relationship to age and gender[J].Arch Neurol,1992,49(5):492-497.

      [87]Bower JH,Maraganore DM,McDonnell SK,Rocca WA.Incidence and distribution of parkin?sonism in Olmsted County,Minnesota,1976-1990[J].Neurology,1999,52(6):1214-1220.

      [88]Baldereschi M,Di Carlo A,Rocca WA,Vanni P,Maggi S,Perissinotto E,et al.Parkinson′s disease and parkinsonism in a longitudinal study:two-fold higher incidence in men.ILSA working group.Italian longitudinal study on aging[J].Neurology,2000,55(9):1358-1363.

      [89]Wooten GF,Currie LJ,Bovbjerg VE,Lee JK,Patrie J.Are men at greater risk for Parkinson′s disease than women?[J].J Neurol Neurosurg Psychiatry,2004,75(4):637-639.

      [90]Singer CA,F(xiàn)igueroa-Masot XA,Batchelor RH,Dorsa DM.The mitogen-activated protein kinase pathway mediates estrogen neuroprotection after glutamate toxicity in primary cortical neurons[J].J Neurosci,1999,19(7):2455-2463.

      [91]Liu LX,Chen WF,Xie JX,Wong MS.Neuropro?tective effects ofgenistein on dopaminergic neurons in the mice model of Parkinson′s disease[J].Neurosci Res,2008,60(2):156-161.

      [92]Nordeen SK,Bona BJ,Jones DN,Lambert JR,Jackson TA.Endocrine disrupting activities of the flavonoid nutraceuticals luteolin and quercetin[J].Horm Cancer,2013,4(5):293-300.

      [93]Sarkaki A,Badavi M,Aligholi H,Moghaddam AZ. Preventive effects of soy meal(+/-isoflavone)on spatial cognitive deficiency and body weight in an ovariectomized animal model of Parkinson′s disease[J].Pak J Biol Sci,2009,12(20):1338-1345.

      [94]Yang YA Dong D,Gao Q,Gui N,Chen WE,Ang NF.The protective effect of genistein on dopaminergic neurons in mouse modelof parkinson′s disease[J].Acta Acad Med Qingdao Univ(青島大學(xué)醫(yī)學(xué)院學(xué)報(bào)),2008,44(3):195-197.

      [95]McDowell ML,Das A,Smith JA,Varma AK,Ray SK,Banik NL.Neuroprotective effects of ge?nistein in VSC4.1 motoneurons exposed to acti?vated microglial cytokines[J].Neurochem Int,2011,59(2):175-184.

      [96]Chauhan NB,Siegel GJ,Lee JM.Depletion of glial cell line-derived neurotrophic factor in substantia nigra neurons of Parkinson′s disease brain[J].J Chem Neuroanat,2001,21(4):277-288.

      [97]Nam JH,Leem E,Jeon MT,Jeong KH,Park JW,Jung UJ,et al.Induction of GDNF and BDNF by hRheb(S16H)transduction of SNpc neurons:neuroprotective mechanisms of hRheb(S16H)in a model of Parkinson′s disease[J].Mol Neurobiol,2015,51(2):487-499.

      [98]Patil SP,Jain PD,Sancheti JS,Ghumatkar PJ,Tambe R,Sathaye S.Neuroprotective and neuro?trophic effects of apigenin and luteolin in MPTP induced parkinsonism in mice[J].Neuropharmacology,2014,86:192-202.

      [99]Leem E,Nam JH,Jeon MT,Shin WH,Won SY,Park SJ,et al.Naringin protects the nigrostriatal dopaminergic projection through induction of GDNF in a neurotoxin model of Parkinson′s disease[J].J Nutr Biochem,2014,25(7):801-806.

      [100]Li R,Liang T,Xu L,Zheng N,Zhang K,Duan X. Puerarin attenuates neuronal degeneration in the substantia nigra of 6-OHDA-lesioned rats through regulating BDNF expression and activating the Nrf2/ARE signaling pathway[J].BrainRes,2013,1523:1-9.

      [101]Xilouri M,Vogiatzi T,Vekrellis K,Stefanis L. Alpha-synuclein degradation by autophagic pathways-a potentialkey to Parkinson′s disease pathogenesis[J].Autophagy,2008,4(7):917-919.

      [102]Deng YN,Shi J,Liu J,Qu QM.Celastrol protects human neuroblastoma SH-SY5Y cells from rotenone-induced injury through induction ofautophagy[J].Neurochem Int,2013,63(1):1-9.

      [103]Youdim KA,Qaiser MZ,Begley DJ,Rice-Evans CA,Abbott NJ.Flavonoid permeability across anin situmodel of the blood-brain barrier[J].Free Radic Biol Med,2004,36(5):592-604.

      [104]Peng HW,Cheng FC,Huang YT,Chen CF,Tsai TH.Determination of naringenin and its glucuro?nide conjugate in rat plasma and brain tissue by high-performance liquid chromatography[J].J Chromatogr B Biomed Sci Appl,1998,714(2):369-374.

      [105] Abd El Mohsen MM,Kuhnle G,Rechner AR,Schroeter H,Rose S,Jenner P,et al.Uptake and metabolism of epicatechin and its access to the brain after oral ingestion[J].Free Radic Biol Med,2002,33(12):1693-1702.

      Flavonoids from medicinal plants in prevention and treatment of Parkinson disease:advances and prospection on pharmacology

      QIN Li-yue,WU Xiao-jun
      (Shanghai Key Laboratory of Complex Prescriptions,Institute of Chinese Materia Medica,Shanghai University of Traditional Chinese Medicine,Shanghai 201203,China)

      Parkinson disease(PD)is a common neurodegenerative disease in the central nervous system,but the pathogenesis remains unclear at present.Some flavonoids have been found to be able to pass through the blood-brain barrier,improve the micro-environment in central nervous system and exert neuroprotective effect.A large number of researches showed that flavonoids have beneficial potential on PD,which improve the dyskinesia of PD and prevent the loss of dopaminergic neurons in substantia nigra compacta by antioxidation,anti-inflammation,anti-apoptosis,and autophagy induction,promoting the secretion of neurotrophic factors and action as phytoestrogens.This article mainly reviews the multiple effects of flavonoid compounds in the prevention of PD so as to provide a reference for the development of PD therapeutic drugs.

      Parkinson disease;flavonoids;oxidative stress;cell apoptosis;autophagy;neuro?trophic factor;phytoestrogens

      WU Xiao-jun,E-mail:xiaojunwu320@126.com,Tel:(021)51322578

      R971

      A

      1000-3002-(2016)11-1125-11

      10.3867/j.issn.1000-3002.2016.11.001

      Foundation item:The project supported by National Natural Science Foundation of China(81673626);Shanghai Eastern Scholar Program(2013-59);and Shanghai E-research Institute of Bioactive Constituent in TCM Plan

      2016-09-29 接受日期:2016-10-31)

      (本文編輯:齊春會(huì))

      國(guó)家自然科學(xué)基金(81673626);上海高校特聘教授(東方學(xué)者)崗位計(jì)劃(2013-59);上海高校中藥藥效物質(zhì)E研究院項(xiàng)目

      秦力悅,碩士研究生,主要從事中藥神經(jīng)藥理學(xué)研究,E-mail:qinliyue1120@163.com

      吳曉俊,E-mail:xiaojunwu320@126.com,Tel:(021)51322578

      猜你喜歡
      黑質(zhì)神經(jīng)細(xì)胞黃酮類
      熊果酸減輕Aβ25-35誘導(dǎo)的神經(jīng)細(xì)胞氧化應(yīng)激和細(xì)胞凋亡
      中成藥(2021年5期)2021-07-21 08:39:04
      MS-DAIL聯(lián)合MS-FINDER鑒定中藥黃酮類化合物
      帕金森病模型大鼠黑質(zhì)磁共振ESWAN序列R2*值與酪氨酸羥化酶表達(dá)相關(guān)性的研究
      HPLC法同時(shí)測(cè)定白梅花中6種黃酮類成分
      中成藥(2018年9期)2018-10-09 07:18:46
      帕金森病患者黑質(zhì)的磁共振成像研究進(jìn)展
      1H-MRS檢測(cè)早期帕金森病紋狀體、黑質(zhì)的功能代謝
      磁共振成像(2015年7期)2015-12-23 08:53:04
      補(bǔ)腎活血顆粒對(duì)帕金森病模型大鼠黑質(zhì)紋狀體bcl-2、bax表達(dá)的影響
      操控神經(jīng)細(xì)胞“零件”可抹去記憶
      Hoechst33342/PI雙染法和TUNEL染色技術(shù)檢測(cè)神經(jīng)細(xì)胞凋亡的對(duì)比研究
      NF-κB介導(dǎo)線粒體依賴的神經(jīng)細(xì)胞凋亡途徑
      安溪县| 榆中县| 阜宁县| 灌云县| 安塞县| 东明县| 游戏| 新建县| 哈密市| 河间市| 内江市| 镇远县| 滕州市| 永昌县| 修水县| 呼和浩特市| 响水县| 会东县| 丘北县| 宁河县| 连云港市| 图木舒克市| 南部县| 兴安县| 永寿县| 财经| 兴城市| 平原县| 灵川县| 巩义市| 介休市| 读书| 曲松县| 石渠县| 乌兰县| 平山县| 遂宁市| 河南省| 蒙自县| 兴安盟| 漾濞|