徐超,李曉紅,張賽
MSCs通過調(diào)控巨噬細(xì)胞極化維持TBI后免疫穩(wěn)態(tài)的研究進(jìn)展
徐超,李曉紅,張賽△
間充質(zhì)干細(xì)胞(MSCs)是當(dāng)前細(xì)胞治療的研究熱點,其不僅具有多向分化潛能,還能夠調(diào)節(jié)顱腦創(chuàng)傷(TBI)后組織損傷引發(fā)的炎癥反應(yīng)。繼發(fā)于單純機(jī)械損傷的神經(jīng)炎癥是引起神經(jīng)細(xì)胞壞死和凋亡的重要因素,即使在顱內(nèi)壓恢復(fù)正常后,炎癥反應(yīng)仍持續(xù)造成神經(jīng)細(xì)胞壞死。創(chuàng)傷后的炎癥環(huán)境嚴(yán)重影響TBI患者的長期預(yù)后及行為功能恢復(fù)。MSCs通過釋放可溶性細(xì)胞因子,如前列腺素E2(PGE2)、腫瘤壞死因子刺激基因6蛋白(TSG-6)、白細(xì)胞介素(IL)-1和轉(zhuǎn)化生長因子(TGF)-β等,調(diào)節(jié)巨噬細(xì)胞/小膠質(zhì)細(xì)胞的極化特性,使其向抗炎型M2細(xì)胞極化,減少促炎因子釋放,限制其對下游效應(yīng)細(xì)胞的激活,維持顱內(nèi)免疫環(huán)境穩(wěn)定。同時,MSCs在一定條件下促進(jìn)巨噬細(xì)胞/小膠質(zhì)細(xì)胞向M1細(xì)胞極化,激活組織修復(fù)和再生。巨噬細(xì)胞/小膠質(zhì)細(xì)胞形成的免疫微環(huán)境也影響MSCs的存活和功能發(fā)揮,兩者相互影響,為臨床治療TBI繼發(fā)炎癥反應(yīng)提供了新的思路。
間質(zhì)干細(xì)胞;顱腦損傷;巨噬細(xì)胞;小神經(jīng)膠質(zhì)細(xì)胞;炎癥;免疫;綜述;巨噬細(xì)胞極化
間充質(zhì)干細(xì)胞(mesenchymal stem cells,MSCs)是具有多向分化潛能和免疫調(diào)節(jié)功能的干細(xì)胞,廣泛存在于機(jī)體結(jié)締組織中。MSCs在控制炎癥及創(chuàng)傷修復(fù)中的作用已得到肯定[1],是當(dāng)前中樞神經(jīng)系統(tǒng)(central nervous system,CNS)疾病生物治療的研究熱點[2]。動物實驗發(fā)現(xiàn)MSCs能夠通過調(diào)控巨噬細(xì)胞M2極化或抑制巨噬細(xì)胞分泌炎性因子來減輕顱腦創(chuàng)傷(traumatic brain injury,TBI)后的炎癥反應(yīng),調(diào)節(jié)損傷部位免疫微環(huán)境,促進(jìn)損傷修復(fù),改善神經(jīng)功能[3]。同時,巨噬細(xì)胞表達(dá)的炎癥因子影響MSCs生長的免疫微環(huán)境,進(jìn)而調(diào)節(jié)MSCs增殖和激活[4-5],但兩者相互作用的機(jī)制尚不明確。本文就MSCs與巨噬細(xì)胞的相互作用機(jī)制以及在維持TBI后CNS免疫穩(wěn)態(tài)中發(fā)揮的作用進(jìn)行綜述。
MSCs能夠根據(jù)培養(yǎng)環(huán)境改變細(xì)胞特性和功能,通過旁分泌細(xì)胞因子對組織免疫微環(huán)境的改變做出反應(yīng):緩解或抑制炎癥反應(yīng)[前列腺素E2(prostaglandin E2,PGE2)、腫瘤壞死因子刺激基因6蛋白(tumor necrosis factor-stimulated gene6 protein,TSG-6)]、增強(qiáng)血管生成[血管內(nèi)皮生長因子(vascular endothelial growth factor,VEGF)和白細(xì)胞介素-6(interleukin-6,IL-6)]、增強(qiáng)細(xì)胞增殖能力[犬尿氨酸(kynurenine)和轉(zhuǎn)化生長因子(transforming growth factor,TGF)-β1]等。MSCs還能夠釋放炎癥趨化因子,激活Notch或CD95/Fas信號轉(zhuǎn)導(dǎo)通路[1],通過細(xì)胞間直接或間接聯(lián)絡(luò)調(diào)節(jié)T淋巴細(xì)胞、樹突細(xì)胞[6]、自然殺傷細(xì)胞等免疫細(xì)胞的增殖、激活和效應(yīng)發(fā)揮,尤其是調(diào)節(jié)巨噬細(xì)胞極化,從而調(diào)控炎癥和免疫反應(yīng)[7-8],增強(qiáng)組織修復(fù)[9],減輕炎癥反應(yīng)對機(jī)體的損傷。
1.1 巨噬細(xì)胞M1/M2極化巨噬細(xì)胞/小膠質(zhì)細(xì)胞是炎癥反應(yīng)中的重要細(xì)胞成分,能夠控制炎癥進(jìn)展,激活組織修復(fù)功能。巨噬細(xì)胞極化的觀點由研究者在1992年發(fā)現(xiàn)IL-4能夠顯著增強(qiáng)大鼠巨噬細(xì)胞甘露糖受體CD206時首次提出[7]。按照巨噬細(xì)胞極化狀態(tài)對炎癥促進(jìn)和抑制作用的不同將巨噬細(xì)胞分為2個亞群,即經(jīng)典激活的M1型和選擇性激活的M2型。在缺血的心肌組織中,M1型和M2型巨噬細(xì)胞的數(shù)量是動態(tài)變化的[4],兩者在一定的條件下能夠互相轉(zhuǎn)化[10]。M1型巨噬細(xì)胞由脂多糖(lipopolysaccharide,LPS)或γ-干擾素(interferon-γ,IFN-γ)誘導(dǎo)產(chǎn)生,主要分泌促炎因子IL-1β、IL-6、腫瘤壞死因子-α(tumor necrosis factor-α,TNF-α)、誘導(dǎo)型一氧化氮合酶(inducible nitric oxide synthases,iNOs)、IL-12p40、IL-23和IFN-γ,募集外周炎癥細(xì)胞,激發(fā)“瀑布式炎癥反應(yīng)”;M2型巨噬細(xì)胞由IL-4和IL-13誘導(dǎo)產(chǎn)生,分泌IL-10、IL-1ra、TGF-β1、TGF-β3,高表達(dá)CD206和精氨酸酶(arginase-1,Arg-1)[4,11-12]。近年研究發(fā)現(xiàn),機(jī)體內(nèi)巨噬細(xì)胞極化情況較體外培養(yǎng)條件下更為復(fù)雜,M1、M2是巨噬細(xì)胞激活極化的2個極端狀態(tài),兩者之間還存在其他極化狀態(tài)的巨噬細(xì)胞表型[13],如M2型細(xì)胞還存在促進(jìn)組織修復(fù)的M2a,調(diào)節(jié)免疫反應(yīng)的M2b、M2c[3],以及受氧化低密度脂蛋白激活的Mox[14]等多種亞型,但這些亞型在CNS疾病中的作用鮮有報道。
1.2 MSCs能夠調(diào)節(jié)巨噬細(xì)胞極化MSCs能夠調(diào)控激活巨噬細(xì)胞,使經(jīng)典的M1型巨噬細(xì)胞向選擇性激活的M2型巨噬細(xì)胞轉(zhuǎn)化,增加吞噬活性,抑制促炎因子表達(dá),調(diào)控炎癥反應(yīng),維持免疫穩(wěn)態(tài)。MSCs誘導(dǎo)小膠質(zhì)細(xì)胞高表達(dá)Arg-1、CD206、IL-10、PGE2、單核細(xì)胞趨化蛋白-1(MCP-1)/CCL2,低表達(dá)嗜中性白細(xì)胞堿性磷酸酶-3和TNF-α的細(xì)胞表型,即M2型巨噬細(xì)胞[15]。在骨髓來源的巨噬細(xì)胞和MSCs共培養(yǎng)研究中,M1細(xì)胞標(biāo)志物,如IL-6、IL-1β、MCP-1和iNOS顯著減少。而M2細(xì)胞標(biāo)志物IL-10、IL-4、CD206和Arg-1則顯著性增加,提示巨噬細(xì)胞由M1型向M2型轉(zhuǎn)化可能與MSCs免疫調(diào)節(jié)特性相關(guān)[11]。
1.3 MSCs調(diào)控巨噬細(xì)胞極化的機(jī)制目前認(rèn)為MSCs對巨噬細(xì)胞激活極化的調(diào)控主要受3條通路介導(dǎo):第1條通路是激活的MSCs分泌PGE2,驅(qū)動組織中定植的促炎的M1型巨噬細(xì)胞向抗炎的M2型巨噬細(xì)胞轉(zhuǎn)化;第2條通路是MSCs分泌TSG-6,與巨噬細(xì)胞上的CD44作用,抑制Toll樣受體(Toll-like receptor,TLR)2/核因子-κB(NF-κB)信號通路,減少促炎調(diào)節(jié)因子的分泌[16],從而抑制巨噬細(xì)胞的促炎作用;第3條通路是MSCs經(jīng)由巨噬細(xì)胞上的糖皮質(zhì)激素受體(glucocorticoid receptors,GR)和黃體酮受體(progesterone receptors,PR)促進(jìn)M1型向M2型轉(zhuǎn)化[17]。
1.3.1 MSCs釋放PGE2介導(dǎo)巨噬細(xì)胞M2極化為了更好地模擬體內(nèi)環(huán)境,研究人員將人MSCs與皮膚成纖維細(xì)胞聯(lián)合培養(yǎng),構(gòu)建三維球體模型,用含有球體模型的條件培養(yǎng)基與經(jīng)LPS激活的巨噬細(xì)胞(M1型)共同培養(yǎng),發(fā)現(xiàn)TNF-α顯著減少而IL-10、IL-1ra以及CD206+細(xì)胞增多,促炎基因Tnf和Csf2表達(dá)下調(diào),抗炎基因Tgm2表達(dá)上調(diào),提示MSCs使LPS介導(dǎo)的M1型巨噬細(xì)胞向M2型轉(zhuǎn)化;同時運(yùn)用微陣列技術(shù)檢測到條件培養(yǎng)基中PGE2水平升高,加入PGE2合成的關(guān)鍵酶環(huán)氧化物合酶(COX)-2的特異性抑制劑能夠抑制巨噬細(xì)胞的抗炎作用,減少IL-10、IL-1ra分泌,證實了PGE2是MSCs介導(dǎo)巨噬細(xì)胞M2極化的媒介之一[12]。另一項研究發(fā)現(xiàn)在創(chuàng)傷引起的炎癥反應(yīng)中,血小板裂解產(chǎn)物(platelet lysate,PL)激活MSCs細(xì)胞核因子NF-κB,MSCs表達(dá)PGE2的mRNA增加,生成PGE2[18]。
在PGE2的4種受體中,只有拮抗EP4受體才能夠抑制TNF-α減少和IL-10增多,說明PGE2介導(dǎo)的抗炎作用由巨噬細(xì)胞上的EP4受體調(diào)控[19]。研究結(jié)果顯示,MSCs三維球體模型產(chǎn)生PGE2是依賴自身的含半胱氨酸天冬氨酸蛋白水解酶(cysteinyl aspartate specific proteinase,Caspase)和NF-κB通路激活的[12]。
通過激活MSCs的Caspase和NF-κB通路,施加于MSCs的內(nèi)外源性刺激(如機(jī)械刺激、TNF-α)提高了PGE2的合成和分泌。PGE2作為MSCs與巨噬細(xì)胞間直接聯(lián)絡(luò)的介質(zhì),作用于巨噬細(xì)胞上的EP4受體,使巨噬細(xì)胞內(nèi)環(huán)磷腺苷效應(yīng)元件結(jié)合蛋白(cAMP-response element binding protein,CREB)磷酸化,從而增加轉(zhuǎn)錄因子C/EBP-β表達(dá),最終增加Arg-1、IL-10和Mrc-1基因表達(dá)[20],完成細(xì)胞由M1型向M2型轉(zhuǎn)變。
1.3.2 MSCs釋放TSG-6抑制M1型巨噬細(xì)胞釋放促炎因子LPS和INF-γ是高效的炎癥刺激因子,能夠激活小膠質(zhì)細(xì)胞上的TLR,進(jìn)而介導(dǎo)胞內(nèi)信號轉(zhuǎn)導(dǎo),促使NF-κB與抑制蛋白形成的復(fù)合物IκB裂解,NF-κB脫離抑制性蛋白的作用,進(jìn)入細(xì)胞核,錨定到多種基因的啟動子上,啟動促炎細(xì)胞因子和趨化因子基因表達(dá),產(chǎn)生TNF-α、IL-1β、IL-6、巨噬細(xì)胞炎癥蛋白(MIP)-1α和MCP-1,促進(jìn)炎癥發(fā)展加?。?1]。通過給大鼠TBI模型靜脈移植MSCs,發(fā)現(xiàn)實驗組TSG-6在皮質(zhì)損傷后12~72 h明顯升高,NF-κB在12~48 h顯著減少[22]。
有研究表明,MSCs和TSG-6能夠顯著抑制激活的小膠質(zhì)細(xì)胞中促炎因子的表達(dá)。當(dāng)用TSG-6 siRNA抑制TSG-6表達(dá)時,MSCs對小膠質(zhì)細(xì)胞的調(diào)控作用明顯下降。與對照組相比,TSG-6處理的BV2小膠質(zhì)細(xì)胞在LPS刺激后p38、c-Jun氨基末端激酶(JNK)、細(xì)胞外信號調(diào)節(jié)激酶(ERK)和絲裂原活化蛋白激酶(MAPK)的磷酸化水平顯著減低,同時TSG-6使LPS/TLR2調(diào)控的NF-κB信號通路激活受到干擾,提示MSCs通過表達(dá)TSG-6抑制LPS激活的小膠質(zhì)細(xì)胞的NF-κB和MAPK信號通路[23],達(dá)到抑制促炎因子分泌的目的。另外,TSG-6通過與定植的巨噬細(xì)胞上的CD44受體相互作用,減少酵母聚糖/TLR2調(diào)節(jié)的NF-κB的核轉(zhuǎn)運(yùn)[24],證實MSCs通過分泌TSG-6作用于巨噬細(xì)胞表面的CD44分子,進(jìn)而抑制TLR2激活的NF-κB通路,從而抑制炎性因子合成。
盡管鮮見報道證實MSCs通過TSG-6/NF-κB通路使巨噬細(xì)胞發(fā)生M2極化,但受調(diào)控的巨噬細(xì)胞促炎基因表達(dá)受到抑制,可能轉(zhuǎn)化成一種介于M1型和M2型之間的細(xì)胞表型,如能使M1型細(xì)胞去激活、抑制T細(xì)胞增殖的M2r細(xì)胞[25]。
1.3.3 MSCs通過巨噬細(xì)胞GR和PR調(diào)控極化過程研究人員通過在培養(yǎng)人臍血來源的MSCs時加入米非司酮(GR和PR的拮抗劑)部分抑制了MSCs釋放介質(zhì)調(diào)控巨噬細(xì)胞分化的作用,證實MSCs通過作用于巨噬細(xì)胞表面GR和PR來調(diào)控M1型巨噬細(xì)胞向M2型轉(zhuǎn)化。他們發(fā)現(xiàn)MSCs并不能分泌糖皮質(zhì)激素和孕激素,而是通過分泌的IL-1和TGF-β調(diào)節(jié)PR和GR功能,進(jìn)一步作用于NF-κB,實現(xiàn)對巨噬細(xì)胞極化的調(diào)節(jié)[17]。
然而,當(dāng)前研究發(fā)現(xiàn)MSCs對巨噬細(xì)胞的極化調(diào)節(jié)作用不是一成不變的。這種調(diào)控因炎癥環(huán)境和進(jìn)展階段的不同而存在差異。在炎癥早期,在PL激動作用影響下,MSCs分泌粒細(xì)胞集落刺激因子使單核細(xì)胞分化為M1型巨噬細(xì)胞,分泌IL-6、TNF-α,并促進(jìn)早期炎癥發(fā)展,激活組織修復(fù)[18]。這也提示在機(jī)體炎癥環(huán)境中,MSCs的作用并非單純抑制炎癥反應(yīng),可能是動態(tài)地維持微環(huán)境穩(wěn)定,其調(diào)控機(jī)制還需要進(jìn)一步研究加以證實。
1.4 M2極化對MSCs的作用在研究MSCs細(xì)胞治療和調(diào)節(jié)免疫穩(wěn)態(tài)的過程中,研究人員發(fā)現(xiàn)MSCs能夠適應(yīng)各種極端物理環(huán)境[26]和免疫環(huán)境,特別是炎癥微環(huán)境中的炎癥因子TNF-α、IL-1能夠激活MSCs,發(fā)揮免疫抑制功能[27]。然而,MSCs調(diào)控巨噬細(xì)胞功能分化的同時,其生長和免疫功能的實現(xiàn)也受到巨噬細(xì)胞極化的影響。一項體外研究發(fā)現(xiàn),在特定的含有M1型巨噬細(xì)胞的培養(yǎng)環(huán)境下,MSCs的生長受到抑制;而在M2型巨噬細(xì)胞環(huán)境中,MSCs的生長得到促進(jìn)[4]。巨噬細(xì)胞通過分泌的TNF-α、IL-1β、IL-6來增強(qiáng)MSCs分泌炎癥相關(guān)細(xì)胞因子和蛋白的功能[17]。另一項研究發(fā)現(xiàn)M2型巨噬細(xì)胞較M1型巨噬細(xì)胞能表達(dá)更多的OA(Osteoactivin)/GPNMB(Glycoprotein non-metastatic melanoma protein B),激活ERK/JNK信號通路,調(diào)節(jié)MSCs的存活、增殖和遷移[28]。巨噬細(xì)胞與內(nèi)源性MSCs間可能存在一種反饋性調(diào)控機(jī)制,共同作用于炎癥環(huán)境,平衡組織損傷與修復(fù),這為通過移植外源性MSCs改善炎癥微環(huán)境,從而減少機(jī)體損傷提供了新的理念。
2.1 TBI后的免疫環(huán)境TBI對CNS損害主要分為兩個部分:一是機(jī)械損傷導(dǎo)致血腦屏障破壞、腦水腫和顱內(nèi)出血造成的顱內(nèi)壓升高、神經(jīng)細(xì)胞壞死;二是繼發(fā)的炎性遞質(zhì)釋放,定植于CNS和外周血的炎癥細(xì)胞對損傷做出反應(yīng)[29],產(chǎn)生的急性炎癥反應(yīng)對神經(jīng)細(xì)胞造成繼發(fā)性損傷[30]。在顱內(nèi)壓(ICP)緩解后,神經(jīng)細(xì)胞仍持續(xù)發(fā)生壞死或凋亡,這一過程甚至可以持續(xù)到TBI后12個月。TBI后的炎癥環(huán)境改變了單核/巨噬系統(tǒng)穩(wěn)態(tài),使巨噬細(xì)胞的抗原提呈作用增強(qiáng),釋放促炎細(xì)胞因子和趨化因子,激活下游免疫成分,如T細(xì)胞、B細(xì)胞、補(bǔ)體等,產(chǎn)生細(xì)胞溶解作用,同時炎癥環(huán)境阻礙內(nèi)源性干細(xì)胞的募集和修復(fù)[31]。在大鼠TBI模型上觀察發(fā)現(xiàn)TBI后炎癥分為兩個階段:早期輕微的炎癥反應(yīng)階段持續(xù)至少24 h,第二階段的嚴(yán)重炎癥反應(yīng)在第3天達(dá)到高峰[32]。對雌性大鼠TBI模型腦組織進(jìn)行免疫組化檢查,發(fā)現(xiàn)巨噬細(xì)胞/小膠質(zhì)細(xì)胞在TBI后5~7 d達(dá)到反應(yīng)峰值,qPCR顯示M2型巨噬細(xì)胞相關(guān)標(biāo)志物在TBI后5 d達(dá)到峰值[33]。研究發(fā)現(xiàn),TBI后炎癥反應(yīng)機(jī)制十分復(fù)雜,且與外周創(chuàng)傷所致的炎癥反應(yīng)存在差異,目前尚未找到針對單一靶點有效的神經(jīng)保護(hù)措施[34]。
2.2 MSCs調(diào)節(jié)巨噬細(xì)胞極化在TBI后炎癥反應(yīng)中發(fā)揮的作用在大鼠TBI模型中,在創(chuàng)傷部位移植MSCs,誘導(dǎo)巨噬細(xì)胞發(fā)生M2極化,可以觀察到在TBI后3~7 d M2型巨噬細(xì)胞基因表達(dá)顯著上調(diào),炎癥反應(yīng)和腦水腫減輕、損傷范圍減少,而且在創(chuàng)傷后7~35 d中多個時間點的神經(jīng)功能評分明顯高于未移植MSCs的TBI大鼠[3],顯示出MSCs在調(diào)節(jié)TBI后炎性環(huán)境、保護(hù)神經(jīng)功能、促進(jìn)神經(jīng)修復(fù)和再生中巨大的優(yōu)勢,臨床試驗也證實了MSCs療法對TBI患者的預(yù)后產(chǎn)生有益影響[35]。但是對于MSCs通過調(diào)控巨噬細(xì)胞極化進(jìn)而影響下游效應(yīng)性炎癥細(xì)胞,維持TBI后CNS免疫穩(wěn)態(tài)的機(jī)制研究較少。MSCs對TBI后炎癥反應(yīng)的緩解在于維持免疫微環(huán)境穩(wěn)態(tài),通過巨噬細(xì)胞的極化在激活組織修復(fù)的同時減少繼發(fā)性損傷。
CNS缺少經(jīng)典的淋巴引流系統(tǒng),血腦屏障將機(jī)體免疫系統(tǒng)分解為CNS和外周免疫系統(tǒng)免疫。2015年腦膜淋巴管的發(fā)現(xiàn)顛覆了之前對CNS免疫環(huán)境的傳統(tǒng)認(rèn)識。研究發(fā)現(xiàn),在腦膜靜脈竇上排列著有功能的腦膜淋巴管,可以將免疫細(xì)胞和淋巴液從腦脊液中轉(zhuǎn)運(yùn)出來,引流至頸部淋巴結(jié)[36],使CNS免疫環(huán)境與外周淋巴系統(tǒng)融為一個整體,可以通過外周干預(yù)來減少CNS的免疫損傷,為將來研究CNS免疫疾病以及TBI后炎癥損傷提供了新的思路。
MSCs在調(diào)控巨噬細(xì)胞分化,進(jìn)而維持組織免疫穩(wěn)態(tài)中的作用已得到廣泛認(rèn)可。隨著對MSCs與巨噬細(xì)胞之間作用機(jī)制以及對下游免疫成分調(diào)控研究的逐漸深入,雖然在治療的起始時間、療程持續(xù)時間和移植的最佳途徑上還存在許多爭議,但是通過移植MSCs減輕TBI后炎癥反應(yīng)對CNS的繼發(fā)性損傷將成為TBI治療新的方向。然而,在機(jī)體復(fù)雜的調(diào)控機(jī)制下,MSCs調(diào)控免疫微環(huán)境的作用是否與體外實驗相同,對巨噬細(xì)胞及其下游細(xì)胞的干預(yù)是否還存在其他的機(jī)制,需要進(jìn)一步研究加以證實。
[1]Griffin MD,Elliman SJ,Cahill E,et al.Concise review:adult mesenchymal stromal cell therapy for inflammatory diseases:how well are we joining the dots?[J].Stem Cells,2013,31(10):2033-2041.doi:10.1002/stem.1452.
[2]Tang G,Liu Y,Zhang Z,et al.Mesenchymal stem cells maintain blood-brainbarrierintegritybyinhibitingAquaporin-4upregulation after cerebral ischemia[J].Stem Cells,2014,32(12):3150-3162.doi:10.1002/stem.1808.
[3]ZanierER,PischiuttaF,RigantiL,etal.Bonemarrow mesenchymalstromalcellsdriveprotectiveM2microglia polarization after brain trauma[J].Neurotherapeutics,2014,11(3):679-695.doi:10.1007/s13311-014-0277-y.
[4]Freytes DO,Kang JW,Marcos-Campos I,et al.Macrophages modulate the viability and growth of human mesenchymal stem cells[J].J Cell Biochem,2013,114(1):220-229.doi:10.1002/ jcb.24357.
[5]Chen H,Min XH,Wang QY,et al.Pre-activation of mesenchymal stem cells with TNF-alpha,IL-1beta and nitric oxide enhances its paracrine effects on radiation-induced intestinal injury[J].Sci Rep,2015,5:8718.doi:10.1038/srep08718.
[6]Abomaray FM,Al Jumah MA,Kalionis B,et al.Human chorionic villous mesenchymal stem cells modify the functions of human dendritic cells,and induce an anti-inflammatory phenotype in CD1+dendritic cells[J].Stem Cell Rev,2015,11(3):423-441.doi: 10.1007/s12015-014-9562-8.
[7]Zheng G,Ge M,Qiu G,et al.Mesenchymal stromal cells affect disease outcomes via macrophage polarization[J].Stem Cells Int,2015,2015:989473.doi:10.1155/2015/989473.
[8]HattoriH,IshiharaM.Alteredproteinsecretionsduring interactions between adipose tissue-or bone marrow-derived stromal cells and inflammatory cells[J].Stem Cell Res Ther,2015,6:70.doi:10.1186/s13287-015-0052-y.
[9]Prockop DJ,Oh JY.Medical therapies with adult stem/progenitor cells(MSCs):a backward journey from dramatic results in vivo to the cellular and molecular explanations[J].J Cell Biochem,2012,113(5):1460-1469.doi:10.1002/jcb.24046.
[10]Nakajima H,Uchida K,Guerrero AR,et al.Transplantation of mesenchymal stem cells promotes an alternative pathway of macrophage activation and functional recovery after spinal cord injury[J].J Neurotrauma,2012,29(8):1614-1625.doi:10.1089/ neu.2011.2109.
[11]Cho DI,Kim MR,Jeong HY,et al.Mesenchymal stem cells reciprocally regulate the M1/M2 balance in mouse bone marrowderived macrophages[J].Exp Mol Med,2014,46:e70.doi: 10.1038/emm.2013.135.
[12]Ylostalo JH,Bartosh TJ,Coble K,et al.Human mesenchymal stem/ stromal cells cultured as spheroids are self-activated to produce prostaglandin E2 that directs stimulated macrophages into an antiinflammatory phenotype[J].Stem Cells,2012,30(10):2283-2296.doi:10.1002/stem.1191.
[13]Hu X,Leak RK,Shi Y,et al.Microglial and macrophage polarization-new prospects for brain repair[J].Nat Rev Neurol,2015,11(1):56-64.doi:10.1038/nrneurol.2014.207.
[14]Moore KJ,Sheedy FJ,F(xiàn)isher EA.Macrophages in atherosclerosis:a dynamic balance[J].Nat Rev Immunol,2013,13(10):709-721. doi:10.1038/nri3520.
[15]Hegyi B,Kornyei Z,F(xiàn)erenczi S,et al.Regulation of mouse microglia activation and effector functions by bone marrow-derived mesenchymal stem cells[J].Stem Cells Dev,2014,23(21):2600-2612.doi:10.1089/scd.2014.0088.
[16]Prockop DJ.Concise review:two negative feedback loops place mesenchymal stem/stromal cells at the center of early regulators of inflammation[J].Stem Cells,2013,31(10):2042-2046.doi: 10.1002/stem.1400.
[17]Abumaree MH,Al Jumah MA,Kalionis B,et al.Human placental mesenchymalstemcells(pMSCs)playaroleasimmune suppressive cells by shifting macrophage differentiation from inflammatory M1 to anti-inflammatory M2 macrophages[J].Stem Cell Rev,2013,9(5):620-641.doi:10.1007/s12015-013-9455-2.
[18]Ulivi V,Tasso R,Cancedda R,et al.Mesenchymal stem cell paracrine activity is modulated by platelet lysate:induction of an inflammatoryresponseandsecretionoffactorsmaintaining macrophages in a proinflammatory phenotype[J].Stem Cells Dev,2014,23(16):1858-1869.doi:10.1089/scd.2013.0567.
[19]Yasui M,Tamura Y,Minami M,et al.The prostaglandin E2 receptor EP4 regulates obesity-related inflammation and insulin sensitivity[J].PLoS One,2015,10(8):e0136304.doi:10.1371/ journal.pone.0136304.
[20]Na YR,Jung D,Yoon BR,et al.Endogenous prostaglandin E2 potentiates anti-inflammatory phenotype of macrophage through the CREB-C/EBP-beta cascade[J].Eur J Immunol,2015,45(9):2661-2671.doi:10.1002/eji.201545471.
[21]Park S,Choi JJ,Park BK,et al.Pheophytin a and chlorophyll a suppress neuroinflammatory responses in lipopolysaccharide and interferon-gamma-stimulated BV2 microglia[J].Life Sci,2014,103(2):59-67.doi:10.1016/j.lfs.2014.04.003.
[22]ZhangR,LiuY,YanK,etal.Anti-inflammatoryand immunomodulatorymechanismsofmesenchymalstemcell transplantation in experimental traumatic brain injury[J].J Neuroinflammation,2013,10:106.doi:10.1186/1742-2094-10-106.
[23]Liu Y,Zhang R,Yan K,et al.Mesenchymal stem cells inhibit lipopolysaccharide-inducedinflammatoryresponsesofBV2 microglial cells through TSG-6[J].J Neuroinflammation,2014,11:135.doi:10.1186/1742-2094-11-135.
[24]Choi H,Lee RH,Bazhanov N,et al.Anti-inflammatory protein TSG-6 secreted by activated MSCs attenuates zymosan-induced mouse peritonitis by decreasing TLR2/NF-kappaB signaling in resident macrophages[J].Blood,2011,118(2):330-338.doi: 10.1182/blood-2010-12-327353.
[25]Parsa R,Andresen P,Gillett A,et al.Adoptive transfer of immunomodulatory M2 macrophages prevents type 1 diabetes in NOD mice[J].Diabetes,2012,61(11):2881-2892.doi:10.2337/ db11-1635.
[26]Ciavarella C,F(xiàn)ittipaldi S,Pedrini S,et al.In vitro alteration of physiological parameters do not hamper the growth of human multipotent vascular wall-mesenchymal stem cells[J].Front Cell Dev Biol,2015,3:36.doi:10.3389/fcell.2015.00036.
[27]Toupet K,Maumus M,Luz-Crawford P,et al.Survival and biodistribution of xenogenic adipose mesenchymal stem cells is not affected by the degree of inflammation in arthritis[J].PLoS One,2015,10(1):e0114962.doi:10.1371/journal.pone.0114962.
[28]Yu B,Sondag G,Malcuit C,et al.Macrophage-associatedosteoactivin/GPNMB mediates mesenchymal stem cell survival,proliferation,and migration via a CD44-dependent mechanism[J]. J Cell Biochem,2016,117(7):1511-1521.doi:10.1002/jcb.25394.
[29]BaluR.Inflammationandimmunesystemactivationafter traumatic brain injury[J].Curr Neurol Neurosci Rep,2014,14(10):484.doi:10.1007/s11910-014-0484-2.
[30]HinsonHE,RowellS,SchreiberM.Clinicalevidenceof inflammation driving secondary brain injury:a systematic review[J].J Trauma Acute Care Surg,2015,78(1):184-191.doi: 10.1097/TA.0000000000000468.
[31]Gennai S,Monsel A,Hao Q,et al.Cell-based therapy for traumatic brain injury[J].Br J Anaesth,2015,115(2):203-212.doi: 10.1093/bja/aev229.
[32]Watanabe J,Shetty AK,Hattiangady B,et al.Administration of TSG-6 improves memory after traumatic brain injury in mice[J]. Neurobiol Dis,2013,59:86-99.doi:10.1016/j.nbd.2013.06.017.
[33]Turtzo LC,Lescher J,Janes L,et al.Macrophagic and microglial responses after focal traumatic brain injury in the female rat[J].J Neuroinflammation,2014,11:82.doi:10.1186/1742-2094-11-82.
[34]Hellewell S,Semple BD,Morganti-Kossmann MC.Therapies negating neuroinflammation after brain trauma[J].Brain Res,2016,1640(Pt A):36-56.doi:10.1016/j.brainres.2015.12.024.
[35]Tian C,Wang X,Wang X,et al.Autologous bone marrow mesenchymal stem cell therapy in the subacute stage of traumatic brain injury by lumbar puncture[J].Exp Clin Transplant,2013,11(2):176-181.doi:10.6002/ect.2012.0053.
[36]Louveau A,Smirnov I,Keyes TJ,et al.Structural and functional features of central nervous system lymphatic vessels[J].Nature,2015,523(7560):337-341.doi:10.1038/nature14432.
(2016-09-20收稿 2016-10-20修回)
(本文編輯 閆娟)
Progress of immune environment steady after traumatic brain injury via regulating the polarization of macrophage/microglia by mesenchymal stem cells
XU Chao,LI Xiaohong,ZHANG Sai△
Institution of Brain Trauma and Neurology Disease,Affiliated Hospital of Logistics University of PAP,Tianjin 300162,China△
Mesenchymal stem cells(MSCs),which are regarded as the promising option of cell replacement therapy,are able to regulate immune response after tissue damage caused by traumatic brain injury(TBI).Secondary neuroinflammation following the mechanical injury is the essential factor of neural cell necrosis and apoptosis,even after the intracranial pressure has returned to normal.Their immune environments caused by neuroinflammtary response determine the outcome and long-term behavior function of TBI in survivors directly.MSCs modulate macrophage/microglia,drive them to polarize into alternative M2-like cells through releasing soluble cytokines,such as prostaglandin E2(PGE2),tumor necrosis factorstimulated gene 6 protein(TSG-6),IL-1 and TGF-β,which limits the progression of inflammation and maintain microenvironmentstable.Meanwhile,macrophage/microgliaexertssignificanteffectsinMSCssurvival,proliferation, differentiation and activation.It provides a novel approach as a practical anti-inflammatory therapy in clinical treatment.
mesenchymal stem cells;craniocerebral trauma;macrophages;microglia;inflammation;immunity;review; macrophage polarization
R651.15
A
10.11958/20161182
國家自然科學(xué)基金資助項目(81541034)
天津,武警后勤學(xué)院附屬醫(yī)院顱腦創(chuàng)傷與神經(jīng)疾病研究所(郵編300162)
徐超(1991),男,碩士在讀、主要從事顱腦創(chuàng)傷相關(guān)研究
△通訊作者E-mail:zhangsai718@vip.126.com