• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Fuzzy Logic Based UAV Suspicious Behavior Detection

    2016-02-09 01:54:06,,

    , ,

    College of Civil Aviation, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, P.R.China

    ?

    Fuzzy Logic Based UAV Suspicious Behavior Detection

    SunRui*,ZhangYucheng,HuMinghua

    College of Civil Aviation, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, P.R.China

    (Received 18 January 2016; revised 20 June 2016; accepted 5 July 2016)

    In recent years, unmanned air vehicles (UAVs) are widely used in many military and civilian applications. With the big amount of UAVs operation in air space, the potential security and privacy problems are arising. This can lead to consequent harm for critical infrastructure in the event of these UAVs being used for criminal or terrorist purposes. Therefore, it is crucial to promptly identify the suspicious behaviors from the surrounding UAVs for some important regions. In this paper, a novel fuzzy logic based UAV behavior detection system has been presented to detect the different levels of risky behaviors of the incoming UAVs. The heading velocity and region type are two input indicators proposed for the risk indicator output in the designed fuzzy logic based system. The simulation has shown the effective and feasible of the proposed algorithm in terms of recall and precision of the detection. Especially, the suspicious behavior detection algorithm can provide a recall of 0.89 and a precision of 0.95 for the high risk scenario in the simulation.

    UAV; suspicious behavior detection; fuzzy logic; decision making

    0 Introduction

    UAVs have been increasing rapidly within recent years in military and civil applications, especially for surveillance, reconnaissance and search/destroy missions. The arbitrary flying UAVs will bring potential safe threat to some important regions, such as the airport or other military base areas. In addition, with the great advantages over the manned aerial vehicles, the UAVs could be used for criminal or terrorist purposes. Therefore, it is crucial to detect suspicious behaviors of incoming UAVs for preventing the possible threats and ensuring the safety of the important regions. Designing an advanced algorithm to extract the real-time UAV behaviors from the measurement of UAV on-board sensors is essential for recognition of the suspicious UAV behaviors.

    Some previous research has addressed the issue related to UAV behaviour detection. Lin et al.[1]proposed a Mahalanobis distance based anomalies behaviours detection algorithm in UAV. Mitchell and Chen[2]introduced an adaptive behavior rule-based UAV intrusion detection based on the comparison of the current UAV states with the defined specified safe states. Khalastchi et al.[3-4]proposed an online data driven approach for the UAV anomaly data detection. Birnbaum et al.[5]introduced a prototype of UAV behaviour monitoring system based on the judgement of the estimation for the real-time flight data, airframe and controller parameters. From the discussion of related literatures, most of the research is still on the preliminary stage. Furthermore, the assumptions for most of the current approaches are too ideal and thus not adaptive for practical applications. Moreover, current research only focuses on the anomaly or non-anomaly detection, while none of the research has mentioned different levels of suspicious behavior classification, which is critical for the UAV behavior detection.

    In this paper, a novel fuzzy logic based UAV suspicious behavior detection algorithm has been presented. Fuzzy logic variables define a truth value that ranges in degree between 0 and 1 instead of the traditional logic theory, where only true or false is defined for the binary sets. Fuzzy logic is able to deal with the concept of partial truth, where the truth value is ranging between completely true and completely false. The three stages of the fuzzy logic system are: Fuzzification, fuzzy inference and defuzzification[6]. The contributions of the paper can be illustrated as follows: (1) A newly designed fuzzy logic based UAV behavior grade classification algorithm by fusion the on-board sensor data, location information and expert knowledge information; (2) Simulations are presented to demonstrate the success application of the different levels of suspicious behavior detection algorithm based on the designed scenarios.

    1 Fuzzy Logic Based Model Design

    The flowchart of the system framework for the fuzzy logic based UAV suspicious behavior detection algorithm is illustrated in Fig.1.

    Fig.1 Structure of the behavior detection algorithm

    The assumption for this paper is as follows. The incoming commercially civilian UAV devices are with several open ports by default and therefore, could be accessed remotely by a third party[7]. Based on this assumption, the real-time data from on-board sensors of the incoming UAVs could be extracted. The global positioning system (GPS) senor and inertial measurement unit(IMU) sensor output information, including the UAV positioning and dynamic information, is used for determing the UAV status. The output information of the GPS/IMU sensors is then to feed the fuzzy logic based decision making system, which is supported by the expert knowledge information and local map information. Finally, different risk levels of the UAV behavior are output based on the proposed algorithm.

    The first input of fuzzy logic parameter is the heading velocity of the UAV, which is extracted from the GPS/IMU integrated results based on the Kalman filter. The fuzzy values are defined to be low (L), medium (M) and high (H). The second input of fuzzy logic parameter is the region of the UAV located, which is extracted from the Kalman filter estimated positioning results. The region type is designed by the scenario. The fuzzy values are defined to be non-interest (NI), ambiguous (A), high-Interest (HI). The fuzzy output parameter is the risk, which is defined to be Low (L), Medium (M) and High (H). The designed membership function of fuzzy inputs and outputs are illustrated in Fig.2 and the corresponding fuzzy rules for the fuzzy logic system are in Table 1 and the surface view of the fuzzy rules is in Fig.3. It is indicated that as the increase of the velocity and interest level of the region, the risk level of the UAV behavior will increase. In the following section, the simulation scenarios are designed based on the defined fuzzy logic parameters and rules to test the effectiveness of the proposed algorithm.

    Fig.2 Membership functions for the fuzzy inputs and outputs

    Table 1 Fuzzy rules for the fuzzy inference system based UAV dangerous behavior detection

    HeadingvelocityRegiontypeRiskLNILALLHIMMNILMAMHIMHNIMHAHHIH

    Fig.3 Surface view of the fuzzy rules

    2 Numerical Simulation

    This section presents the numerical simulation scenario for the flying UAV. The simulated UAV starts to approach the military base and then leaves the place of interest based on the designed route. The simulation time is about 140 s and the simulated UAV′s trajectory includes the behaviors with different heading velocities towards the different level of place of interest. Fig.4 shows the region of interest for the designed scenario. The route of the UAV is from the non-interest area to the less interest area and then to the high interest area and finally flies out to the non-interest area again. The designed flying velocity is changing from around 15 m/s to 30 m/s, which is an achievable flying velocity for the commercial UAV. The red region is the designed military base, which is not allowed for entering. The region with blue color is designed for the high interest region. The flying UAVs in this region may results in the potential threats to the base safety. The region with green color is considered as the less interest area. The fuzzy values of the region type for the UAV′s positions are calculated in three steps. Firstly, the position of the UAV′s real time location is calculated to match with the simulated map information for the determination of the UAV′s location in the region. Secondly, calculate the distance between the UAV′s location and nearest region border. Finally, based on the computed distance between the location and nearest region border, normalize the distances for all of the positioning points in the located region. The simulation is based on the Matlab and Simulink. The UAV motion model is based on the constant turn rate and velocity (CTRV) model, as it has been proved to perform reasonable estimations for the vehicle dynamic states[8]. The reference risk level in the simulation is the predefined risk level for the UAV trajectory from the expert knowledge. The estimated risk level output from the designed fuzzy logic based behavior detection is compared with the reference to evaluate the performance of the proposed algorithm.

    Fig.4 Simulated UAV trajectory and region of interest for the designed scenario

    Fig.5 shows the simulation results for the designed fuzzy logic based UAV dangerous behavior detection algorithm. The values of input velocity and region type with the corresponding output risk level has been presented. It is obviously that output risk level is identified as ″High″ during 10 s to 80 s, in which the UAV is flying in the blue region with high interest. Afterwards, during the time interval form 80 s to 100 s, the UAV is heading to the less interest area, which is corresponding to the drop risk level as indicated in the figure. The risk level is continuously indicated as medium when the UAV is flying in the green region and dropped dramatically after it entering the non-interest region.

    Recall and precision are two of the parameters proposed to quantify the performance of the proposed algorithm. Recall is the percentage of correct detected activities in relation to the number of total known activities and precision is the percentage of the correct activities in relation to the total number of detected activities by the algorithm.

    The recall and precision can be expressed as

    (1)

    (2)

    Fig.5 Simulation results of the designed fuzzy logic based UAV dangerous behavior detection algorithm

    The performance evaluation for the low risk scenario, medium risk scenario and high risk scenario are presented in Table 2. It is shown that the proposed algorithm has performed the highest recall and precision for the high risk scenario, followed by the low risk scenario. The medium risk scenario provides the least satisfactory results. The reason for the worst performance of the medium risk scenario is due to the insufficient accuracy of the positioning estimations for the UAV during the border of the region based on the on-board navigation sensors outputs.

    Table 2 Performance evaluation for the simulated UAV trajectory

    PerformanceevaluationRecallPrecisionLowrisk0.750.84Mediumrisk0.630.83Highrisk0.890.95

    3 Conclusions

    A novel UAV dangerous behavior detection algorithm has been presented in this paper. This study exploits the fuzzy logic based algorithm to classify the UAV behaviors in different risk levels. The performance of the algorithm developed in this paper has been demonstrated in the simulation based on the designed scenarios. The simulation results have shown the effectivness of the designed dangerous behavior detection. Future work will involve collection filed data in different real scenarios and evaluate the designed algorithm in different field situations. The location choice, region level definition and the expert knowledge extraction for the UAV behaviors are the critical issues may be proposed in the field test[9-11].

    Acknowledgement

    This study is supported by the Fundamental Research Funds for the Central Universities(No. NJ20160015).

    [1] LIN R, KHALASTCHI E, KAMINKA G A. Detecting anomalies in unmanned vehicles using the mahalanobis distance[C]∥Robotics and Automation (ICRA), 2010 IEEE International Conference Anchorage. AK: IEEE,2010: 3038-3044.

    [2] MITCHELL R, CHEN R. Adaptive intrusion detection of malicious unmanned air vehicles using behavior rule specifications[J]. Systems, Man, and Cybernetics: Systems, IEEE Transactions on, 2014, 44(5): 593-604.

    [3] KHALASTCHI E, KAMINKA G A, KALECH M, et al. Online anomaly detection in unmanned vehicles[C]∥The 10th International Conference on Autonomous Agents and Multiagent Systems—Volume 1. International Foundation for Autonomous Agents and Multiagent Systems, Taiwan:AAMAS,2011: 115-122.

    [4] KHALASTCHI E, KALECH M, KAMINKA G A, et al. Online data-driven anomaly detection in autonomous robots[J]. Knowledge and Information Systems.Taiwan: AAMAS, 2015, 43(3): 657-688.

    [5] BIRNBAUM Z, DOLGIKH A, SKORMIN V, et al. Unmanned aerial vehicle security using recursive parameter estimation[C]∥IEEE 2014 Conference on Unmanned Aircraft Systems (ICUAS).Colorado, USA: IEEE, 2014: 692-702.

    [6] LECCE V D, CALABRESE M. Experimental system to support real-time driving pattern recognition[C]∥Advanced Intelligent Computing Theories and Applications with Aspects of Artificial Intelligence, International Conference on Intelligent Computing.Shanghai, China:ICIC, 2008:1192-1199.

    [7] PEACOCK M, JOHNSTONE M N. Towards detection and control of civilian unmanned aerial vehicles[C]∥2013 Australian Information Warfare Conference.Perth, Australia:Edith Cowan University,2013:9-15.

    [8] TSOGAS M, POLYCHRONOPOULOS A, AMDITIS A. Unscented Kalman filter design for curvilinear motion models suitable for automotive safety applications[C]∥2005 International Conference on Information Fusion.Philadelphia, USA:IEEE,2005:1295-1302.

    [9] GAO Yanhui, ZHU Feifei, ZHANG Yong.Wind estimation for uav based on multi-sensor information fusion[J].Transactions of Nanjing University of Aeronautics and Astronautics,2015,32(1):42-47.

    [10]YUAN Suozhong, ZHEN Ziyang, JIANG Ju. Guidance and control for UAV aerial refueling docking based on dynamic inversion with L1 adaptive augmentation[J]. Transactions of Nanjing University of Aeronautics and Astronautics, 2015,32(1):35-41.

    [11]HUANG Daqing, XU Cheng, HAN Wei. UAV velocity measurement for ground moving target[J]. Transactions of Nanjing University of Aeronautics and Astronautics, 2015, 32(1):9-15.

    Dr. Sun Rui joined the College of Civil Aviation at Nanjing University of Aeronautics and Astronautics in 2015 as a Lecturer in Air Traffic Management (ATM). She received her Ph.D. degree in Intelligent Transportation Systems (TIS) from Imperial College London, UK and Master′s degree in Satellite Positioning Technology from the University of Nottingham, UK. Dr. Sun′s research interests span a variety of aspects of intelligent transport systems and services (ITSS), integrated GNSS and other location sensors for road transport, Air traffic management (ATM), ubiquitous computing and advanced filtering technologies. Dr. Sun is the memeber of Royal Institute of Navigation (RIN) and also is the reviewer of many top journals, such as Journal of Intelligent Transportation Systems, Expert System with Applications, Journal of Location Based Services etc.

    Mr. Zhang Yucheng received B.S. degree in Air Traffic Management from Nanjing University of Aeronautics and Astronautics in 2015 and currently a postgraduate in air traffic management.

    Prof. Hu Minghua is the dean of college of civil aviation and his research is focused on air traffic management and traffic planning.

    (Executive Editor: Zhang Bei)

    TN925 Document code: A Article ID: 1005-1120(2016)06-0721-05

    *Corresponding author, E-mail address:rui.sun@nuaa.edu.cn. How to cite this article: Sun Rui, Zhang Yucheng, Hu Minghua. Fuzzy logic based UAV suspicious behavior detection[J]. Trans. Nanjing Univ. Aero. Astro., 2016, 33(6):721-725. http://dx.doi.org/10.16356/j.1005-1120.2016.06.721

    两个人看的免费小视频| 亚洲精品一区蜜桃| 青春草亚洲视频在线观看| 1024视频免费在线观看| 夫妻性生交免费视频一级片| 国产精品二区激情视频| 天天影视国产精品| 男女午夜视频在线观看| 在线亚洲精品国产二区图片欧美| 亚洲国产精品成人久久小说| 亚洲成人手机| 精品卡一卡二卡四卡免费| 久久精品国产综合久久久| 精品少妇内射三级| 99九九在线精品视频| 精品国产国语对白av| 美女福利国产在线| 在线观看免费高清a一片| 毛片一级片免费看久久久久| 亚洲精品久久午夜乱码| 黑人欧美特级aaaaaa片| 在线观看国产h片| 中文字幕最新亚洲高清| 国产日韩一区二区三区精品不卡| 青春草亚洲视频在线观看| 国产日韩一区二区三区精品不卡| 黄片播放在线免费| www.精华液| 免费久久久久久久精品成人欧美视频| 国产精品人妻久久久影院| 日日撸夜夜添| 色婷婷av一区二区三区视频| 国产熟女欧美一区二区| 欧美日韩一区二区视频在线观看视频在线| 热re99久久精品国产66热6| 久久ye,这里只有精品| 伦理电影免费视频| 精品午夜福利在线看| 亚洲精品乱久久久久久| 精品一区二区免费观看| 亚洲av成人精品一二三区| 99久久中文字幕三级久久日本| 女人精品久久久久毛片| 看非洲黑人一级黄片| 少妇被粗大猛烈的视频| 亚洲伊人久久精品综合| 五月伊人婷婷丁香| 日本色播在线视频| 69精品国产乱码久久久| 亚洲色图 男人天堂 中文字幕| 亚洲av国产av综合av卡| 日韩av在线免费看完整版不卡| 纵有疾风起免费观看全集完整版| 亚洲精品久久久久久婷婷小说| 亚洲人成电影观看| 亚洲美女黄色视频免费看| 欧美日韩视频精品一区| 99香蕉大伊视频| 一区在线观看完整版| 精品国产乱码久久久久久小说| 亚洲欧洲国产日韩| 99久久中文字幕三级久久日本| 亚洲av男天堂| 有码 亚洲区| 丰满迷人的少妇在线观看| 成人影院久久| 欧美日韩视频高清一区二区三区二| 两个人看的免费小视频| 色视频在线一区二区三区| 国产综合精华液| 午夜免费鲁丝| 好男人视频免费观看在线| 春色校园在线视频观看| 下体分泌物呈黄色| 少妇人妻精品综合一区二区| 天堂俺去俺来也www色官网| 秋霞在线观看毛片| 成人二区视频| 欧美日韩亚洲高清精品| 韩国精品一区二区三区| 免费黄频网站在线观看国产| 乱人伦中国视频| 久久狼人影院| 亚洲第一av免费看| 少妇被粗大的猛进出69影院| 波多野结衣av一区二区av| 国产日韩欧美亚洲二区| 日韩一区二区视频免费看| 精品人妻在线不人妻| 亚洲精品美女久久久久99蜜臀 | 婷婷色麻豆天堂久久| 亚洲人成电影观看| 69精品国产乱码久久久| 亚洲一级一片aⅴ在线观看| 免费久久久久久久精品成人欧美视频| 美女xxoo啪啪120秒动态图| 精品卡一卡二卡四卡免费| www日本在线高清视频| 亚洲国产最新在线播放| 水蜜桃什么品种好| 熟妇人妻不卡中文字幕| 如何舔出高潮| 日日啪夜夜爽| 欧美老熟妇乱子伦牲交| 伦理电影大哥的女人| 国产成人精品久久久久久| 日韩av不卡免费在线播放| 亚洲熟女精品中文字幕| 成人亚洲欧美一区二区av| 国产黄频视频在线观看| 青春草亚洲视频在线观看| 亚洲精品国产av蜜桃| 日日撸夜夜添| 十八禁网站网址无遮挡| 在线亚洲精品国产二区图片欧美| 自线自在国产av| 亚洲欧美色中文字幕在线| 91国产中文字幕| 青草久久国产| 又大又黄又爽视频免费| 18禁裸乳无遮挡动漫免费视频| 日韩三级伦理在线观看| 一边亲一边摸免费视频| 成人漫画全彩无遮挡| 久久精品国产综合久久久| 777久久人妻少妇嫩草av网站| 欧美精品高潮呻吟av久久| 国产在线一区二区三区精| 久久久久久久亚洲中文字幕| 亚洲国产毛片av蜜桃av| 欧美变态另类bdsm刘玥| 久久久久精品人妻al黑| www.av在线官网国产| 成人毛片60女人毛片免费| 免费人妻精品一区二区三区视频| 久久久精品国产亚洲av高清涩受| 色哟哟·www| av在线播放精品| 中文字幕精品免费在线观看视频| 国产成人aa在线观看| 伊人久久大香线蕉亚洲五| 日本91视频免费播放| 免费少妇av软件| 亚洲欧美色中文字幕在线| 亚洲精华国产精华液的使用体验| 亚洲国产日韩一区二区| 在线看a的网站| 大香蕉久久成人网| 国产97色在线日韩免费| 菩萨蛮人人尽说江南好唐韦庄| 国产成人91sexporn| www.精华液| 91精品伊人久久大香线蕉| 日韩 亚洲 欧美在线| 久久久久久久大尺度免费视频| 丝袜喷水一区| 午夜福利,免费看| 在线天堂最新版资源| 一级片免费观看大全| 99热网站在线观看| 丰满乱子伦码专区| 黄色毛片三级朝国网站| a 毛片基地| 乱人伦中国视频| 国产午夜精品一二区理论片| 亚洲av电影在线进入| 日产精品乱码卡一卡2卡三| 99久久中文字幕三级久久日本| 丰满迷人的少妇在线观看| 最近手机中文字幕大全| 欧美亚洲日本最大视频资源| 久久久久久久亚洲中文字幕| 不卡视频在线观看欧美| 永久网站在线| 亚洲欧美成人综合另类久久久| 亚洲精品国产色婷婷电影| 丰满少妇做爰视频| 韩国高清视频一区二区三区| 97在线人人人人妻| 精品人妻熟女毛片av久久网站| 你懂的网址亚洲精品在线观看| 五月伊人婷婷丁香| 多毛熟女@视频| 久久精品国产综合久久久| 纯流量卡能插随身wifi吗| 国产午夜精品一二区理论片| 国产免费福利视频在线观看| 免费观看a级毛片全部| 大码成人一级视频| 男男h啪啪无遮挡| 精品国产超薄肉色丝袜足j| 亚洲国产精品国产精品| 国产毛片在线视频| 欧美xxⅹ黑人| 哪个播放器可以免费观看大片| 丰满乱子伦码专区| 欧美国产精品va在线观看不卡| 亚洲精品中文字幕在线视频| 亚洲精品久久成人aⅴ小说| 精品国产乱码久久久久久男人| 一级片免费观看大全| 免费高清在线观看视频在线观看| 亚洲国产av影院在线观看| 国产精品女同一区二区软件| 女性被躁到高潮视频| 女的被弄到高潮叫床怎么办| 一区福利在线观看| 九草在线视频观看| 91午夜精品亚洲一区二区三区| 一本色道久久久久久精品综合| 日日爽夜夜爽网站| 久久精品夜色国产| 国产成人精品一,二区| 最近中文字幕2019免费版| 欧美日韩精品成人综合77777| 伦理电影免费视频| 一本大道久久a久久精品| 欧美成人午夜免费资源| 欧美日本中文国产一区发布| 精品福利永久在线观看| 国产国语露脸激情在线看| 在线观看美女被高潮喷水网站| 秋霞在线观看毛片| 免费黄频网站在线观看国产| 亚洲精品美女久久av网站| 久久免费观看电影| 99热国产这里只有精品6| 啦啦啦中文免费视频观看日本| 日韩中文字幕欧美一区二区 | 老鸭窝网址在线观看| 成人国语在线视频| 国产免费视频播放在线视频| 久久精品夜色国产| 亚洲第一av免费看| 久久久久久久久久人人人人人人| 中文欧美无线码| av天堂久久9| 啦啦啦视频在线资源免费观看| 老司机影院毛片| 亚洲精品美女久久av网站| 尾随美女入室| 中文字幕另类日韩欧美亚洲嫩草| 少妇人妻 视频| 日日摸夜夜添夜夜爱| 麻豆精品久久久久久蜜桃| 亚洲精品久久成人aⅴ小说| 亚洲av日韩在线播放| 久久久精品国产亚洲av高清涩受| 人人妻人人添人人爽欧美一区卜| a 毛片基地| 男人添女人高潮全过程视频| 熟女电影av网| 亚洲av.av天堂| 好男人视频免费观看在线| 免费黄网站久久成人精品| 精品酒店卫生间| 日本色播在线视频| 日韩成人av中文字幕在线观看| 一边摸一边做爽爽视频免费| av在线app专区| 人体艺术视频欧美日本| av又黄又爽大尺度在线免费看| 久久久久网色| 久久毛片免费看一区二区三区| 2022亚洲国产成人精品| 亚洲,一卡二卡三卡| 国产在线一区二区三区精| 国产熟女欧美一区二区| 国产亚洲欧美精品永久| 黄网站色视频无遮挡免费观看| 成年人免费黄色播放视频| 香蕉国产在线看| 欧美日韩视频高清一区二区三区二| 在线观看www视频免费| 精品人妻熟女毛片av久久网站| 国产黄频视频在线观看| 天堂8中文在线网| 狠狠精品人妻久久久久久综合| 岛国毛片在线播放| 亚洲色图 男人天堂 中文字幕| 国产成人av激情在线播放| 亚洲av综合色区一区| 黄色一级大片看看| 免费观看a级毛片全部| 亚洲 欧美一区二区三区| 欧美日韩亚洲高清精品| 久久精品国产亚洲av涩爱| 制服诱惑二区| 我的亚洲天堂| 天堂俺去俺来也www色官网| 国产又色又爽无遮挡免| 国产成人精品久久久久久| 中文精品一卡2卡3卡4更新| 99久久精品国产国产毛片| 国产xxxxx性猛交| 寂寞人妻少妇视频99o| 中文字幕色久视频| 欧美 亚洲 国产 日韩一| 欧美在线黄色| 精品福利永久在线观看| 爱豆传媒免费全集在线观看| 天天躁日日躁夜夜躁夜夜| 丝袜喷水一区| 制服丝袜香蕉在线| 亚洲一级一片aⅴ在线观看| 亚洲精品国产av成人精品| 涩涩av久久男人的天堂| 国产高清不卡午夜福利| 极品人妻少妇av视频| 咕卡用的链子| 欧美在线黄色| 91午夜精品亚洲一区二区三区| 伦理电影免费视频| 国产黄色视频一区二区在线观看| 午夜福利一区二区在线看| 亚洲一区二区三区欧美精品| 丰满迷人的少妇在线观看| 亚洲国产欧美日韩在线播放| 国产欧美亚洲国产| 亚洲美女视频黄频| 人妻人人澡人人爽人人| av在线老鸭窝| 久久99一区二区三区| 夫妻午夜视频| 久久人人爽人人片av| 十八禁网站网址无遮挡| 久久久久精品久久久久真实原创| 亚洲欧美清纯卡通| 久久婷婷青草| 亚洲av国产av综合av卡| 青青草视频在线视频观看| 美国免费a级毛片| 99久久人妻综合| 黑丝袜美女国产一区| 精品久久蜜臀av无| 侵犯人妻中文字幕一二三四区| 久久精品国产亚洲av涩爱| 菩萨蛮人人尽说江南好唐韦庄| 欧美日韩国产mv在线观看视频| 久久久国产欧美日韩av| a级毛片在线看网站| 国产视频首页在线观看| 成人二区视频| 国产白丝娇喘喷水9色精品| 亚洲国产av新网站| 色婷婷久久久亚洲欧美| 免费看不卡的av| 国产熟女午夜一区二区三区| 亚洲 欧美一区二区三区| 久久精品国产鲁丝片午夜精品| 国产免费福利视频在线观看| 丰满迷人的少妇在线观看| 乱人伦中国视频| 国产有黄有色有爽视频| 国产成人精品婷婷| 精品少妇一区二区三区视频日本电影 | 啦啦啦啦在线视频资源| 高清视频免费观看一区二区| 亚洲欧美成人综合另类久久久| 热99国产精品久久久久久7| 在线观看免费视频网站a站| 亚洲美女黄色视频免费看| 欧美日韩国产mv在线观看视频| 美女午夜性视频免费| 国产精品成人在线| 日日摸夜夜添夜夜爱| 欧美在线黄色| 18在线观看网站| 一区二区三区四区激情视频| 日日啪夜夜爽| 精品人妻偷拍中文字幕| 亚洲精品久久午夜乱码| 国产男女超爽视频在线观看| 亚洲精品国产一区二区精华液| 在线免费观看不下载黄p国产| 亚洲中文av在线| 国产亚洲欧美精品永久| 美女视频免费永久观看网站| 免费女性裸体啪啪无遮挡网站| 又粗又硬又长又爽又黄的视频| 亚洲精品中文字幕在线视频| 午夜福利在线免费观看网站| 一边亲一边摸免费视频| 一级黄片播放器| 日韩欧美一区视频在线观看| 哪个播放器可以免费观看大片| 日本欧美国产在线视频| 国产不卡av网站在线观看| 精品国产一区二区久久| 久久久久网色| 九草在线视频观看| 久久久国产一区二区| 999精品在线视频| 国产精品一区二区在线观看99| 有码 亚洲区| 在线亚洲精品国产二区图片欧美| 日本免费在线观看一区| 久久久久人妻精品一区果冻| 999久久久国产精品视频| 午夜福利网站1000一区二区三区| av国产精品久久久久影院| 亚洲第一av免费看| 欧美日韩视频精品一区| 国产精品熟女久久久久浪| 在线天堂中文资源库| 亚洲内射少妇av| 999久久久国产精品视频| 母亲3免费完整高清在线观看 | 亚洲欧美中文字幕日韩二区| 国产欧美亚洲国产| 自拍欧美九色日韩亚洲蝌蚪91| 国产精品久久久久久精品古装| 欧美激情高清一区二区三区 | av在线播放精品| 国产av一区二区精品久久| 色婷婷av一区二区三区视频| 日韩中文字幕欧美一区二区 | 欧美成人午夜精品| 女性生殖器流出的白浆| 伦理电影免费视频| 国产乱人偷精品视频| 欧美精品一区二区免费开放| 久久国内精品自在自线图片| 不卡视频在线观看欧美| 啦啦啦在线观看免费高清www| 如何舔出高潮| 中文字幕另类日韩欧美亚洲嫩草| 黑人欧美特级aaaaaa片| 国产乱人偷精品视频| 街头女战士在线观看网站| 亚洲国产色片| av有码第一页| 成人影院久久| 国产一区有黄有色的免费视频| 观看av在线不卡| 国产老妇伦熟女老妇高清| 国产一区二区激情短视频 | 国产免费一区二区三区四区乱码| 少妇的逼水好多| 成人国产麻豆网| 少妇 在线观看| 最近中文字幕2019免费版| 青春草亚洲视频在线观看| 午夜福利一区二区在线看| 亚洲久久久国产精品| av片东京热男人的天堂| 一边摸一边做爽爽视频免费| 色网站视频免费| av国产精品久久久久影院| 男人添女人高潮全过程视频| 人人妻人人澡人人看| 亚洲三区欧美一区| 免费观看av网站的网址| 毛片一级片免费看久久久久| 国产午夜精品一二区理论片| 观看av在线不卡| 丝袜脚勾引网站| 国产有黄有色有爽视频| 亚洲,一卡二卡三卡| 欧美激情 高清一区二区三区| av又黄又爽大尺度在线免费看| 免费黄网站久久成人精品| 国产精品一国产av| 九色亚洲精品在线播放| 国产高清不卡午夜福利| 丰满迷人的少妇在线观看| 精品一区二区三卡| 精品久久久久久电影网| 久久久久久免费高清国产稀缺| 男的添女的下面高潮视频| 国语对白做爰xxxⅹ性视频网站| 国产探花极品一区二区| 国产精品欧美亚洲77777| 久久久久久人妻| 最新的欧美精品一区二区| 免费在线观看视频国产中文字幕亚洲 | 亚洲成人一二三区av| 亚洲av欧美aⅴ国产| 丰满少妇做爰视频| 国产精品二区激情视频| 亚洲av福利一区| 欧美成人午夜免费资源| 街头女战士在线观看网站| 久久精品夜色国产| 国产成人精品久久二区二区91 | 免费不卡的大黄色大毛片视频在线观看| 如何舔出高潮| 国产黄频视频在线观看| 国产 精品1| 日本-黄色视频高清免费观看| av卡一久久| 黄色配什么色好看| 欧美精品av麻豆av| 国产精品久久久av美女十八| 精品国产乱码久久久久久小说| 亚洲成人一二三区av| av在线观看视频网站免费| 午夜激情av网站| 永久网站在线| 亚洲国产最新在线播放| 亚洲国产日韩一区二区| 欧美精品av麻豆av| 久热这里只有精品99| 国产精品人妻久久久影院| 乱人伦中国视频| 亚洲色图 男人天堂 中文字幕| 啦啦啦在线免费观看视频4| 国产成人一区二区在线| 多毛熟女@视频| 免费少妇av软件| 一级毛片 在线播放| 亚洲美女搞黄在线观看| 日本午夜av视频| 久久久久久免费高清国产稀缺| freevideosex欧美| 久久久久精品性色| 日本-黄色视频高清免费观看| 美国免费a级毛片| 午夜福利在线免费观看网站| 欧美精品av麻豆av| 久热这里只有精品99| 午夜激情久久久久久久| 亚洲国产毛片av蜜桃av| 亚洲av.av天堂| 亚洲精品一区蜜桃| 日韩中字成人| 纯流量卡能插随身wifi吗| 最黄视频免费看| 中文字幕制服av| 日本色播在线视频| 久久久久久免费高清国产稀缺| 男的添女的下面高潮视频| 老司机亚洲免费影院| 永久网站在线| 精品卡一卡二卡四卡免费| 90打野战视频偷拍视频| 精品少妇内射三级| 波野结衣二区三区在线| 天堂8中文在线网| 欧美人与善性xxx| 校园人妻丝袜中文字幕| 免费在线观看完整版高清| 成人18禁高潮啪啪吃奶动态图| 国产av一区二区精品久久| 免费av中文字幕在线| 亚洲国产看品久久| 又粗又硬又长又爽又黄的视频| 国产淫语在线视频| 在线观看三级黄色| 国产精品久久久av美女十八| 精品久久蜜臀av无| 日本欧美视频一区| 成年女人毛片免费观看观看9 | 九九爱精品视频在线观看| 免费在线观看黄色视频的| 欧美 日韩 精品 国产| 波多野结衣一区麻豆| 欧美日韩亚洲高清精品| 最新中文字幕久久久久| 欧美日韩亚洲高清精品| 精品国产一区二区久久| 十八禁高潮呻吟视频| 国产麻豆69| 久久精品国产a三级三级三级| 日本vs欧美在线观看视频| 精品人妻一区二区三区麻豆| 国产成人免费观看mmmm| 男女午夜视频在线观看| 免费不卡的大黄色大毛片视频在线观看| 国产亚洲av片在线观看秒播厂| 日韩中文字幕视频在线看片| 国产xxxxx性猛交| 国产亚洲午夜精品一区二区久久| 在线观看免费视频网站a站| 成人影院久久| 亚洲第一青青草原| 校园人妻丝袜中文字幕| 国产在线免费精品| 99九九在线精品视频| 国产熟女欧美一区二区| 女性被躁到高潮视频| 久久精品国产亚洲av高清一级| 五月天丁香电影| 男的添女的下面高潮视频| 国产精品国产三级国产专区5o| 亚洲人成电影观看| 热re99久久精品国产66热6| 五月伊人婷婷丁香| 99久久人妻综合| 少妇的丰满在线观看| 国产又爽黄色视频| 国产精品.久久久| 香蕉国产在线看| 丝袜脚勾引网站| videosex国产| 美女xxoo啪啪120秒动态图| 亚洲国产成人一精品久久久| 2022亚洲国产成人精品| 五月天丁香电影| 国产熟女欧美一区二区| 日本爱情动作片www.在线观看| av视频免费观看在线观看| 国产精品亚洲av一区麻豆 | 哪个播放器可以免费观看大片| 中文字幕制服av| 美女国产视频在线观看| 精品亚洲成a人片在线观看| 又粗又硬又长又爽又黄的视频| 久久久欧美国产精品| 日本av手机在线免费观看| 亚洲经典国产精华液单| 高清欧美精品videossex| 一级,二级,三级黄色视频| 啦啦啦啦在线视频资源| 日韩不卡一区二区三区视频在线|