• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Feasibility study of tar sands conditioning for earth pressure balance tunnellingD.Martinellia,*,D.Peilaa,E.Campab

    2015-10-09 07:10:00DIATIPolitecnicodiTorinoCorsoDucdegliAbruzzi24Torino10129Itly

    DIATI-Politecnico di Torino,Corso Duc degli Abruzzi 24,Torino,10129,Itly

    bAstaldi SpA,Via G.V.Bona 65,Roma,00156,Italy

    Feasibility study of tar sands conditioning for earth pressure balance tunnellingD.Martinellia,*,D.Peilaa,E.Campab

    aDIATI-Politecnico di Torino,Corso Duca degli Abruzzi 24,Torino,10129,Italy

    bAstaldi SpA,Via G.V.Bona 65,Roma,00156,Italy

    A R T I C L E I N F O

    Article history:

    in revised form

    1 September 2015

    Accepted 10 September 2015

    Available online xxx

    Tunnelling

    Earth pressure balance(EPB)

    Soil conditioning

    Tar sands

    Laboratory test

    A B S T R A C T

    This paper presents the results of laboratory test on the feasibility of soil conditioning for earth pressure balance(EPB)excavation in a tar sand,which is a natural material never studied in this respect.The laboratory test performed is based on a procedure and methods used in previous studies with different types of soils,but for this special complex material,additional tests are also conducted to verify particular properties of the tar sands,such as the tilt test and vane shear test usually used in cohesive materials,and a direct shear test.The laboratory test proves that the test procedure is applicable also to this type of soil and the conditioned material can be considered suitable for EPB excavations,although it is necessary to use a certain percentage of fine elements(filler)to create a material suitable to be mixed with foam.The test results show that the conditioned material fulfils the required standard for an EPB application.

    ?2015 Institute of Rock and Soil Mechanics,Chinese Academy of Sciences.Production and hosting by

    Elsevier B.V.All rights reserved.

    1.Introduction

    Earth pressure balance(EPB)shield machines have been used for tunnelling excavation in many different types of soils thanks to the use of soil conditioning agents.These agents modify the properties of the soil into that of a plastic paste,thus permitting the homogeneous flow of the excavated soil from the tunnel face through the bulk chamber and the screw conveyor,the optimal control of the face pressure,the creation of spoil suitable to be transported on a conveyor belt,the prevention of water inflow,the reductions of the cutter head and screw conveyor torque and of the friction between metallic parts and the soil and,finally,the reduction of wear(Merritt and Mair,2006;Vinai et al.,2007;Borio et al.,2010;Thewes and Budach,2010;Herrenknecht et al.,2011;Barbero et al.,2012;Peila,2014).Several studies have investigated the possibility of conditioning and the chemical materials to be used in different types of soils,mainly subdivided into three groups:cohesionless soils(sand and gravel),silts and clays,and rock masses.The various researches have set up different laboratory procedures for these achievements before and after soil conditioning,as stated in Peila(2014)and Thewes and Budach(2010)for cohesionless soils,in Thewes and Burger(2005),Zumsteg et al.(2012)and Hollmann and Thewes(2013)for clay,in Peila et al.(2013)and Martinelli et al.(2015)for rock mass.

    All these researches suggested that before the EPB shield starts to work,it is strongly recommended to carry out laboratory tests to check if the soil can or cannot be conditioned and to provide an estimate of the conditioning agent types(mainly foam and polymers)and sets.Sometimes the use of fillers is required in order to artificially modify the particle size distribution of the natural soil, thus allowing the conditioning agents to work properly.These fillers are usually bentonite or carbonate submillimetric particles mixed in the soil as slurries.

    Excavation through layers of tar sands,which are sandy soils containing a variable amount of hydrocarbons,is a rare but very critical case in some areas in the world,such as in the Metro of Los Angeles,and it has never been studied with reference to the EPB tunnelling conditioning process.Understanding the conditioning of this type of complex material at laboratory scale assumes an interesting scientific and technical aspect.This assessment can be done using as a reference the same procedure used for other types of soils,but taking into account the specificity of this natural material(the hydrocarbon content and its interference with the conditioning agents,influence of temperature,etc.).

    The mechanical behaviour of the tar sand is temperaturedependent and its rheology is influenced by the tar content and properties,which can interact with the conditioning material in different ways.Moreover,the infusion of tar reduces the permeability of the material transforming the sand,which can usually be easily mixed with the foam(Milligan,2000;Merritt et al.,2003;Peila et al.,2007;Vinai et al.,2007;Thewes and Budach,2010;Zumsteg et al.,2013a,b)into a stronger material similar to acold-mix asphalt mixture(Anochie-Boateng and Tutumluer,2009, 2012).This aspect can be problematic in the conditioning process, since the reduced capability of the material to absorb and to be mixed with liquids and foam prevents the creation of a material suitable for EPB tunnelling,and this is the main goal of the research.

    Fig.1.Picture of the soil tested in the laboratory.It is possible to see the sand aggregated in blocky elements.

    2.Laboratory test

    The test methods and interpretation schemes usually used have been updated and improved in this research,and the testprocedure has been applied to tar sand samples to check its feasibility.

    2.1.Soil tested

    The soil tested in the laboratory is a natural sand with a relevant tar infusion(Fig.1).It was initially tested for bitumen content(AASHTO T 308-10,2010)whichwas found tobe equal to13%,while the water content is 1.4%.After separating the bitumen from the sand by burning it in a furnace,washed sieve analysis tests were conducted to determine particle size distributions,as shown in Fig.2(ASTM D422-07,2007).The sand is uniformly graded from fine to medium with particle sizes ranging from 0.01 mm to 5 mm.

    2.2.Test procedure

    The laboratory studies were carried out on the natural tar sands following an already established procedure(Peila,2014),but,for this special case,as the temperature at tunnel depth is expected to be up to 45°C,tests were conducted also on heated material.At this temperature,the natural material becomes more fluid and the cementation effect of the grains is reduced due to the partial melting of the tar in the mass(Fig.3).

    The first step of the research consists of determining the best conditioning parameters through a slump test,which can be assessed by a fall to the cone of the magnitude of 15-20 cm,and a reduced release of water and foam from the mass is required.A comparative table for the qualitative assessment of the mix was developed by Peila et al.(2009),as reported in Fig.4.

    Fig.2.Particle size distribution of the sand compared with the range of application of EPB(1 bar=100 kPa)(Herrenknecht et al.,2011).

    The most important parameters to investigate and assess soil conditioning are:(i)the foam injection ratio(FIR),representing the percentage in volume of foam added to the soil;(ii)the foam expansion ratio(FER),representing the ratio between the obtained volumeoffoamandthevolumeofgenerationfluid(water+foaming agent);(iii)the percentage of free water added to the material(wadd);and(iv)the slurry injection ratio(SIR),representing the percentage in volume of slurry/filler added to the soil.

    Fig.3.Example of conditioned soil with a conditioning set that gave an optimal slump with foam C at 20°C(a)and 45°C(b).The pictures show the difference of behaviour of the conditioned masses.At higher temperature,the material in(b)appears more pasty and with less large elements.

    The foam for this research is produced with the foam generator devicealready describedinVinaietal.(2007)andPeilaetal.(2009). The foaming agents(surfactants)used are three standard commercial products,named A,B and C.To produce the conditioned sample and perform the slump test requires the following steps:

    (1)A quantity of 7-8 kg of soil is placed in the mixing device.

    (2)A quantity of filler/polymer/bentonite suspension(previously mixed with a mechanical stirrer)and water is added to the soil as required in the conditioning set to be tested.

    (3)The foam with the required FER is mixed with the soil at the FIR to be tested.

    (4)The material obtained is then placed in a standard Abrams cone(ASTM C143-12,2012)which is lifted immediately.The drop of the material is then measured and the required technical aspect of the mass is checked in order to verify the actual result of the test as assessed by Peila et al.(2009).Avane test is then carried out in the conditioned soil.

    Moreover,the particular mechanical behaviour of the studied material required additional tests in order to assess the suitable conditioning.To verify the adhesion between the soil and the metallic part,a tilt test procedure to assess the tilt angle value was used(Fig.5):

    (1)The sample is placed between the tilt plane and an aluminium element(100 mm×100 mm),in order to create an interface between the two metal plates.

    (2)The block is loaded for 1 min with two loads of 3 kg and 10 kg(equivalent to a normal pressure of 3 kPa and 10 kPa).

    (3)The plane is gradually tilted until sliding of the block occurs.

    As the presence of the tar transforms the sand,which is usuallya frictional medium,into a pseudo-cohesive material,a field vane shear tester as shown in Fig.6(ASTM D2573-08,2008)was used to evaluate the undrained shear strength of the natural and conditioned soils immediately after the slump test.For this test the material was inserted into a cylindrical steel container and pressed for 1 minwith a pressureof 10 kPa.This testgives rapidlyimportant indications of the shear strength of the conditioned material,which has to be as low as possible for the EPB tunnelling process.

    Finally,for the most suitable conditioning set chosen according to the previously described tests,a direct shear test was performed(ASTM D3080-11,2011)in order to confirm the obtained results and the mechanical behaviour of the conditioned mass when referring to the natural soil.

    2.3.Discussion of test results

    Slump tests with different values of wadd,FIR,FER and SIR and with the addition of three different commercial conditioning products were carried out to verify the conditioning possibility of the studied tar sand.The most important results are summarized in Tables 1 and 2.It is possible to assess that the studied tar sand at room temperature(20°C)has a granular shape and a reduced number of free fine-grained elements,since they are bonded together by the bitumen(Fig.1).This condition is a critical aspect since the finest grains are the soil elements that interact with the foam bubbles to get the required conditioned performances,as demonstrated by different studies(Merritt and Mair,2006;Vinai et al.,2007;Thewes and Budach,2010).

    An increase of temperature allows a certain number of finer grains to separate from the larger elements but not at a sufficient level to allow an optimal conditioning with only foam(this result depends on the bitumen content).When the samples are tested at 45°C,they appear,as expected,more fluid and the conditioning process works better compared to the ones at 20°C(Fig.3).

    The addition of water does not allow conditioning of the material,as can be observed with some types of clays in Peila(2014). Therefore conditioning must be done in a different way.The slump tests carried out with the use of foam only(i.e.SIR=0%)both at 20°C and after the soil has been heated at 45°C,for all the tested foaming agents,showed that the foam tends to escape from the mass and has a reduced effect in the creation of the plastic paste. This result cannot be considered completely general across all the possible variations of the soil samples(soil particle size distribution and bitumen content)that can occur at real sites,since it depends on the bitumen content and on the percentage of fine grains.The limited quantity of fine grains can be bypassed with the addition of bentonite filler(SIR>0%).The tests carried out with the addition of filler and foam together(both at room temperature and when the soil was heated)allowed us to obtain a good plasticity and a regular slump in the tested samples.

    The best conditioning in the 20°C test is achieved when an SIR of 15%is considered with bentonite content in the slurry ranging from 15%to 20%and an amount of foam with a FIR of 15%-20%for all the three tested foaming agents,while at the temperature of 45°C easier and better conditioning can be obtained with the same set of conditioning parameters.

    These results are confirmed by the vane shear tests,from which it is possible to see that at 45°C the natural material has a shear strength of 8 kPa,and with the combination of bentonite+foam(for all tested products)this value is about 2 kPa.Whenconsidering the test at the temperature of 20°C,it is possible to see a similar trend,but the shear strength values are higher. Similar behaviour can be observed with reference to the tilt angle. The addition of the conditioning agents reduces this value from 33°to 28°(compacted at 3 kPa)at 45°C and from 66°to 41°(compacted at 10 kPa)at 20°C.At 45°C,there is no significant difference in the measured tilt angles between the conditioned and natural states,because the viscosity of the tar is the dominant parameter.Furthermore,it can be observed that the studied soil(with its specific content of bitumen),after conditioning,is less sticky on a metallic surface than the natural one,e.g.clay(Zumsteg et al.,2013a,b).

    The direct shear tests on the natural soil and the conditioned soil clearly showed that the conditioning process reduces the shear strength of the material(Fig.7).

    Fig.4.Assessed diagram of slump test quality as prepared by Peila et al.(2009)(updated).

    Fig.5.Tilt test apparatus.

    3.Conclusions

    The conditioning for EPB tunnelling in tar sands is a complex task since this material is a mixture of soil and bitumen,which waterproof the ground.Furthermore,the study has shown thegreat importance of temperature for varying the mechanical behaviour of the mass.

    Fig.6.Vane shear test apparatus.

    Table 1 Results of the conditioned tests.

    Table 2 Results of the slump test on the most significant conditioning sets.

    Table 2(continued)

    Fig.7.Failure envelope of the natural and conditioned tar sands for the conditioning set#14.

    The test results show that conditioning with foam reduces the shear strength of the mass,although the addition of foam is not sufficient for obtaining an optimal behaviour referring to EPB tunnelling.In this case,the addition of filler(bentonite)is needed in order to create a suitable mass.

    Finally,we can assess that the studied tar sand is suitable for excavation with an EPB machine,according to the general characteristics required by the soil for this technological application.The developed tests were shown to be effective for this assessment,but tests at high temperature still have to be considered and carried out to have a complete overview of the soil behaviour when tunnelling in this soil.

    Conflict of interest

    The authors confirm that there are no known conflicts of interest associated with this publication and there has been no significant financial support for this work that could have influenced its outcome.

    Acknowledgements

    This research is a by-product of a research contract between Politecnico di Torino and Astaldi SpA(Rome,Italy).Special thanks are given toengineer Mattia Ghigo,who cooperatedin this research within his MSc thesis work.

    References

    AASHTO T 308-10.Standard method of test for determining the asphalt binder content of hot mix asphalt(HMA)by the ignition method.Washington D.C., USA:American Association of State Highway and Transportation Officials;2010.

    Anochie-Boateng J,Tutumluer E.Characterizing volumetric deformation behavior of naturally occuring bituminous sand materials.In:Proceedings of the 7th International RILEM Symposium on Advanced Testing and Characterization of Bituminous Materials.International Society for Rock Mechanics;2009.p.1-10.

    Anochie-Boateng J,Tutumluer E.Sustainable use of oil sands for geotechnical construction and road building1540.ASTM Special Technical Publication;2012. p.73-94.

    ASTM C143-12.Standard test method for field vane shear test in cohesive soil.West Conshohocken,PA,USA:ASTM International;2012.

    ASTM D2573-08.Standard test method for field vane shear test in cohesive soil. West Conshohocken,PA,USA:ASTM International;2008.

    ASTM D3080-11.Standard test method for direct shear test of soils under consolidated drained conditions.West Conshohocken,PA,USA:ASTM International;2011.

    ASTM D422-07.Standard test method for particle-size analysis of soils.West Conshohocken,PA,USA:ASTM International;2007.

    Barbero M,Peila D,Picchio A,Chieregato A,Bozza F,Mignelli C.Procedura sperimentale per la valutazione dell'effetto del condizionamento del terreno sull'abrasione degli utensili nello scavo con EPB.Geoingegneria Ambientale e Mineraria 2012;135(1):13-9(in Italian).

    Borio L,Chieregato A,Picchio A,Peila D.Studio della permeabilità di terreni condizionati con schiume.Geoingegneria Ambientale e Mineraria 2010;130(2):75-80(in Italian).

    Herrenknecht M,Thewes M,Budach C.The development of earth pressure shields:from the beginning to the present.Geomechanics and Tunnelling 2011;4(1):11-35.

    Hollmann F,Thewes M.Assessment method for clay clogging and disintegration of fines in mechanised tunnelling.Tunnelling and Underground Space Technology 2013;37:96-106.

    Martinelli D,Chieregato A,On?te Salazar CG,Barbero M,Peila D.Conditioning of fractured rock masses for the excavation with EPB shields.In:Proceedings of the 13th International Congress of Rock Mechanics.International Society for Rock Mechanics;2015.

    Merritt A,Borghi F,Mair R.Conditioning of clay soils for earth pressure balance tunnelling machines.In:Proceedings of Underground Construction2003;2003. p.455-66.

    Merritt A,Mair R.Mechanics of tunnelling machine screw conveyors:model tests. Géotechnique 2006;56(9):605-15.

    Milligan G.State-of-the-art review:Lubrification and soil conditioning in tunnelling,pipe jacking and microtunnelling.London,UK:Geotechnical Consulting Group;2000.

    Peila D,Oggeri C,Borio L.Using the slump test to assess the behavior of conditioned soil for EPB tunneling.Environmental&Engineering Geoscience 2009;15(3):167-74.

    Peila D,Oggeri C,Vinai R.Screw conveyor device for laboratory tests on conditioned soilforEPBtunnelingoperations.JournalofGeotechnicalandGeoenvironmental Engineering 2007;133(12):1622-5.

    Peila D,Picchio A,Chieregato A.Earth pressure balance tunnelling in rock masses:laboratory feasibility study of the conditioning process.Tunnelling and Underground Space Technology 2013;35:55-66.

    Peila D.Soil conditioning for EPB shield tunnelling.KSCE Journal of Civil Engineering 2014;18(3):831-6.

    Thewes M,Budach C.Soil conditioning with foam during EPB tunnelling.Geomechanics and Tunnelling 2010;3(3):256-67.

    Thewes M,Burger W.Clogging of TBM drives in clay-identification and mitigation of risks.In:Underground Space Use:Analyses of the Past and Lessons for the Future.London,UK:Taylor&Francis Group;2005.p.737-42.

    Vinai R,Oggeri C,Peila D.Soil conditioning of sand for EPB applications:a laboratory research.Tunnelling and Underground Space Technology 2007;23(3):308-17.

    Zumsteg R,Pl?tze M,Puzrin A.Effect of soil conditioners on the pressure and ratedependent shear strength of different clays.Journal of Geotechnical and Geoenvironmental Engineering 2012;138(9):1138-46.

    Zumsteg R,Pl?tze M,Puzrin A.Effects of dispersing foams and polymers on the mechanical behaviour of clay pastes.Géotechnique 2013a;63(11):920-33.

    Zumsteg R,Pl?tze M,Puzrin A.Reduction of the clogging potential of clays:new chemical applications and novel quantification approaches.Géotechnique 2013b;63(4):276-86.

    Daniele Martinelli is currently a Ph.D.candidate in Georesources and Geo-technologies at Department of Environment,Land and Infrastructure Engineering of Politecnico di Torino.He holds a Master's Degree in Environmental Engineering from the same University.He spent 1 academic year in School of Engineering,Aalto University in Espoo,Helsinki,improving his knowledge on Scandinavian rock masses.His main research interests include the study of soil and rock mass conditioning for EPB applications, especially regarding the geotechnical characterization of the conditioned material.He is now focussing on the reduction of the shear strength on granular soils due to the conditioning process.He is also involved in several tunnelling and mining consultancies within his research group,including conditioning laboratory tests for EPB application feasibility and numerical simulations.He has been working also as project engineer at Rockplan,located in Helsinki,Finland since 2010.His role within the company includes numerical modelling of hard rock excavations,including studies of deep crystalline rock mass behaviour in high stress conditions for nuclear waste disposal applications.He is member of the International Society for Rock Mechanics since 2011 and member of the International Society for Soil Mechanics and Geotechnical Engineering since 2012.

    14 July 2015

    *Corresponding author.Tel.:+39 0110907703.

    E-mail address:daniele.martinelli@polito.it(D.Martinelli).

    Peer review under responsibility of Institute of Rock and Soil Mechanics,Chinese Academy of Sciences.

    1674-7755?2015 Institute of Rock and Soil Mechanics,Chinese Academy of Sciences.Production and hosting by Elsevier B.V.All rights reserved.

    http://dx.doi.org/10.1016/j.jrmge.2015.09.002

    国产日韩欧美在线精品| 中文字幕久久专区| 草草在线视频免费看| av专区在线播放| 在现免费观看毛片| 最后的刺客免费高清国语| 多毛熟女@视频| 日韩av不卡免费在线播放| 晚上一个人看的免费电影| 精品国产国语对白av| 亚洲精品乱久久久久久| 一区在线观看完整版| 亚洲精品乱码久久久久久按摩| 午夜福利在线观看免费完整高清在| 国产av精品麻豆| 99re6热这里在线精品视频| av视频免费观看在线观看| 99久久精品一区二区三区| 男人添女人高潮全过程视频| 一级爰片在线观看| 日日啪夜夜爽| 极品少妇高潮喷水抽搐| 精品亚洲乱码少妇综合久久| 国产91av在线免费观看| 免费在线观看成人毛片| 夜夜骑夜夜射夜夜干| 99热国产这里只有精品6| 人妻 亚洲 视频| 亚洲四区av| 一区二区三区四区激情视频| 日韩中文字幕视频在线看片| 中国三级夫妇交换| 卡戴珊不雅视频在线播放| 熟女人妻精品中文字幕| 国产亚洲av片在线观看秒播厂| 99国产精品免费福利视频| 欧美三级亚洲精品| 国产成人精品久久久久久| 熟女av电影| 久久午夜福利片| 中国三级夫妇交换| 亚洲激情五月婷婷啪啪| 大陆偷拍与自拍| 99re6热这里在线精品视频| 久久亚洲国产成人精品v| 欧美高清成人免费视频www| 内射极品少妇av片p| 交换朋友夫妻互换小说| 少妇的逼好多水| videossex国产| 99热国产这里只有精品6| 在线观看国产h片| av女优亚洲男人天堂| 亚洲国产精品国产精品| 国产精品一区二区三区四区免费观看| 亚洲熟女精品中文字幕| 亚州av有码| 女人精品久久久久毛片| 成人黄色视频免费在线看| 免费人成在线观看视频色| 99热这里只有精品一区| 嫩草影院新地址| 日韩中文字幕视频在线看片| 亚洲精品国产成人久久av| 2021少妇久久久久久久久久久| 在线亚洲精品国产二区图片欧美 | 晚上一个人看的免费电影| 精品久久久噜噜| 国产色婷婷99| 久久狼人影院| 日本与韩国留学比较| 女人精品久久久久毛片| 国产视频首页在线观看| 天堂8中文在线网| 精品久久久精品久久久| 久久久久网色| 免费在线观看成人毛片| 性色av一级| 中文字幕免费在线视频6| 少妇 在线观看| 国产精品久久久久久精品电影小说| 男人和女人高潮做爰伦理| 久久久久精品性色| 晚上一个人看的免费电影| 80岁老熟妇乱子伦牲交| freevideosex欧美| 午夜久久久在线观看| 成人漫画全彩无遮挡| 久久久亚洲精品成人影院| 免费在线观看成人毛片| 少妇人妻 视频| 色吧在线观看| 国产一区二区在线观看日韩| 99久久精品热视频| 国产欧美另类精品又又久久亚洲欧美| 久久 成人 亚洲| 国产精品久久久久久精品古装| 一级毛片aaaaaa免费看小| 国产免费一级a男人的天堂| 一区二区av电影网| 国产精品女同一区二区软件| 国产亚洲一区二区精品| 欧美一级a爱片免费观看看| 不卡视频在线观看欧美| 如日韩欧美国产精品一区二区三区 | 免费看av在线观看网站| 人人妻人人爽人人添夜夜欢视频 | 亚洲精品久久午夜乱码| 99热6这里只有精品| 男人添女人高潮全过程视频| 夫妻性生交免费视频一级片| 黑人高潮一二区| 丰满少妇做爰视频| 亚洲美女搞黄在线观看| 五月开心婷婷网| 日本午夜av视频| 91久久精品国产一区二区三区| 熟女人妻精品中文字幕| 久久毛片免费看一区二区三区| 久久久久久久久久久久大奶| 丰满乱子伦码专区| 少妇熟女欧美另类| 国产精品不卡视频一区二区| 欧美日韩视频精品一区| 青春草亚洲视频在线观看| 99热全是精品| 91精品一卡2卡3卡4卡| 亚洲av国产av综合av卡| 亚洲情色 制服丝袜| 免费在线观看成人毛片| 亚洲在久久综合| 成人黄色视频免费在线看| av一本久久久久| 亚洲成人手机| 成年av动漫网址| 亚洲在久久综合| 日韩av不卡免费在线播放| 日日啪夜夜撸| av在线老鸭窝| 久久精品国产亚洲av天美| 久久久久久久国产电影| 精品99又大又爽又粗少妇毛片| 精品久久久噜噜| 日本免费在线观看一区| 成人黄色视频免费在线看| 自拍欧美九色日韩亚洲蝌蚪91 | 久久99热这里只频精品6学生| 秋霞在线观看毛片| 国产精品一区www在线观看| 嫩草影院入口| 91在线精品国自产拍蜜月| 亚洲精品久久午夜乱码| av线在线观看网站| 久久免费观看电影| 亚洲欧洲日产国产| 特大巨黑吊av在线直播| 亚洲成人av在线免费| 国产在视频线精品| 午夜影院在线不卡| 国产精品一区二区性色av| 少妇的逼好多水| 少妇 在线观看| 亚洲精品一二三| 国产熟女欧美一区二区| 观看av在线不卡| 成人国产av品久久久| av.在线天堂| 天堂中文最新版在线下载| 全区人妻精品视频| 国产男女超爽视频在线观看| 亚洲久久久国产精品| 不卡视频在线观看欧美| 欧美日韩一区二区视频在线观看视频在线| 久久精品国产亚洲av涩爱| 不卡视频在线观看欧美| 亚洲av二区三区四区| 亚洲成人av在线免费| 少妇人妻一区二区三区视频| 天堂8中文在线网| 成年av动漫网址| 国产黄片美女视频| 日韩不卡一区二区三区视频在线| 亚洲国产色片| 亚洲不卡免费看| 久久久欧美国产精品| 亚洲av电影在线观看一区二区三区| 18禁在线播放成人免费| 国产免费视频播放在线视频| 国产精品久久久久久精品电影小说| 亚洲国产毛片av蜜桃av| 国产午夜精品一二区理论片| 午夜福利,免费看| 一个人看视频在线观看www免费| 亚洲欧美精品自产自拍| 最新的欧美精品一区二区| 亚洲国产av新网站| 欧美另类一区| 日本爱情动作片www.在线观看| 欧美日韩国产mv在线观看视频| 精品一区二区三区视频在线| 久久久国产欧美日韩av| 久久av网站| 97超碰精品成人国产| 少妇高潮的动态图| 日韩一本色道免费dvd| 免费观看a级毛片全部| 激情五月婷婷亚洲| 国产免费视频播放在线视频| 国内精品宾馆在线| 精品少妇黑人巨大在线播放| 日韩伦理黄色片| 最近手机中文字幕大全| 国产精品麻豆人妻色哟哟久久| 精品人妻偷拍中文字幕| 亚洲情色 制服丝袜| 国产深夜福利视频在线观看| 欧美日韩一区二区视频在线观看视频在线| 观看美女的网站| 久久久久久久国产电影| 日韩av在线免费看完整版不卡| 黑人猛操日本美女一级片| 麻豆精品久久久久久蜜桃| 午夜免费男女啪啪视频观看| 日本wwww免费看| 性色avwww在线观看| 伊人久久国产一区二区| 国产精品国产三级专区第一集| 中国国产av一级| 亚洲精品国产av蜜桃| 精品少妇黑人巨大在线播放| 一级片'在线观看视频| 中文乱码字字幕精品一区二区三区| 中文字幕亚洲精品专区| 免费观看在线日韩| 一级二级三级毛片免费看| 免费看av在线观看网站| 在线看a的网站| 国产男女内射视频| 亚洲精品456在线播放app| 国产精品一区二区三区四区免费观看| 精品久久国产蜜桃| 久热久热在线精品观看| 成人毛片a级毛片在线播放| 18禁在线播放成人免费| 又黄又爽又刺激的免费视频.| av福利片在线观看| 大片电影免费在线观看免费| 亚洲国产精品成人久久小说| 97超碰精品成人国产| 欧美精品一区二区免费开放| 99久国产av精品国产电影| 久热这里只有精品99| 深夜a级毛片| 亚洲高清免费不卡视频| 日韩一区二区视频免费看| 亚洲精品视频女| 美女内射精品一级片tv| av视频免费观看在线观看| 日韩不卡一区二区三区视频在线| 色婷婷久久久亚洲欧美| 国产黄片美女视频| av一本久久久久| 国产在线一区二区三区精| 插逼视频在线观看| 色视频在线一区二区三区| 亚洲人成网站在线播| 中文资源天堂在线| 国产极品粉嫩免费观看在线 | 久久热精品热| 最近中文字幕高清免费大全6| 欧美xxxx性猛交bbbb| 看十八女毛片水多多多| 大片电影免费在线观看免费| 国产在线一区二区三区精| 美女大奶头黄色视频| 久久影院123| 精品亚洲成国产av| 欧美日韩视频精品一区| 久久国内精品自在自线图片| 女性生殖器流出的白浆| 久久久久人妻精品一区果冻| 伊人久久国产一区二区| 亚洲国产av新网站| 国产精品熟女久久久久浪| 亚洲久久久国产精品| 日韩三级伦理在线观看| 在线观看www视频免费| 亚洲国产日韩一区二区| 五月玫瑰六月丁香| 三上悠亚av全集在线观看 | 少妇 在线观看| 免费av不卡在线播放| 一级片'在线观看视频| 欧美日韩亚洲高清精品| 国产亚洲5aaaaa淫片| 美女cb高潮喷水在线观看| 亚洲精品久久午夜乱码| 青春草视频在线免费观看| 精华霜和精华液先用哪个| 日本欧美国产在线视频| 国产伦理片在线播放av一区| 亚州av有码| 中文字幕精品免费在线观看视频 | 日日摸夜夜添夜夜爱| 日韩成人av中文字幕在线观看| 高清欧美精品videossex| 婷婷色av中文字幕| 日韩在线高清观看一区二区三区| 在线天堂最新版资源| 日韩三级伦理在线观看| 亚洲欧美中文字幕日韩二区| 三上悠亚av全集在线观看 | 久久久久久久久久久久大奶| 日韩三级伦理在线观看| av卡一久久| 午夜激情福利司机影院| 久久av网站| 男女边摸边吃奶| 国产精品一区二区在线不卡| 麻豆成人午夜福利视频| 国产色爽女视频免费观看| a级片在线免费高清观看视频| 久久久久久久久久久久大奶| 又粗又硬又长又爽又黄的视频| 一区二区三区乱码不卡18| 狂野欧美激情性bbbbbb| 欧美人与善性xxx| av在线观看视频网站免费| 多毛熟女@视频| 国产女主播在线喷水免费视频网站| 日韩中字成人| 欧美性感艳星| 99热6这里只有精品| 肉色欧美久久久久久久蜜桃| 91久久精品国产一区二区成人| 欧美+日韩+精品| 国产精品人妻久久久影院| 伊人久久国产一区二区| 日日啪夜夜撸| 毛片一级片免费看久久久久| 97超碰精品成人国产| 亚洲av福利一区| 免费黄网站久久成人精品| 国产午夜精品久久久久久一区二区三区| 一区二区三区乱码不卡18| 少妇的逼水好多| 大码成人一级视频| 自线自在国产av| 欧美日韩精品成人综合77777| 色婷婷久久久亚洲欧美| 九九在线视频观看精品| 天美传媒精品一区二区| 亚洲欧美日韩东京热| 久久久久久伊人网av| 日本黄色片子视频| 亚洲国产精品一区二区三区在线| 亚洲av免费高清在线观看| 亚洲三级黄色毛片| 色婷婷av一区二区三区视频| 九九爱精品视频在线观看| 亚洲一区二区三区欧美精品| 最近的中文字幕免费完整| 亚洲第一区二区三区不卡| 亚洲婷婷狠狠爱综合网| 97在线人人人人妻| 赤兔流量卡办理| av女优亚洲男人天堂| 成人美女网站在线观看视频| 久久久久久久久久人人人人人人| 精品熟女少妇av免费看| 97在线视频观看| 亚洲国产精品成人久久小说| videos熟女内射| 两个人的视频大全免费| 2018国产大陆天天弄谢| 99热这里只有是精品50| 成人国产av品久久久| 国产亚洲5aaaaa淫片| 丰满少妇做爰视频| 欧美老熟妇乱子伦牲交| 国产一区亚洲一区在线观看| 中文字幕制服av| 99精国产麻豆久久婷婷| 一级二级三级毛片免费看| 国产一区有黄有色的免费视频| 久久99蜜桃精品久久| 亚洲欧美中文字幕日韩二区| 亚洲电影在线观看av| 9色porny在线观看| 91精品一卡2卡3卡4卡| 亚洲一区二区三区欧美精品| 国产黄色视频一区二区在线观看| 免费观看在线日韩| 国产成人免费无遮挡视频| 黄色一级大片看看| 少妇裸体淫交视频免费看高清| 亚洲久久久国产精品| 有码 亚洲区| 一级爰片在线观看| 国产精品秋霞免费鲁丝片| 国产视频内射| 插逼视频在线观看| 国产精品嫩草影院av在线观看| 99国产精品免费福利视频| 99热网站在线观看| 韩国高清视频一区二区三区| 这个男人来自地球电影免费观看 | 最新中文字幕久久久久| 一级毛片我不卡| 少妇精品久久久久久久| 内射极品少妇av片p| kizo精华| 熟女电影av网| 国产亚洲91精品色在线| 国产亚洲精品久久久com| 亚洲精品456在线播放app| 性色av一级| 久久av网站| 深夜a级毛片| 卡戴珊不雅视频在线播放| 久热久热在线精品观看| 久久国产乱子免费精品| 国产日韩欧美视频二区| 伊人亚洲综合成人网| 亚洲精品久久午夜乱码| 黄色配什么色好看| 91久久精品国产一区二区三区| 另类精品久久| 国产黄色免费在线视频| 男人和女人高潮做爰伦理| 人妻夜夜爽99麻豆av| 亚洲精品国产av成人精品| 久久久久久久久久人人人人人人| 91精品国产国语对白视频| 欧美一级a爱片免费观看看| 色哟哟·www| 99热这里只有是精品50| 一级毛片电影观看| 欧美一级a爱片免费观看看| 女人精品久久久久毛片| 国产在线一区二区三区精| 国产一区二区在线观看日韩| 极品教师在线视频| 免费播放大片免费观看视频在线观看| 91精品国产九色| 一区二区三区精品91| 国产精品一区www在线观看| 国产成人精品无人区| 欧美xxxx性猛交bbbb| 欧美xxⅹ黑人| 最近2019中文字幕mv第一页| 成人毛片60女人毛片免费| 午夜老司机福利剧场| 制服丝袜香蕉在线| 一区二区三区免费毛片| 亚洲精品aⅴ在线观看| 成人无遮挡网站| av在线app专区| 久久精品久久久久久噜噜老黄| 欧美丝袜亚洲另类| 免费高清在线观看视频在线观看| 午夜老司机福利剧场| 亚洲成人av在线免费| 亚洲精品视频女| 成人二区视频| freevideosex欧美| 人妻系列 视频| 久久久午夜欧美精品| 日韩 亚洲 欧美在线| 只有这里有精品99| 天堂俺去俺来也www色官网| 日本av免费视频播放| 涩涩av久久男人的天堂| 3wmmmm亚洲av在线观看| 熟妇人妻不卡中文字幕| 免费观看a级毛片全部| 久久精品国产亚洲av天美| 看十八女毛片水多多多| 一区二区三区免费毛片| 黄色日韩在线| 一区二区三区乱码不卡18| 99视频精品全部免费 在线| videossex国产| 亚洲精品aⅴ在线观看| 久久影院123| 日韩熟女老妇一区二区性免费视频| 中国三级夫妇交换| 在线观看一区二区三区激情| 国产真实伦视频高清在线观看| 亚洲欧美日韩另类电影网站| 国内揄拍国产精品人妻在线| 韩国高清视频一区二区三区| 国产精品久久久久久久电影| av国产精品久久久久影院| 偷拍熟女少妇极品色| 丝瓜视频免费看黄片| 成人毛片60女人毛片免费| 国产精品三级大全| 下体分泌物呈黄色| 精品一区二区三卡| 亚洲第一区二区三区不卡| 少妇的逼好多水| 99热这里只有精品一区| 国产欧美亚洲国产| 亚洲综合色惰| 国产精品久久久久久精品古装| 天天躁夜夜躁狠狠久久av| 美女内射精品一级片tv| 日韩成人伦理影院| 日韩三级伦理在线观看| 在线 av 中文字幕| 国产成人freesex在线| 精品久久久久久电影网| 黄色视频在线播放观看不卡| 十八禁网站网址无遮挡 | 亚洲怡红院男人天堂| 国产精品国产三级国产专区5o| 看十八女毛片水多多多| 欧美少妇被猛烈插入视频| 亚洲精品乱码久久久v下载方式| 交换朋友夫妻互换小说| av不卡在线播放| 精品熟女少妇av免费看| 国产精品久久久久久精品电影小说| 在线观看www视频免费| 如日韩欧美国产精品一区二区三区 | 亚洲国产欧美日韩在线播放 | 亚洲国产成人一精品久久久| 亚洲自偷自拍三级| 亚洲无线观看免费| 日韩成人av中文字幕在线观看| 赤兔流量卡办理| 91精品国产国语对白视频| 亚洲av日韩在线播放| 精品人妻熟女av久视频| 国产黄色免费在线视频| 久久久久久久久久久丰满| 黑人高潮一二区| 久久婷婷青草| 欧美国产精品一级二级三级 | 丰满人妻一区二区三区视频av| 亚洲av不卡在线观看| 亚洲av成人精品一二三区| 久久久久久人妻| 精品久久国产蜜桃| a级片在线免费高清观看视频| 中文字幕av电影在线播放| 免费av不卡在线播放| 青青草视频在线视频观看| 91精品一卡2卡3卡4卡| 青春草亚洲视频在线观看| 人人妻人人澡人人爽人人夜夜| 丰满迷人的少妇在线观看| 十八禁网站网址无遮挡 | 欧美最新免费一区二区三区| 麻豆成人午夜福利视频| 久久久亚洲精品成人影院| 免费黄网站久久成人精品| 亚洲欧美成人综合另类久久久| 性色avwww在线观看| 人体艺术视频欧美日本| 亚洲国产精品成人久久小说| 亚洲精品,欧美精品| 久久这里有精品视频免费| 最近最新中文字幕免费大全7| 色哟哟·www| 久久青草综合色| 国产 精品1| 精品国产露脸久久av麻豆| 99九九线精品视频在线观看视频| 一级黄片播放器| 国产精品.久久久| 亚洲精品国产成人久久av| 欧美精品高潮呻吟av久久| 婷婷色综合大香蕉| 特大巨黑吊av在线直播| 久久久亚洲精品成人影院| 国产淫片久久久久久久久| 少妇的逼水好多| 精品午夜福利在线看| av在线老鸭窝| 最新中文字幕久久久久| 婷婷色av中文字幕| 日韩av不卡免费在线播放| 卡戴珊不雅视频在线播放| 久久久国产精品麻豆| 国产成人免费无遮挡视频| 亚洲人成网站在线观看播放| av又黄又爽大尺度在线免费看| 99久久人妻综合| 视频区图区小说| 亚洲精品中文字幕在线视频 | www.av在线官网国产| 久久 成人 亚洲| 久久国产精品大桥未久av | 亚洲精华国产精华液的使用体验| 欧美性感艳星| 国产精品一区二区在线观看99| 在现免费观看毛片| 人人妻人人澡人人看| 国产高清三级在线| 中文字幕av电影在线播放| 日本-黄色视频高清免费观看| 99热6这里只有精品| 国产欧美日韩综合在线一区二区 | 少妇精品久久久久久久| √禁漫天堂资源中文www| 国产av精品麻豆| 国产片特级美女逼逼视频| 国产黄频视频在线观看| 亚洲图色成人| 亚洲一级一片aⅴ在线观看| 中国美白少妇内射xxxbb| 女性被躁到高潮视频| 国产午夜精品一二区理论片|