• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Surface Mesh Movement Algorithm for Aerodynamic Optimization of the Nacelle Position on Wing-Body-Nacelle-Pylon Configuration

    2016-02-09 01:52:38,,,

    , , ,

    College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China

    ?

    A Surface Mesh Movement Algorithm for Aerodynamic Optimization of the Nacelle Position on Wing-Body-Nacelle-Pylon Configuration

    GaoYisheng,WuYizhao*,XiaJian,TianShuling

    College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China

    (Received 19 May 2016; revised 13 July 2016; accepted 5 August 2016)

    A surface mesh movement algorithm, combining surface mesh mapping with Delaunay graph mapping, is proposed for surface mesh movement involving complex intersections, like wing/pylon intersections. First, surface mesh mapping is adopted for the movement of intersecting lines along the spanwise direction and the wing surface mesh, and then Delaunay graph mapping is utilized for the deformation of the pylon surface mesh, guaranteeing consistent and smooth surface meshes. Furthermore, the corresponding surface sensitivity procedure is implemented for accurate and efficient calculation of the surface sensitivities. The proposed surface mesh movement algorithm and the surface sensitivity procedure are integrated into a discrete adjoint-based optimization framework to optimize the nacelle position on the DLR-F6 wing-body-nacelle-pylon configuration for drag minimization. The results demonstrate that the strong shock on the initial pylon surface is nearly eliminated and the optimal nacelle position can be obtained within less than ten iterations.

    aerodynamic optimization; aerodynamics; aircraft; surface mesh; adjoint

    0 Introduction

    The wing-body-nacelle-pylon (WBNP) configuration has been widely used in current transport aircrafts, thanks to its advantages such as easy access to service and wing bending relief. However, the interactions between wing/fuselage/nacelle/pylon may cause large interference drag, and in turn poor aerodynamic performance. In order to reduce the interference drag, computational fluid dynamics (CFD) has been coupled with numerical optimization techniques to determine the optimal shape and/or position of each component. For example, Koc et al.[1]conducted aerodynamic design optimization for the DLR-F6 WBNP configuration, utilizing a three-dimensional unstructured Euler solver and its discrete adjoint code. Saitoh et al.[2]used a similar approach for multi-point design of WBNP configuration, reducing the drag coefficients at both the low-lift condition and the cruise condition. Li et al.[3]developed an arbitrary space-shape free form deformation(FFD) method for the integral parameterization of nacelle-pylon geometry and optimized the vertical and horizontal locations of the nacelle on the DLR-F6 WBNP configuration. These and others′ contributions[4-6]indicate that CFD based numerical optimization methods can improve the design of such a configuration.

    Although the optimizations of the vertical and the horizontal (streamwise) locations of a nacelle are not uncommon, the optimization of the spanwise location (as shown in Fig. 1) is still a challenge. In fact, when the nacelle is moved along the spanwise direction, the pylon should be moved accordingly along the spanwise direction, leading to the movement of wing/pylon intersecting lines along the wing surface. In this case, a naive application of the commonly used FFD method[7]to the movement of the nacelle/pylon may result in nonsmooth or inconsistent wing-nacelle-pylon surface meshes. Although CAD-based tools may be utilized to address the issue, coupling sophisticated CAD systems with optimization system is not a trivial task. Furthermore, the current proprietary CAD systems seldom provide accurate and efficient surface sensitivity analysis, which is indispensable for gradient-based optimization. On the other hand, some in-house CAD-based tools have been developed for gradient-based shape optimization[8-9], but the capabilities to handle complex intersections are not clear.

    Fig.1 Representation of the nacelle location

    In this paper, an alternative algorithm for the surface mesh movement involving complex intersections without CAD intervention is proposed. The algorithm is based on surface mesh mapping in conjunction with Delaunay graph mapping. First, surface mesh mapping[10]is introduced for the movement of wing/pylon intersections along the spanwise direction and the wing surface mesh. As the nacelle is moved along the spanwise direction, this approach ensures that the wing/pylon intersecting lines are moved accordingly and lie on the wing surface properly, preserving consistency with the underlying wing geometry during the movement of the nacelle. After the determination of the new nacelle location and the new wing/pylon intersection location, Delaunay graph mapping[11]is applied for the surface mesh deformation of the pylon, guaranteeing the smoothness of the deformed surface mesh. Note that the optimization of the pylon geometry itself is not accounted for in this paper. Thus, the pylon is deformed according to the movement of the nacelle/pylon and wing/pylon intersections.

    To develop a gradient-based aerodynamic optimization framework for the WBNP configuration, a procedure for the calculation of surface sensitivities is also implemented. The codes of computing the surface sensitivities of the wing points with respect to the spanwise variation are generated by the forward mode of automatic differentiation (AD)[12]. The proposed surface mesh movement approach and the surface sensitivity procedure are integrated into a discrete adjoint-based optimization framework[13], with a linear elasticity-based volume mesh deformation approach, a parallel full implicit flow solver for the Euler equations, a duality-preserving discrete adjoint solver and a gradient-based optimization algorithm. The effectiveness and efficiency of the proposed optimization framework are demonstrated through the optimization of the nacelle position on the DLR-F6 WBNP configuration for drag minimization.

    1 Surface Mesh Movement Algorithm

    1.1 Surface mesh mapping

    Given the vertical and horizontal locations of the nacelle as design variables, only the deformations of the nacelle and pylon surface meshes are required, without the movement of the wing/pylon intersections. However, if the spanwise location of the nacelle is also designated as a design variable, the translation of the nacelle along the spanwise direction requires the consistent translation of the pylon, leading to the problem of the determination of the new wing/pylon intersection location on the wing surface. It is not an easy task due to the requirement of preserving the new wing/pylon intersections lying on the wing surface and the smoothness of the deformed wing-nacelle-pylon surface meshes. Murayama et al.[10]proposed a simple and robust surface mesh mapping for surface mesh movement in juncture regions, and demonstrated its capability by the change of the position and deflection angle of the horizontal tail wing. Therefore, it is applied here to guide the movement of the wing surface mesh as the change of the wing/pylon intersections in the optimization process.

    This method includes the following steps:

    (1) Create an appropriate structured background mesh for the clean wing geometry, covering the wing/pylon intersections, as shown in Fig.2. The clean wing geometry is usually already available or can be generated by using ″untrim″ operation in CAD systems. The background mesh can be generated for part of the clean wing surface, rather than the complete wing surface. This background mesh will be used for the mapping between physical space and parameter domain, as shown in Fig.3,whereξandηrepresent parametric coordinates in parameter domain.

    (2) Determine the mapping (parametric coordinates) of vertices on the wing surface mesh covered by the background mesh. Consider any vertexPon the surface mesh, as shown in Fig.4.

    Fig.2 The clean wing geometry and the background mesh

    Fig.3 Parameter domain of the background mesh

    The Cartesian coordinates of the vertexPcan be given by

    (1)

    where xPrepresents the Cartesian coordinates of the vertexP, rithe Cartesian coordinates of the vertex of the donor element where the vertexPis located, and Φithe interpolation weights calculated by the standard shape function for four-node quadrilateral

    (2)

    where ξPand ηPare the parametric coordinates of the vertexPin parameter domain, ξland ηlthe local parametric coordinates of the vertexP, iPand jPthe donor element indexes of the vertexP. In order to obtain the parametric coordinates ξPand ηP, the donor element on the background mesh is first identified. Rather than the neighbor-to-neighbor jump-search algorithm used in Murayama′s method[10], a simple direct search is applied here. In the direct search, each quadrilateral element on the background mesh is split into two triangular elements, and the projected point is calculated to find the donor element[14]. Although it is not as efficient as the neighbor-to-neighbor jump-search algorithm, the direct search is carried out only once. After the donor element is identified, Newton-Raphson iteration is adopted to obtain the parametric coordinates[15]. The convergence to machine precision can be achieved within 5—6 iterations. Once the parametric coordinates are obtained, the part of the wing surface mesh in physical space, as shown in Fig.5, is mapped onto a 2D mesh in parameter domain which is shown in Fig.6.

    Fig.4 Mapping of the vertex P

    Fig.5 The part of the wing surface mesh in physical space for mapping

    Fig.6 Mapped mesh in parameter domain

    (3) According to the specified movement of the nacelle and the pylon along spanwise direction, move the wing/pylon intersections in parameter domain. Since the movement of the wing/pylon intersections in parameter domain is unknown, a special Newton-Raphson iteration is used to decide the movement, as depicted by pseudocode in Fig.7.

    Fig.7 Newton-Raphson iteration for determining the translation in the η direction

    (4) After the movement of wing/pylon intersections in parameter domain, deform the mapped mesh in parameter domain. Since it is essentially a 2D mesh deformation problem in parameter domain, various mesh deformation algorithms can be utilized. Delaunay graph mapping is adopted here due to its simplicity. Delaunay graph is generated by GEOMPACK[16], a FORTRAN library for Delaunay triangulation. The initial and deformed Delaunay graphs and mapped meshes are shown in Figs.8,9, respectively. Here the translation of 20% chord length along the direction of the outboard wing is assumed, and two auxiliary points are added to the left middle side and the right middle side of Delaunay graphs, respectively, in order to prevent possible intersections between the graph elements.

    Fig.8 Initial and deformed Delaunay graphs

    Fig.9 Initial and deformed mapped meshes

    (5) According to the deformed mapped mesh in parameter domain, calculate the new coordinates of the vertices on the wing surface using Eq.(2). The resulting wing surface mesh in physical space is shown in Fig.10. Compared to Fig.5, it can be seen that the wing/pylon intersections are moved smoothly across the boundary of the inboard wing and the outboard wing.

    Fig.10 The resulting wing surface mesh in physical space

    1.2 Delaunay graph mapping

    Since the vertical, horizontal and spanwise locations are designated as design variables, once the new locations are specified, the nacelle surface mesh is moved rigidly and the wing surface mesh is deformed by the above method. Therefore, the next step is the smooth deformation of the pylon surface mesh. Widely used physical analogy based mesh deformation strategies, such as spring analogy[17]or linear elasticity-based method[18], may be not suitable for this case, because of the difficulty in association with the static equilibrium formulation for fictitious spring network or linear elasticity on curved surfaces. In fact, noncoplanar tension spring network cannot be static equilibrium, so that it is not capable of surface mesh movement on curved surfaces. To overcome the difficulty, Delaunay graph mapping is employed to deform the pylon surface mesh according to the movement of wing/pylon intersections and nacelle/pylon intersections. Delaunay graph mapping has been successfully applied to 2D planar and 3D volumetric mesh deformation[11]. Since the mesh movement depends on the movement of the underlying graph element, as long as the movement of the graph element is smooth, the resulting mesh is moved smoothly. Thus, Delaunay graph mapping is also applicable for this case. In the following, the pylon surface mesh deformation according to the horizontal movement of the nacelle is presented to illustrate it.

    First, a bounding box within which the initial pylon geometry and possible deformed pylon geometry lie is created, as shown in Fig.11. The eight corner points of the bounding box and the points along the wing/pylon intersections and the nacelle/pylon intersections (red points shown in Fig.11) are defined as boundary points for Delaunay tetrahedralization, which is yield by an open source tetrahedral mesh generator TetGen[19]. Then for any pointPon the pylon surface, the coordinates of the pointPcan be calculated by

    Fig.11 Bounding box

    (3)

    where (xi,yi,zi), i=1,2,3,4 are the nodal points of the graph element where the pointPlocated, shown in Fig.12, and ei, i=1,2,3,4 the four relative volume coefficients. This graph element and the corresponding relative volume coefficients are also provided by TetGen, so additional search procedure is avoided. When the nacelle movement, for example 10% chord length along the negative horizontal direction, is specified, the points along the nacelle/pylon intersections are moved accordingly, leading to the movement of the graph element, as shown in Fig.13. Therefore, the new coordinates of the pointPis given by

    (4)

    Fig.12 Graph element

    Fig.13 Movement of graph element

    The application of Delaunay graph mapping to the case of the vertical or spanwise movement of the nacelle is exactly the same.

    1.3 Complete procedure and applications

    In summary, the complete procedure of the proposed surface mesh movement algorithm can be described as:

    (1) Move the nacelle rigidly according to the specified vertical, horizontal and spanwise movement;

    (2) According to the spanwise movement of the nacelle, determine the movement of the wing/pylon intersections and deform the wing surface mesh using surface mesh mapping;

    (3) According to the new locations of the wing/pylon intersections and the nacelle/pylon intersections, apply Delaunay graph mapping to deform the pylon surface mesh.

    Figs.14(a—f) demonstrate the surface mesh movement for different nacelle positions, including ±3% translations along the vertical direction, ±10% translations along the horizontal di-rection and ±20% translations along the spanwise direction (in unit of mean aerodynamic chord). As can be seen, even for large movement, the consistency of the underlying wing geometry and the quality of the deformed surface meshes are maintained.

    Fig.14 Surface mesh movement for different nacelle positions (transparent: initial, solid: deformed)

    2 Discrete Adjoint-Based Optimization Framework

    Discrete adjoint method is among the most efficient optimization strategies, due to the cost of gradient computation essentially independent of the number of design variables. In order to develop a discrete adjoint-based optimization framework, a procedure for the computation of the surface sensitivity with respect to design variables is required. In this section, the surface sensitivity procedure is implemented and integrated into a discrete adjoint-based optimization framework.

    2.1 Discrete adjoint formulation

    Provided an objective function L, for instance, drag coefficient CDand design variables D, according to the duality principle[20], adjoint model for the computation of the sensitivity can be formulated as[21]

    (5)

    where xsurfrepresents the surface mesh point coordinates, xallthe volume mesh point coordinates, w the flow variables, R the residuals of the discretized flow equations, and K the stiffness matrix emerged from volume mesh motion problem.

    (6)

    2.2 Surface sensitivity procedure

    (1) For any point on the nacelle surface, since the nacelle is moved rigidly, the surface sensitivities can be easily calculated as

    (7)

    wherexnacellerepresents the coordinates of the point and I represents a 3×3 identity matrix.

    (2) For the wing surface, according to Section 1.1, three routines should be differentiated: the movement of intersecting lines in parameter domain, 2D mesh deformation in parameter domain and the calculation of the new coordinates in physical space. Although handed derivation may be used, the application of AD tools is preferred, because AD tools can generate routines to compute accurate sensitivities in an efficient and automatic manner without human intervention, reducing the implementation time. In this work, AD tool Tapenade[23]is applied to generate the differentiated routines as it is free available and supports Fortran 90 language. The result of the application of AD tool Tapenade to Newton-Raphson iteration used in the movement of the wing/pylon intersecting lines is shown in Fig.15. In this case, dyis set as the independent input variable and dηas the dependent output variable. If dy_d is set to 1, dη_d will give the required sensitivities with respect to dy. Other differentiated routines can be obtained in an identical manner.

    Fig.15 Differentiation procedure of Newton-Raphson iteration

    (3) For any pointPon the pylon surface, the new coordinates are calculated by Eq.(4). Since the relative volume coefficients are only dependent of the initial coordinates of the nodal points and independent of the movement of the nodal points, these coefficients are constants for the computation of surface sensitivities. Therefore, the surface sensitivities can be evaluated as

    (8)

    2.3 Adjoint sensitivity verification

    The complete sensitivity (the dL/dD term in Eq.(5)) is verified with three methods:Central finite difference, the complex step method[24]and tangent model[21].

    Finite difference is the most common method for estimating the derivative (sensitivity). The second-order central finite difference for approximating the first-order derivative of an objective function f(x) is given by

    (9)

    where h is the step size. Nevertheless, this method often suffers from the ″step-size dilemma″. The step size should be small enough to minimize truncation error while not so small that round-off error dominates the result. In practice, a suitable step size is usually determined by trial and error.

    The complex step method is an accurate and robust derivative approximation method and has been applied to exact linearizations of complicated real-valued residual operators[25]. For a real-valued function f(x), if the input becomes a complex value x+ih, where h is a small step size, the Taylor series of the function f(x+ih) can be written as

    f(x+ih)=f(x)+ihf′(x)+Ο(h2)

    (10)

    Accordingly, the derivative f′(x) can be approximated by

    (11)

    This approximation is also second-order accurate and no differencing involved, avoiding the ″step-size dilemma″. So this method can provide a very accurate derivative approximation, if a small enough step size is given.

    The tangent model is exact linearization of a vector function with respect to one variable. It is commonly used for sensitivity analysis and verification of adjoint model. If both tangent model and adjoint model are implemented exactly, the duality principle assures that the sensitivities calculated by two models are consistent within machine precision. Even a tiny inexact linearization in adjoint model will immediately manifest lack of consistency. Accordingly, the tangent model is very useful for the verification of adjoint implementation.

    The sensitivities of lift coefficient CLand drag coefficient CDwith respect to the horizontal movement Dx, the spanwise movement Dyand the vertical movement Dz, calculated by different methods, are shown in Tables 1,2, respectively. The finite difference step size for the horizontal movement is 10-6. The finite difference step size for the spanwise movement is 1.4×10-9. The finite difference step size for the vertical movement is 10-7. The complex step size is 10-20. All equations involved are converged to machine precision to avoid any algebraic error. The adjoint sensitivities yield an agreement of 9—11 significant figures when compared to the results of the complex step method and the tangent model, and an agreement of 4—8 significant figures when compared to the results of the finite difference method. It is evident that the adjoint sensitivities obtained by the current approach are highly accurate for the gradient based optimization process.

    Table 1 Adjoint sensitivity verification for lift coefficient with respect to design variables

    Table 2 Adjoint sensitivity verification for drag coefficient with respect to design variables

    3 Optimization Result

    The proposed discrete adjoint-based optimization framework is used for the optimization of the nacelle position on the DLR-F6 WBNP configuration for drag minimization. This optimization problem can be formulated as

    (12)

    where CL initialrepresents the lift coefficient of the initial configuration. The mean aerodynamic chord is 0.141 2 m and half model reference area is 0.072 7 m2. The computational mesh consists of 570 866 points and 3 161 828 tetrahedral cells, as depicted in Fig.16. The Mach number is 0.75 and the incidence is 1°. The lower and upper limits of the design variables are shown in Table 3.

    Table 3 Lower and upper limits of the design variables %

    Fig.16 Computational mesh of the DLR-F6 WBNP configuration

    Optimization package NPSOL[26], which is based on sequential quadratic programming (SQP) method[27], is used to drive the optimization process. Table 4 shows the optimization results. The drag coefficient is reduced from CD= 0.028 55 to CD= 0.028 34, while the lift coefficient remains constant. Fig.17 illustrates pressure coefficient contours on the initial and optimized wing-nacelle-pylon surface. The strong shock on the initial pylon surface has been almost removed, which contributes to the reduced drag. Fig.18 demonstrates the initial and optimized nacelle positions. The nacelle is moved further forward, downward and inward compared to the initial position, and the resulting surface mesh remains smooth and consistent under a relatively large deformation. Fig.19 shows the convergence history for the optimization problem, in terms of the merit function in NPSOL. The optimization problem converges within a total of 9 design cycles. The complete optimization takes approximately 4.5 h of wall-clock time, using 48 cores on the TH-1A supercomputer at National Supercomputer Center in Tianjin. This suggests that the optimization framework is highly efficient for this optimization problem and can be used as a design tool for the WBNP configuration.

    Table 4 Optimization results

    Fig.17 Pressure coefficient contours on the wing-nacelle-pylon surface

    Fig.18 Initial and optimized nacelle positions

    Fig.19 Convergence history for the optimization problem

    4 Conclusions

    A robust and efficient surface mesh movement algorithm for surface mesh involving complex intersections has been presented. The corresponding surface sensitivity procedure is implemented and integrated into a discrete adjoint-based optimization framework. This optimization framework has been successfully applied to the optimization of the nacelle position on the DLR-F6 WBNP configuration. The optimization almost eliminates strong shock on the initial pylon surface, resulting in a reduction of 2 counts of the drag coefficient. The optimal nacelle position is achieved within less than ten iterations, which indicates high efficiency of the proposed optimization framework. Future work will focus on aerodynamic optimization based on the Reynolds averaged Navier-Stokes equations. The optimization concerning wing geometry and nacelle position will be simultaneously considered.

    Acknowledgement

    This study was supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

    [1] KOC S, KIM H, NAKAHASHI K. Aerodynamic design of wing-body-nacelle-pylon configuration[C]∥ 17th AIAA Computational Fluid Dynamics Conference. Reston: AIAA, 2005.

    [2] SAITOH T, KIM H, TAKENAKA K, et al. Multi-point design of wing-body-nacelle-pylon configuration[C]∥ 24th Applied Aerodynamics Conference. Reston: AIAA, 2006.

    [3] LI J, GAO Z, HUANG J, et al. Aerodynamic design optimization of nacelle/pylon position on an aircraft[J]. Chinese Journal of Aeronautics, 2013, 26(4): 850-857.

    [4] NEMEC M, AFTOSMIS M. Parallel adjoint framework for aerodynamic shape optimization of component-based geometry[C]∥49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2011.

    [5] ZHANG Y, CHEN H, ZHANGE W, et al. Wing/engine integrated optimization based on Navier-Stokes equations[C]∥ 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2012.

    [6] HATANAKA K, OBAYASHI S, JEONG S. Application of the variable-fidelity MDO tools to a jet aircraft design[C]∥ 25th International Congress of the Aeronautical Sciences. Hamburg, Germany: ICAS, 2006.

    [7] SEDERBERG T, PARRY S. Free-form deformation of solid geometric models[J]. ACM SIGGRAPH Computer Graphics, 1986, 20(4): 151-160.

    [8] TRUONG A, ZINGG D, HAIMES R. Surface mesh movement algorithm for computer-aided-design-based aerodynamic shape optimization[J]. AIAA Journal, 2016, 54(2): 542-556.

    [9] HATANAKA K, BREZILLON J, RONZHEIMER A. A fully automated CAD-based framework for shape optimization[C]∥ 28th International Congress of the Aeronautical Sciences. Valencia, Spain: ICAS, 2012.

    [10]MURAYAMA M, NAKAHASHI K, MATSUSHIMA K. A robust method for unstructured volume/surface mesh movement[J]. Transactions of the Japan Society for Aeronautical and Space Sciences, 2003, 46(152): 104-112.

    [11]LIU X, QIN N, XIA H. Fast dynamic grid deformation based on Delaunay graph mapping[J]. Journal of Computational Physics, 2006, 211(2): 405-423.

    [12]GRIEWANK A, WALTHER A. Evaluating derivatives: Principles and techniques of algorithmic differentiation[M]. Philadelphia: Society for Industrial and Applied Mathematics, 2008.

    [13]GAO Yisheng, WU Yizhao, XIA Jian. A discrete adjoint-based approach for airfoil optimization on unstructured meshes[J]. ACTA Aerodynamica Sinica, 2013, 31(2): 244-249. (in Chinese)

    [14]SAMAREH-ABOLHASSANI J. Unstructured grids on NURBS surfaces[C]∥ 11th Applied Aerodynamics Conference. Reston: AIAA, 1993.

    [15]TIAN Shuling. Investigation of overset unstructured grids algorithm[D]. Nanjing: Nanjing University of Aeronautics & Astronautics, 2008. (in Chinese)

    [16]JOE B. GEOMPACK—A software package for the generation of meshes using geometric algorithms[J]. Advances in Engineering Software, 1991, 13: 325-331.

    [17]BATINA J. Unsteady Euler airfoil solutions using unstructured dynamic meshes[J]. AIAA Journal, 1990, 28(2): 1381-1388.

    [18]TEZDUYAR T. Stabilized finite element formulations for incompressible flow computations[J]. Advances in Applied Mechanics, 1992, 28(1): 1-44.

    [19]SI H. TetGen, a Delaunay-based quality tetrahedral mesh generator[J]. ACM Transactions on Mathematical Software, 2015, 41(2):1-36.

    [20]GILES M, PIERCE N. An introduction to the adjoint approach to design[J]. Flow, Turbulence and Combustion, 2000, 65:393-415.

    [21]MAVRIPLIS D. Discrete adjoint-based approach for optimization problems on three-dimensional unstructured meshes[J]. AIAA Journal, 2007, 45(4): 740-750.

    [22]SATO Y, HINO T, OHASHI K. Parallelization of an unstructured Navier-Stokes solver using a multi-color ordering method for Open MP[J]. Computer & Fluids, 2013, 88:496-509.

    [23]HASCOET L, PASCUAL V. The Tapenade automatic differentiation tool: Principles, model, and specification[J]. ACM Transactions on Mathematical Software, 2013, 39(3):1-43.

    [24]MARTINS J, STURDZA P, ALONSO J. The complex-step derivative approximation[J]. ACM Transactions on Mathematical Software, 2003, 29(3):245-262.

    [25]NIELSEN E, KLEB W. Efficient construction of discrete adjoint operators on unstructured grids using complex variables[J]. AIAA Journal, 2006, 44(4): 827-836.

    [26]GILL P, MURRAY W, SAUNDERS M, et al. User′s guide for NPSOL 5.0:A FORTRAN package for nonlinear programming: Technical Report SOL 86-1[R]. California: SOL, 1986.

    [27]NOCEDAL J, WRIGHT S. Numerical optimization[M]. Berlin: Springer-Verlag, 1999.

    Mr. Gao Yisheng is currently a Ph.D. candidate at College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China. His main research interests include computational fluid dynamics and aerodynamic shape optimization.

    Prof. Wu Yizhao is currently a professor at Nanjing University of Aeronautics and Astronautics, Nanjing, China. His main research interests include computational fluid dynamics, aerodynamic shape optimization and hypersonic flows.

    Prof. Xia Jian is currently a professor at Nanjing University of Aeronautics and Astronautics, Nanjing, China. His main research interests include computational fluid dynamics, fluid structure interaction, aerodynamic shape optimization and DSMC.

    Dr. Tian Shuling is currently an associate professor at Nanjing University of Aeronautics and Astronautics, Nanjing, China. His main research interests include computational fluid dynamics, unsteady aerodynamics and aerodynamic shape optimization.

    (Executive Editor: Zhang Bei)

    V211.3 Document code:A Article ID:1005-1120(2016)06-0657-13

    *Corresponding author, E-mail address:wyzao@nuaa.edu.cn. How to cite this article: Gao Yisheng, Wu Yizhao, Xia Jian, et al.A surface mesh movement algorithm for aerodynamic optimization of the nacelle position on wing-body-nacelle-pylon configuration[J]. Trans. Nanjing Univ. Aero. Astro., 2016,33(6):657-669. http://dx.doi.org/10.16356/j.1005-1120.2016.06.657

    老熟妇乱子伦视频在线观看| 亚洲午夜精品一区,二区,三区| 亚洲va日本ⅴa欧美va伊人久久| 黑人操中国人逼视频| 50天的宝宝边吃奶边哭怎么回事| 久久久国产一区二区| 亚洲成a人片在线一区二区| 黄色a级毛片大全视频| 亚洲色图av天堂| 91成人精品电影| 亚洲熟妇熟女久久| 91国产中文字幕| 中文字幕人妻熟女乱码| 久久久久九九精品影院| 国产精品av久久久久免费| 在线天堂中文资源库| 99国产精品一区二区蜜桃av| 美女扒开内裤让男人捅视频| 成人永久免费在线观看视频| 中文字幕高清在线视频| 亚洲国产欧美一区二区综合| 国产精品一区二区三区四区久久 | 最新美女视频免费是黄的| av网站在线播放免费| x7x7x7水蜜桃| 真人一进一出gif抽搐免费| 欧美日韩亚洲综合一区二区三区_| 丝袜美腿诱惑在线| 国产黄a三级三级三级人| 18禁裸乳无遮挡免费网站照片 | 国产精品亚洲av一区麻豆| 亚洲男人的天堂狠狠| 婷婷丁香在线五月| 日韩一卡2卡3卡4卡2021年| 国产国语露脸激情在线看| 级片在线观看| 国产一区二区三区视频了| 亚洲第一青青草原| 18美女黄网站色大片免费观看| 自拍欧美九色日韩亚洲蝌蚪91| 一级毛片精品| 在线国产一区二区在线| 免费在线观看日本一区| 免费观看精品视频网站| 亚洲av五月六月丁香网| 久热这里只有精品99| 51午夜福利影视在线观看| 色婷婷av一区二区三区视频| 两性午夜刺激爽爽歪歪视频在线观看 | 国产高清国产精品国产三级| 亚洲第一欧美日韩一区二区三区| 老司机午夜十八禁免费视频| 一本综合久久免费| 国产亚洲精品第一综合不卡| 淫秽高清视频在线观看| 性欧美人与动物交配| 亚洲中文日韩欧美视频| 天天躁夜夜躁狠狠躁躁| 亚洲成人精品中文字幕电影 | 日韩成人在线观看一区二区三区| 两个人免费观看高清视频| а√天堂www在线а√下载| 精品久久久久久电影网| a级毛片黄视频| 波多野结衣av一区二区av| 欧美激情高清一区二区三区| 操美女的视频在线观看| 久久久国产一区二区| 国产区一区二久久| 国产麻豆69| av国产精品久久久久影院| 妹子高潮喷水视频| 久久久久久久午夜电影 | 超碰97精品在线观看| 黑人巨大精品欧美一区二区蜜桃| 亚洲欧美精品综合一区二区三区| 一区二区三区激情视频| 亚洲成人免费av在线播放| 国产精品av久久久久免费| 亚洲成a人片在线一区二区| netflix在线观看网站| www.自偷自拍.com| 国产亚洲精品久久久久5区| 久久这里只有精品19| 高清在线国产一区| 99香蕉大伊视频| 色婷婷av一区二区三区视频| 精品高清国产在线一区| 婷婷精品国产亚洲av在线| 成人亚洲精品一区在线观看| 99久久精品国产亚洲精品| 99久久99久久久精品蜜桃| 亚洲伊人色综图| 国产精品一区二区三区四区久久 | 国产成人一区二区三区免费视频网站| 在线av久久热| 欧美精品亚洲一区二区| 欧美黑人欧美精品刺激| 女人精品久久久久毛片| 久热爱精品视频在线9| 婷婷六月久久综合丁香| 欧美人与性动交α欧美精品济南到| 国产精品一区二区免费欧美| 757午夜福利合集在线观看| 少妇 在线观看| 精品少妇一区二区三区视频日本电影| 亚洲全国av大片| 亚洲中文av在线| 99久久国产精品久久久| 国产精品电影一区二区三区| 欧美av亚洲av综合av国产av| 亚洲一区二区三区欧美精品| 啦啦啦在线免费观看视频4| www日本在线高清视频| 在线观看舔阴道视频| 不卡av一区二区三区| 亚洲av成人一区二区三| 一级毛片精品| 涩涩av久久男人的天堂| 最近最新免费中文字幕在线| 久久人妻av系列| 成人av一区二区三区在线看| 91av网站免费观看| 日韩有码中文字幕| 在线观看免费午夜福利视频| 热99re8久久精品国产| e午夜精品久久久久久久| 大码成人一级视频| 黄色成人免费大全| 美女高潮喷水抽搐中文字幕| 国产熟女午夜一区二区三区| 9191精品国产免费久久| 欧美av亚洲av综合av国产av| 亚洲av第一区精品v没综合| 亚洲av熟女| 母亲3免费完整高清在线观看| 青草久久国产| 桃红色精品国产亚洲av| 大码成人一级视频| 国产亚洲精品久久久久久毛片| 侵犯人妻中文字幕一二三四区| 纯流量卡能插随身wifi吗| 男女午夜视频在线观看| 久久精品国产亚洲av香蕉五月| 亚洲中文av在线| www.www免费av| 伦理电影免费视频| 一进一出抽搐gif免费好疼 | 水蜜桃什么品种好| videosex国产| www.精华液| 亚洲色图av天堂| 老熟妇仑乱视频hdxx| 亚洲 欧美 日韩 在线 免费| av中文乱码字幕在线| av在线播放免费不卡| 亚洲精品中文字幕一二三四区| 欧美中文综合在线视频| 成人av一区二区三区在线看| 精品福利永久在线观看| 黄色毛片三级朝国网站| 午夜两性在线视频| 视频区欧美日本亚洲| 日本免费a在线| 欧美乱妇无乱码| av网站在线播放免费| 久久香蕉精品热| 成人免费观看视频高清| 性欧美人与动物交配| 日韩精品中文字幕看吧| 美女高潮喷水抽搐中文字幕| 满18在线观看网站| 国产精品久久视频播放| a级毛片在线看网站| 国产精品成人在线| 50天的宝宝边吃奶边哭怎么回事| 亚洲伊人色综图| 亚洲性夜色夜夜综合| 99久久精品国产亚洲精品| 亚洲自偷自拍图片 自拍| 国产男靠女视频免费网站| 国产精品香港三级国产av潘金莲| 80岁老熟妇乱子伦牲交| 婷婷六月久久综合丁香| 亚洲久久久国产精品| 久久99一区二区三区| 在线av久久热| 国产亚洲av高清不卡| 亚洲,欧美精品.| tocl精华| 麻豆一二三区av精品| 成年版毛片免费区| 夜夜看夜夜爽夜夜摸 | 777久久人妻少妇嫩草av网站| 亚洲第一av免费看| 久久精品成人免费网站| 淫妇啪啪啪对白视频| 日韩免费av在线播放| videosex国产| 色综合欧美亚洲国产小说| 成人精品一区二区免费| 国产精品久久久久成人av| 久久香蕉精品热| 亚洲国产欧美日韩在线播放| 在线观看一区二区三区| 免费搜索国产男女视频| 可以在线观看毛片的网站| 波多野结衣高清无吗| 久久人妻福利社区极品人妻图片| 国产人伦9x9x在线观看| 一级a爱视频在线免费观看| 亚洲专区中文字幕在线| 日韩 欧美 亚洲 中文字幕| 亚洲精品粉嫩美女一区| 在线看a的网站| 色婷婷av一区二区三区视频| 亚洲精品在线美女| 久久中文字幕人妻熟女| 国产人伦9x9x在线观看| 波多野结衣高清无吗| 欧美成人性av电影在线观看| 色综合欧美亚洲国产小说| 国产片内射在线| 丁香六月欧美| 午夜两性在线视频| 天天躁夜夜躁狠狠躁躁| 69av精品久久久久久| 国产在线精品亚洲第一网站| av中文乱码字幕在线| 大型av网站在线播放| 黑人欧美特级aaaaaa片| 一级a爱片免费观看的视频| 日韩人妻精品一区2区三区| 在线观看午夜福利视频| 亚洲成a人片在线一区二区| 欧美久久黑人一区二区| 免费观看精品视频网站| 天天躁夜夜躁狠狠躁躁| 亚洲av第一区精品v没综合| 最新美女视频免费是黄的| 亚洲少妇的诱惑av| 久久精品成人免费网站| 亚洲va日本ⅴa欧美va伊人久久| 一区二区日韩欧美中文字幕| 亚洲aⅴ乱码一区二区在线播放 | 99在线视频只有这里精品首页| 国产日韩一区二区三区精品不卡| 侵犯人妻中文字幕一二三四区| 亚洲人成77777在线视频| 制服人妻中文乱码| 99re在线观看精品视频| 免费在线观看亚洲国产| 欧美亚洲日本最大视频资源| 在线看a的网站| 精品午夜福利视频在线观看一区| 国产无遮挡羞羞视频在线观看| 中文字幕人妻丝袜制服| 亚洲欧美日韩高清在线视频| 丁香欧美五月| 在线看a的网站| 最新在线观看一区二区三区| 国产激情欧美一区二区| 动漫黄色视频在线观看| 他把我摸到了高潮在线观看| 最近最新免费中文字幕在线| 国产亚洲精品一区二区www| 免费在线观看完整版高清| 在线av久久热| 午夜免费成人在线视频| 18禁裸乳无遮挡免费网站照片 | 成人三级黄色视频| 久久久久久久午夜电影 | 男人操女人黄网站| 又黄又粗又硬又大视频| 久久久久久大精品| 一级毛片精品| 丰满的人妻完整版| 国产亚洲欧美精品永久| 欧美一区二区精品小视频在线| 国产精品免费一区二区三区在线| 亚洲九九香蕉| 国产成人av教育| 欧美久久黑人一区二区| 天堂俺去俺来也www色官网| 黑丝袜美女国产一区| 日韩大尺度精品在线看网址 | 日韩av在线大香蕉| 欧美国产精品va在线观看不卡| 久久精品人人爽人人爽视色| 国产99久久九九免费精品| 亚洲伊人色综图| 免费高清视频大片| 日韩av在线大香蕉| 久久午夜综合久久蜜桃| 国产亚洲精品久久久久久毛片| 亚洲人成77777在线视频| 欧美黄色淫秽网站| 少妇粗大呻吟视频| 后天国语完整版免费观看| 国产精品免费视频内射| 精品久久久久久久毛片微露脸| 99久久综合精品五月天人人| 中文字幕高清在线视频| 乱人伦中国视频| 一个人观看的视频www高清免费观看 | 99热只有精品国产| 性欧美人与动物交配| 一进一出抽搐gif免费好疼 | 亚洲精品一卡2卡三卡4卡5卡| 日韩欧美一区二区三区在线观看| 麻豆av在线久日| 久久久久精品国产欧美久久久| 超碰97精品在线观看| 男女床上黄色一级片免费看| 操出白浆在线播放| 国产成人欧美| 欧美人与性动交α欧美精品济南到| 又紧又爽又黄一区二区| 69av精品久久久久久| 一本大道久久a久久精品| 欧美日本中文国产一区发布| 精品一区二区三区四区五区乱码| 国产熟女xx| 欧美亚洲日本最大视频资源| 啦啦啦免费观看视频1| 亚洲aⅴ乱码一区二区在线播放 | 久久国产精品男人的天堂亚洲| 午夜老司机福利片| 日韩欧美国产一区二区入口| 视频区图区小说| 成人av一区二区三区在线看| 欧美日韩一级在线毛片| 咕卡用的链子| 99re在线观看精品视频| 母亲3免费完整高清在线观看| 成人亚洲精品av一区二区 | 亚洲国产欧美一区二区综合| 黄片播放在线免费| 精品一品国产午夜福利视频| 午夜成年电影在线免费观看| 日韩精品免费视频一区二区三区| 国产97色在线日韩免费| 涩涩av久久男人的天堂| 在线av久久热| 亚洲欧美日韩无卡精品| 成人手机av| 精品国产国语对白av| 天天影视国产精品| 久久人妻福利社区极品人妻图片| 亚洲精品国产一区二区精华液| 亚洲欧美精品综合一区二区三区| 中文字幕人妻丝袜制服| 99国产精品一区二区三区| 国产精品自产拍在线观看55亚洲| 精品久久久精品久久久| 久久中文字幕人妻熟女| 免费在线观看视频国产中文字幕亚洲| 91av网站免费观看| 久久精品亚洲精品国产色婷小说| 91精品三级在线观看| 国产亚洲欧美98| 亚洲国产精品合色在线| 色在线成人网| 最近最新免费中文字幕在线| 日韩大尺度精品在线看网址 | 最近最新免费中文字幕在线| 精品福利观看| 日韩高清综合在线| 国产99白浆流出| 国产精品成人在线| 国产成人欧美| 热99re8久久精品国产| 黑人巨大精品欧美一区二区mp4| 国产成人精品在线电影| 日本vs欧美在线观看视频| 亚洲色图av天堂| 十八禁网站免费在线| 久久久国产成人精品二区 | 精品福利永久在线观看| 超碰成人久久| 在线看a的网站| 岛国在线观看网站| 久久天躁狠狠躁夜夜2o2o| 9热在线视频观看99| 欧美成人性av电影在线观看| 亚洲欧美精品综合一区二区三区| 桃红色精品国产亚洲av| 亚洲欧美一区二区三区久久| 亚洲精品一二三| 很黄的视频免费| 别揉我奶头~嗯~啊~动态视频| 久久青草综合色| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲精品中文字幕一二三四区| 日韩大尺度精品在线看网址 | 日韩成人在线观看一区二区三区| cao死你这个sao货| 人妻丰满熟妇av一区二区三区| 日韩 欧美 亚洲 中文字幕| 一级片'在线观看视频| 国产主播在线观看一区二区| 黄色丝袜av网址大全| 亚洲精品一二三| 人人澡人人妻人| 欧美激情 高清一区二区三区| 久久久久久久久免费视频了| 女生性感内裤真人,穿戴方法视频| 精品国内亚洲2022精品成人| 男女床上黄色一级片免费看| 在线播放国产精品三级| 午夜a级毛片| 亚洲精华国产精华精| 精品久久久久久成人av| 999精品在线视频| 久久99一区二区三区| 免费一级毛片在线播放高清视频 | 国产精华一区二区三区| 久久国产精品影院| 在线观看免费日韩欧美大片| 三上悠亚av全集在线观看| 99热国产这里只有精品6| 亚洲精品在线观看二区| 欧美成人免费av一区二区三区| 涩涩av久久男人的天堂| 操出白浆在线播放| 十分钟在线观看高清视频www| 亚洲精品成人av观看孕妇| 91国产中文字幕| 亚洲一区二区三区色噜噜 | 久久精品亚洲精品国产色婷小说| 俄罗斯特黄特色一大片| 色婷婷久久久亚洲欧美| 久久久国产精品麻豆| 黄色怎么调成土黄色| 国产主播在线观看一区二区| 精品国产一区二区久久| 老熟妇乱子伦视频在线观看| 亚洲精品国产精品久久久不卡| 免费久久久久久久精品成人欧美视频| 亚洲av成人不卡在线观看播放网| 日本一区二区免费在线视频| 亚洲欧美日韩无卡精品| 丰满人妻熟妇乱又伦精品不卡| 亚洲,欧美精品.| 日日爽夜夜爽网站| av在线天堂中文字幕 | 琪琪午夜伦伦电影理论片6080| 精品久久久久久久久久免费视频 | 人成视频在线观看免费观看| 亚洲国产欧美网| 精品乱码久久久久久99久播| 欧美黄色淫秽网站| 99久久人妻综合| 十分钟在线观看高清视频www| 天天影视国产精品| 最新美女视频免费是黄的| 欧美日本中文国产一区发布| 一本综合久久免费| 中亚洲国语对白在线视频| 夜夜看夜夜爽夜夜摸 | 丰满饥渴人妻一区二区三| 视频在线观看一区二区三区| 一本大道久久a久久精品| 黄色视频不卡| 国产人伦9x9x在线观看| 色在线成人网| 色婷婷av一区二区三区视频| 三上悠亚av全集在线观看| 中文欧美无线码| 女人被躁到高潮嗷嗷叫费观| 国产97色在线日韩免费| 日韩欧美一区二区三区在线观看| 国产精品电影一区二区三区| 日本免费a在线| 少妇 在线观看| 69精品国产乱码久久久| 欧美av亚洲av综合av国产av| 久久影院123| 国产一卡二卡三卡精品| 国产高清videossex| 国产主播在线观看一区二区| 国产97色在线日韩免费| 午夜精品国产一区二区电影| 国产精华一区二区三区| 黄色成人免费大全| cao死你这个sao货| 亚洲国产精品合色在线| 99riav亚洲国产免费| 日韩中文字幕欧美一区二区| 人人妻人人澡人人看| 国产xxxxx性猛交| 亚洲精品国产色婷婷电影| 女生性感内裤真人,穿戴方法视频| 亚洲自偷自拍图片 自拍| 中亚洲国语对白在线视频| 12—13女人毛片做爰片一| 成人手机av| 亚洲熟女毛片儿| av超薄肉色丝袜交足视频| 又黄又粗又硬又大视频| 国产成人精品在线电影| 啦啦啦在线免费观看视频4| 岛国视频午夜一区免费看| 久久人人爽av亚洲精品天堂| 极品教师在线免费播放| 水蜜桃什么品种好| 日本一区二区免费在线视频| 男女下面进入的视频免费午夜 | 丝袜人妻中文字幕| 成人国产一区最新在线观看| 精品一区二区三区四区五区乱码| 国产精品影院久久| 久久久精品国产亚洲av高清涩受| 亚洲国产欧美日韩在线播放| 黄片大片在线免费观看| 少妇 在线观看| a在线观看视频网站| 亚洲国产精品合色在线| 亚洲性夜色夜夜综合| 日韩精品中文字幕看吧| 久久久国产成人免费| 天天影视国产精品| 亚洲欧美日韩高清在线视频| 日本a在线网址| 一区二区三区激情视频| 亚洲免费av在线视频| 黄色女人牲交| 免费一级毛片在线播放高清视频 | 国产精品 国内视频| 色婷婷久久久亚洲欧美| 天堂中文最新版在线下载| 精品卡一卡二卡四卡免费| 欧美黄色片欧美黄色片| 亚洲欧美日韩高清在线视频| 午夜福利,免费看| 亚洲在线自拍视频| 黄色视频,在线免费观看| 国产精品一区二区精品视频观看| 欧美日韩一级在线毛片| avwww免费| 精品国内亚洲2022精品成人| 大型av网站在线播放| 一进一出抽搐gif免费好疼 | 亚洲精品美女久久av网站| 色婷婷久久久亚洲欧美| av福利片在线| 亚洲精品在线观看二区| 老司机午夜福利在线观看视频| 精品国产一区二区三区四区第35| 欧美黄色淫秽网站| 亚洲成人免费av在线播放| 十分钟在线观看高清视频www| 日韩成人在线观看一区二区三区| 两人在一起打扑克的视频| 亚洲成人免费av在线播放| 精品欧美一区二区三区在线| 岛国视频午夜一区免费看| 国产免费男女视频| 成人黄色视频免费在线看| 波多野结衣av一区二区av| 熟女少妇亚洲综合色aaa.| avwww免费| 91大片在线观看| 精品乱码久久久久久99久播| 天堂影院成人在线观看| 精品人妻在线不人妻| 久久人妻av系列| 亚洲男人天堂网一区| 国产精品一区二区免费欧美| 在线天堂中文资源库| 水蜜桃什么品种好| 日本撒尿小便嘘嘘汇集6| 在线免费观看的www视频| 不卡av一区二区三区| 中文字幕人妻熟女乱码| 黄色女人牲交| 亚洲午夜理论影院| 午夜福利在线观看吧| 乱人伦中国视频| 9色porny在线观看| 黄色视频,在线免费观看| 无限看片的www在线观看| 国产成人精品久久二区二区91| 国产精品乱码一区二三区的特点 | 国产精品 国内视频| 欧美成人午夜精品| 69精品国产乱码久久久| 人人妻,人人澡人人爽秒播| 丰满迷人的少妇在线观看| 狠狠狠狠99中文字幕| 女同久久另类99精品国产91| e午夜精品久久久久久久| 亚洲熟妇中文字幕五十中出 | 欧美精品一区二区免费开放| 美女大奶头视频| 免费一级毛片在线播放高清视频 | 国产麻豆69| 久久国产乱子伦精品免费另类| 国产精品亚洲av一区麻豆| 搡老岳熟女国产| √禁漫天堂资源中文www| 久久中文看片网| 精品久久久久久久久久免费视频 | 亚洲精品国产一区二区精华液| 国产免费现黄频在线看| 一区二区三区激情视频| av网站在线播放免费| 亚洲人成77777在线视频| 999久久久精品免费观看国产| 国产精品久久电影中文字幕| 黄色视频,在线免费观看| 老司机靠b影院| 在线av久久热| 五月开心婷婷网| 欧美日韩av久久|