• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Nerve growth factor protects against palmitic acidinduced injury in retinal ganglion cells

    2016-02-09 05:17:23PanshiYanShuTangHaifengZhangYuanyuanGuoZhiwenZengQiangWen1DepartmentofOphthalmologyFirstAffiliatedHospitalofZhengzhouUniversityZhengzhouHenanProvinceChina2DepartmentofPharmacyFirstAffiliatedHospitalofZhengzhouUniversit

    Pan-shi Yan, Shu Tang, Hai-feng Zhang, Yuan-yuan Guo, Zhi-wen Zeng,, Qiang Wen1 Department of Ophthalmology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China2 Department of Pharmacy, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China Department of Biochemistry and Molecular Biology, School of Basic Medicine, Zhengzhou University, Zhengzhou, Henan Province, China Shenzhen Mental Health Center and Shenzhen Key Lab for Psychological Healthcare, Shenzhen, Guangdong Province, China5 Department of Clinical Pharmacology, School of Basic Medicine, Zhengzhou University, Zhengzhou, Henan Province, China

    Nerve growth factor protects against palmitic acidinduced injury in retinal ganglion cells

    Pan-shi Yan1,#, Shu Tang2,#, Hai-feng Zhang3, Yuan-yuan Guo4, Zhi-wen Zeng4,*, Qiang Wen5,*
    1 Department of Ophthalmology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
    2 Department of Pharmacy, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
    3 Department of Biochemistry and Molecular Biology, School of Basic Medicine, Zhengzhou University, Zhengzhou, Henan Province, China
    4 Shenzhen Mental Health Center and Shenzhen Key Lab for Psychological Healthcare, Shenzhen, Guangdong Province, China
    5 Department of Clinical Pharmacology, School of Basic Medicine, Zhengzhou University, Zhengzhou, Henan Province, China

    How to cite this article:Yan PS, Tang S, Zhang HF, Guo YY, Zeng ZW, Wen Q (2016) Nerve growth factor protects against palmitic acid-induced injury in retinal ganglion cells. Neural Regen Res 11(11):1851-1856.

    Open access statement:This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as the author is credited and the new creations are licensed under the identical terms.

    Funding:This work was supported by the National Natural Science Foundation of China, No. U1304815; a grant from Key Project of Science and Technology Research of Henan Province of China, No. 132102310097.

    Graphical Abstract

    Accumulating evidence supports an important role for nerve growth factor (NGF) in diabetic retinopathy. We hypothesized that NGF has a protective effect on rat retinal ganglion RGC-5 cells injured by palmitic acid (PA), a metabolic factor implicated in the development of diabetes and its complications. Our results show that PA exposure caused apoptosis of RGC-5 cells, while NGF protected against PA insult in a concentration-dependent manner. Additionally, NGF significantly attenuated the levels of reactive oxygen species (ROS) and malondialdehyde (MDA) in RGC-5 cells. Pathway inhibitor tests showed that the protective effect of NGF was completely reversed by LY294002 (PI3K inhibitor), Akt VIII inhibitor, and PD98059 (ERK1/2 inhibitor). Western blot analysis revealed that NGF induced the phosphorylation of Akt/FoxO1 and ERK1/2 and reversed the PA-evoked reduction in the levels of these proteins. These results indicate that NGF protects RGC-5 cells against PA-induced injury through anti-oxidation and inhibition of apoptosis by modulation of the PI3K/Akt and ERK1/2 signaling pathways.

    nerve regeneration; RGC-5 cells; palmitic acid; nerve growth factor; apoptosis; PI3K; Akt; FoxO1; ERK1/2; neural regeneration

    Introduction

    Diabetic retinopathy (DR) is a severe complication of diabetes mellitus and the leading cause of blindness worldwide (Zheng et al., 2012). Accumulating evidence suggests that excessive plasma levels of saturated fatty acids, such as palmitic acid, are caused by a high-fat diet. This can lead to insulin resistance and its associated complications, including DR (Kulacoglu et al., 2003; Shen et al., 2014; Kumar et al., 2015; Sasaki et al., 2015). Progressive loss of the retinal cells responsible for communication between the eye and brain contributes to early pathogenic events in DR, and can explain some of the vision defects that occur soon after the onset of diabetes (Barber et al., 2011; van Dijk et al., 2012; Pelikánová, 2016). Traditional treatments such as photocoagulation, vitrectomy and anti-vascular endothelial growth factor therapy can be effective, but are limited and can have considerable side effects (Yam and Kwok, 2007; Wilkinson-Berka, 2008). Novel approaches are, therefore, beingsought that can prevent or delay retinal cell death and maintain normal neuronal functions.

    Nerve growth factor (NGF), discovered in 1948 (Bradshaw et al., 1984), prevents neuronal apoptosis in primary cultured neurons and reduces neuronal degeneration in animal models of neurodegenerative diseases (Wiese et al., 1999; Sofroniew et al., 2001). In the retina, NGF is produced and utilized by retinal ganglion cell (RGCs) and glial cells in a paracrine and autocrine fashion (Turner et al., 1980; Mysona et al., 2014). Restoring NGF signaling has been reported to be a potential therapeutic strategy to overcome retinal degenerative diseases, including DR (Colafrancesco et al., 2011; Abu El-Asrar et al., 2013; Mysona et al., 2013, 2015; Mantelli et al., 2014; Wang et al., 2015b; Zhang and Zhou, 2015). NGF can prevent early retinal cell apoptosis and development of cellular occluded capillaries (Hammes et al., 1995), while an anti-NGF antibody increased RGC loss in experimental diabetic rats (Mantelli et al., 2014). Furthermore, NGF had a neuroprotective effect on RGCs after retinal ischemia/ reperfusion injury (Chen et al., 2015), while administration of NGF eye drops restored TrkA levels in the retina, and protected RGCs from degeneration in an experimental diabetic model and a glaucoma rat model (Lambiase et al., 2009; Colafrancesco et al., 2011). A large number of studies, including from our group, show that NGF confers its neuroprotectionviaPI3K/Akt and ERK1/2 signaling pathways in primary neurons and cell lines (Gan et al., 2005; Lambiase et al., 2009; Wen et al., 2011). The PI3k/Akt and ERK1/2 signaling pathways are the two main pathways involved in cell survival and apoptosis (Schmitz et al., 2007). They are activated by growth factors, drugs and hormones but play different neuroprotective roles under different conditions (Ahn, 2014; Li et al., 2014). Members of the FoxO (forkhead box, O class) Forkhead transcription factor family, including FoxO1, 3, 4, and 6, are downstream targets of PI3K/Akt and phosphorylation decreases their transcriptional activity, resulting in their redistribution to the cytoplasm (Dobson et al., 2011). FoxO1 has a crucial role in apoptosis and survival of different cells (Zhang et al., 2011).

    The retinal ganglion RGC-5 cell line, derived from post-natal rat retina, has characteristic retinal progenitor markers and can be used to study cellular and molecular mechanisms of RGC-associated eye diseases (Maher and Hanneken, 2005). However, whether NGF retains its protective action in RGC-5 cells against PA insult remains unclear. This study aimed to explore the neuroprotective effect of NGF on PA-induced RGC-5 injury.

    Materials and Methods

    Cell culture

    RGC-5 cells were provided by Sun Yat-sen University, Guangzhou, Guangdong Province, China. Cells were cultured in high-glucose Dulbecco’s modified Eagle’s medium (DMEM) (Invitrogen, Carlsbad, CA, USA) containing 10% fetal bovine serum (FBS) (Invitrogen), streptomycin (100 μg/mL; Invitrogen) and penicillin (100 U/mL; Invitrogen) at 37°C in a 5% CO2humidified atmosphere. Medium was changed every 3 days and 25% of cells were passaged weekly.

    MTT assay

    Cell viability was assessed using the MTT assay as described previously (Wang et al., 2013; Zeng et al., 2016a). Briefly, RGC-5 cells were seeded in 96-well plates at a density of 2 × 105 cells/well. Cultures were incubated with 100 μM PA (Sigma-Aldrich, St. Louis, MO, USA) or pretreated with 25-100 ng/mL NGF for 24 hours, and were then incubated with MTT (0.5 mg/mL; Sigma-Aldrich) for another 3 hours. Medium was removed and dimethyl sulfoxide (DMSO; 200 μL) added to each well. The optical density (OD) of each well was measured at a wavelength of 570 nm using a Multiskan Ascent Revelation Plate Reader (Thermo Fisher Scientific, Waltham, MA, USA) and the data are presented as a percentage relative to the control. Assays were repeated three to six times.

    To evaluate the role of PI3K/Akt and Erk1/2 pathways on the survival promoting effect of NGF on cell apoptosis induced by PA, the cultures were pretreated with NGF (50 ng/mL) in the presence of preincubated with the PI3K inhibitor LY294002 (10 μM; Calbiochem, La Jolla, CA, USA), AktVIII (5 μM; Calbiochem) and the Erk1/2 inhibitor PD98059 (10 μM; Calbiochem) for 30 minutes then PA treated for another 24 hours, and the viability of cells was determined by the MTT assay.

    Annexin V-FITC/PI staining to evaluate apoptosis

    RGC-5 cells were treated for 16 hours with 100 μM PA with or without 50 ng/mL NGF pretreatment. Cells were then digested, washed twice with ice-cold phosphate buffered saline (PBS) then centrifuged for 5 minutes and re-suspended in 195 μL Annexin V-FITC binding buffer (Beijing 4A Biotech, China) as described previously (Zeng et al., 2016b). Annexin V-FITC (20 μg/mL) was added and the cells incubated away from light at 20–25°C for 10 minutes. Then cells were then washed with ice-cold PBS and resuspended in binding buffer. Propidium iodide (PI) (1 mg/mL) (Beijing 4A Biotech) was then added and the cells incubated in darkness. Apoptosis was quantified by flow cytometry using Cell Quest Pro software (Beckman Coulter, Brea, CA, USA).

    Measurement of reactive oxygen species (ROS)

    Intracellular ROS accumulation was measured using H2DCF-DA (Wang et al., 2015a). Briefly, after treatment, RGC-5 cells were washed and then stained with 10 μM H2DCF-DA (Sigma-Aldrich) in serum-free medium for 30 minutes at 37°C in the dark. The cells were photographed using a fluorescence microscope (Olympus, Tokyo, Japan).

    Estimation of malondialdehyde (MDA)

    MDA reacts with thiobarbituric acid (TBA) to produce a fluorescent product (Wang et al., 2015a) that can be measured using a pectrofluorometer microplate reader (Thermo Fisher Scientific, Waltham, MA, USA) at a wavelength of 535 nm. Therefore, RGC-5 cells in 6-well plates were exposed to 100 μM PA with or without 50 ng/mL NGF pretreatment and cultured to more than 90% confluence. Cells were harvested and MDA levels were determined using an MDA detection kit from Nanjing Jiancheng Bioengineering Institute (Nanjing, China) according to the manufacturer’s instructions.

    Western blot assay

    Following treatment, RGC-5 cells were lysed with ice-cold radioimmunoprecipitation assay (RIPA) lysis buffer as described previously (Zheng and Quirion, 2009). Protein concentration was determined with a protein assay kit (Bio-Rad Laboratories, Inc., Hercules, CA, USA) according to the manufacturer’s instructions. Samples with equal amounts of protein were separated on 10% polyacrylamide gels, then transferred to polyvinylidene fluoride (PVDF) membranes and probed with selective anti-phospho Akt (Ser473), FoxO1 or ERK1/2 antibodies or a total Akt/FoxO1/ERK1/2 antibody, at 4°C overnight. Anti-phospho-Akt (Ser473) antibody (1:1,000), anti-Akt antibody (1:1,000), anti-phospho-FoxO1 antibody (1:1,000), anti-FoxO1 antibody (1:1,000), anti-phospho ERK1/2 antibody (1:1,000), and anti-ERK1/2 antibody (1:1,000) were obtained from Cell Signaling Technology (Woburn, MA, USA). Membranes were then washed twice with Tris-buffered saline containing Tween (TBST) and incubated at room temperature for 1 hour with appropriate secondary antibodies conjugated with horseradish peroxidase (Cell Signaling Technology). Membranes were finally washed several times with TBST to remove unbound secondary antibodies and visualized using enhanced chemiluminescence (ECL) as described by the manufacturer’s instructions (Thermo Fisher Scientific, Waltham, MA, USA). Blots were subsequently stripped of antibodies and re-probed with the pan antibody to confirm equal protein loading. Band intensity was quantified in the linear range by densitometry using image J software (NIH, Bethesda, MD, USA).

    Statistical analysis

    Data are expressed as the mean ± SEM or mean ± SD. Variation between groups was analyzed using one-way analysis of variance and least significant differencepost hoctest.P< 0.05 was considered statistically significant. Statistical analyses were conducted with SPSS 13.0 (SPSS, Chicago, IL, USA).

    Results

    NGF attenuated PA-induced cell death in RGC-5 cells

    MTT assays showed that RGC-5 cells pretreated with NGF for 30 minutes were protected from PA-induced insult in a concentration-dependent manner (Figure 1A). A significant inhibition effect of NGF commenced at 50 and 100 ng/mL. Flow cytometry indicated that 100 μM PA caused apoptosis of RGC-5 cells, while NGF (50 ng/mL) pretreatment reversed the effect (Figure 1B,C).

    NGF inhibited the levels of ROS and MDA in RGC-5 cells

    PA produces oxidative stress in cells (Wong et al., 2014). MDA, formed by the degradation of polyunsaturated lipids by ROS is used as a marker of oxidative stress (Clarkson and Thompson, 2000). As shown inFigure 2, NGF diminished the elevation of ROS and MDA caused by PA.

    PI3K/Akt and ERK1/2 signaling pathways mediated the protective effect of NGF in RGC-5 cells

    We have previously shown that NGF stimulates PI3K/Akt and ERK1/2 pathways in PC12 cells (Wen et al., 2011). MTT assays showed that the protective effect of NGF was diminished in the presence of the PI3K inhibitor, LY294002, the Akt inhibitor, AktVIII, and the ERK1/2 inhibitor, PD98059 (Figure 3). The concentrations of inhibitors used (LY294002, 10 μM; AktVIII, 5 μM; and PD98059, 5 μM) had no effect on cell death itself, as previously reported (Wang et al., 2015b). Thus, both PI3K/Akt and ERK1/2 pathways mediated the protective effect of NGF.

    NGF stimulated the phosphorylation of Akt, FoxO1, and ERK1/2 in RGC-5 cells in a concentration-dependent manner

    As shown inFigure 4, NGF increased the phosphorylation of p-Akt (Ser473), p-FoxO1 and p-ERK1/2 in RGC-5 cells in a dose-dependent fashion after 10 minutes of stimulation.

    NGF reversed the down-regulation of Akt/FoxO1 and ERK1/2 phosphorylation induced by PA

    Cells incubated with NGF (50 ng/mL) for 30 minutes were exposed to PA for 4 hours and the phosphorylation of Akt/ FoxO1 and ERK1/2 were analyzed. PA decreased the phosphorylation of Akt/FoxO1 and ERK1/2 in RGC-5 cells, while NGF prevented this effect (Figure 5).

    Discussion

    DR, a major ocular complication of diabetes, is a leading cause of blindness in working age adults worldwide and limited treatments are available (Mysona et al., 2014). In addition to microcirculation abnormalities, neurodegenerative changes appear in the retina at an early stage of DR (van Dijk et al., 2012). Recently, increased apoptosis of RGCs was demonstrated in humans with diabetes, which leads to the progressive loss of retinal neurons and functional deficits in vision (Ng et al., 2016). Nevertheless, the effect of excessive PA on apoptosis of RGCs is unknown. In line with a previous report (Wang et al., 2016), we show that PA exposure induced dramatic apoptosis of RGC-5 cells but at a lower PA concentration. Thus, our data support high levels of saturated fatty acids as an important metabolic risk factor associated with the increased apoptosis of RGCs at the onset of DR.

    The widespread involvement of NGF in retinal dysfunction is based on a diabetes-induced proNGF/NGF imbalance and alterations in TrkA and p75NTR receptor function and expression (Mohamed and El-Remessy, 2015). Reduction of trophic support due to decreased NGF expression contributes to diabetes-induced RGC death. The importance of NGF in RGC survival is illustrated by recent studies, in which NGF supplementation reduced diabetes-induced RGC death (Hammes et al., 1995; Mantelli et al., 2014). In our study, we discovered that NGF was able to protect against PA-induced death of RGC-5 cells, which further indicated that NGF can block diabetes-induced RGC death. In the development of diabetic retinopathy, increased oxidative stress is another early event (Wu et al., 2014). Our findings suggest that decreasing oxidative stress caused by PA might be another mechanism by which NGF ameliorates the PA insult.

    The PI3K/Akt and ERK1/2 pathways are the two mainpathways involved in the survival and adaptive protection of various cell types that are activated by growth factors, hormones and drugs. They also play different roles in neuroprotection observed under different conditions (Schmitz et al., 2007). Previous reports indicate that NGF exerts a neuroprotective effect on RGCs against retinal ischemia/reperfusion injury by regulating the PI3K/Akt signaling pathway (Chen et al., 2015). Similarly, we show here that the protective effect of NGF was completely abolished in the presence of the PI3K inhibitor, LY294002, Akt inhibitor VIII, as well as the ERK1/2 inhibitor, PD98059, indicating that NGF elicits its protective effects via PI3K/Akt and ERK1/2 signaling pathways. In addition, treatment of RGC-5 cells with NGF leads to the phosphorylation of Akt and ERK1/2, as seen in our previous report (Wen et al., 2011), while PA decreases Akt and Erk1/2 phosphorylation. In general, these data suggest that NGF promotes RGC-5 cell survival and protects cells from the toxic effects of PA insult by specifically activating the pro-survival PI3K/Akt and ERK1/2 pathways.

    Figure 1 NGF attenuated PA-induced cell death in RGC-5 cells.

    Figure 2 NGF inhibited the levels of ROS and MDA elevated by PA in RGC-5 cells.

    Figure 3 Both Akt and ERK1/2 signaling pathways mediated the protective effect of NGF in RGC-5 cells.

    The FoxO1 transcription factor is important in the cell cycle as its nuclear localization causes apoptosis (Zhang et al.,2011). We have previously reported that NGF induced the phosphorylation of FoxO1 in cultured PC12 cells (Wen et al., 2011). Interestingly, FoxO1 is a direct downstream target of Akt; thus, we examined the potential role of FoxO1 in the NGF promotion of RGC-5 cell survival. We found that PA inhibited the level of phosphorylated FoxO1, in contrast to the increase caused by NGF.

    Figure 4 NGF stimulated the phosphorylation of Akt, FoxO1, and ERK1/2 in RGC-5 cells.

    Figure 5 NGF reversed the down-regulation of Akt/FoxO1 and ERK1/2 phosphorylation induced by PA.

    In summary, the present study demonstrates that the protective effect of NGF against apoptosis of RGC-5 cells is mediated through stimulation of the PI3K/Akt and ERK1/2 pathways. Most importantly, the present study also illustrates that inhibition of oxidative stress and FoxO1 are involved in these events. However, the effects of NGFin vivoand its specific mechanisms of action require further detailed investigation.

    Acknowledgments:We are very grateful to the Wen-hua Zheng from the Sun Yat-sen University, China for providing RGC-5 cells.

    Author contributions:QW designed the study. PSY, ST and HFZ per-formed the experiments. YYG analyzed data and ZWZ wrote the paper. All authors approved the final version of the paper.

    Conflicts of interest:None declared.

    Plagiarism check:This paper was screened twice using CrossCheck to verify originality before publication.

    Peer review:This paper was double-blinded and stringently reviewed by international expert reviewers.

    Abu El-Asrar AM, Mohammad G, De Hertogh G, Nawaz MI, Van Den Eynde K, Siddiquei MM, Struyf S, Opdenakker G, Geboes K (2013) Neurotrophins and neurotrophin receptors in proliferative diabetic retinopathy. PLoS One 8:e65472.

    Ahn JY (2014) Neuroprotection signaling of nuclear akt in neuronal cells. Exp Neurobiol 23:200-206.

    Barber AJ, Gardner TW, Abcouwer SF (2011) The significance of vascular and neural apoptosis to the pathology of diabetic retinopathy. Invest Ophthalmol Visual Sci 52:1156-1163.

    Bradshaw RA, Dunbar JC, Isackson PJ, Kouchalakos RN, Morgan CJ (1984) Nerve growth factor: mechanism of action. Symp Fundam Cancer Res 37:87-101.

    Chen Q, Wang H, Liao S, Gao Y, Liao R, Little PJ, Xu J, Feng ZP, Zheng Y, Zheng W (2015) Nerve growth factor protects retinal ganglion cells against injury induced by retinal ischemia-reperfusion in rats. Growth Factors 33:149-159.

    Clarkson PM, Thompson HS (2000) Antioxidants: what role do they play in physical activity and health? Am J Clin Nutr 72:637S-646S.

    Colafrancesco V, Coassin M, Rossi S, Aloe L (2011) Effect of eye NGF administration on two animal models of retinal ganglion cells degeneration. Ann Ist Super Sanita 47:284-289.

    Dobson M, Ramakrishnan G, Ma S, Kaplun L, Balan V, Fridman R, Tzivion G (2011) Bimodal regulation of FoxO3 by AKT and 14-3-3. Biochim Biophys Acta 1813:1453-1464.

    Gan L, Zheng W, Chabot JG, Unterman TG, Quirion R (2005) Nuclear/ cytoplasmic shuttling of the transcription factor FoxO1 is regulated by neurotrophic factors. J Neurochem 93:1209-1219.

    Hammes HP, Federoff HJ, Brownlee M (1995) Nerve growth factor prevents both neuroretinal programmed cell death and capillary pathology in experimental diabetes. Mol Med 1:527-534.

    Kulacoglu DN, Kocer I, Kurtul N, Keles S, Baykal O (2003) Alterations of fatty acid composition of erythrocyte membrane in type 2 diabetes patients with diabetic retinopathy. Jpn J Ophthalmol 47:551-556.

    Kumar B, Kowluru A, Kowluru RA (2015) Lipotoxicity augments glucotoxicity-induced mitochondrial damage in the development of diabetic retinopathy. Invest Ophthalmol Visual Sci 56:2985-2992.

    Lambiase A, Aloe L, Centofanti M, Parisi V, Mantelli F, Colafrancesco V, Manni GL, Bucci MG, Bonini S, Levi-Montalcini R (2009) Experimental and clinical evidence of neuroprotection by nerve growth factor eye drops: implications for glaucoma. Proc Natl Acad Sci U S A 106:13469-13474.

    Li Q, Chen M, Liu H, Yang L, Yang T, He G (2014) The dual role of ERK signaling in the apoptosis of neurons. Front Biosci (Landmark Ed) 19:1411-1417.

    Maher P, Hanneken A (2005) The molecular basis of oxidative stress-induced cell death in an immortalized retinal ganglion cell line. Invest Ophthalmol Visual Sci 46:749-757.

    Mantelli F, Lambiase A, Colafrancesco V, Rocco ML, Macchi I, Aloe L (2014) NGF and VEGF effects on retinal ganglion cell fate: new evidence from an animal model of diabetes. Eur J Ophthalmol 24:247-253.

    Mohamed R, El-Remessy AB (2015) Imbalance of the Nerve Growth Factor and Its Precursor: Implication in Diabetic Retinopathy. J Clin Exp Ophthalmol 6:483.

    Mysona BA, Shanab AY, Elshaer SL, El-Remessy AB (2014) Nerve growth factor in diabetic retinopathy: beyond neurons. Expert Rev Ophthalmol 9:99-107.

    Mysona BA, Al-Gayyar MM, Matragoon S, Abdelsaid MA, El-Azab MF, Saragovi HU, El-Remessy AB (2013) Modulation of p75(NTR) prevents diabetes- and proNGF-induced retinal inflammation and blood–retina barrier breakdown in mice and rats. Diabetologia 56:2329-2339.

    Mysona BA, Matragoon S, Stephens M, Mohamed IN, Farooq A, Bartasis ML, Fouda AY, Shanab AY, Espinosa-Heidmann DG, El-Remessy AB (2015) Imbalance of the nerve growth factor and its precursor as a potential biomarker for diabetic retinopathy. Biomed Res Int 2015:571456.

    Ng DS, Chiang PP, Tan G, Cheung CG, Cheng CY, Cheung CY, Wong TY, Lamoureux EL, Ikram MK (2016) Retinal ganglion cell neuronal damage in diabetes and diabetic retinopathy. Clin Exp Ophthalmol 44:243-250.

    Pelikánová T (2016) Diabetic retinopathy: pathogenesis and therapeutic implications. Vnitr Lek 62:620-628.

    Sasaki M, Kawasaki R, Rogers S, Man RE, Itakura K, Xie J, Flood V, Tsubota K, Lamoureux E, Wang JJ (2015) The Associations of Dietary Intake of Polyunsaturated Fatty Acids With Diabetic Retinopathy in Well-Controlled DiabetesDietary PUFAs and Diabetic Retinopathy. Invest Ophthalmol Visual Sci 56:7473-7479.

    Schmitz KJ, Lang H, Wohlschlaeger J, Sotiropoulos GC, Reis H, Schmid KW, Baba HA (2007) AKT and ERK1/2 signaling in intrahepatic cholangiocarcinoma. World J Gastroenterol 13:6470-6477.

    Shen J, Bi YL, Das UN (2014) Potential role of polyunsaturated fatty acids in diabetic retinopathy. Arch Med Sci 10:1167-1174.

    Sofroniew MV, Howe CL, Mobley WC (2001) Nerve growth factor signaling, neuroprotection, and neural repair. Annu Rev Neurosci 24:1217-1281.

    Turner JE, Delaney RK, Johnson JE (1980) Retinal ganglion cell response to nerve growth factor in the regenerating and intact visual system of the goldfish (Carassius auratus). Brain Res 197:319-330.

    van Dijk HW, Verbraak FD, Kok PH, Stehouwer M, Garvin MK, Sonka M, DeVries JH, Schlingemann RO, Abràmoff MD (2012) Early neurodegeneration in the retina of type 2 diabetic patients. Invest Ophthalmol Visual Sci 53:2715-2719.

    Wang DD, Zhu HZ, Li SW, Yang JM, Xiao Y, Kang QR, Li CY, Zhao YS, Zeng Y, Li Y, Zhang J, He ZD, Ying Y (2016) Crude saponins of panax notoginseng have neuroprotective effects to inhibit palmitate-triggered endoplasmic reticulum stress-associated apoptosis and loss of postsynaptic proteins in staurosporine differentiated rgc-5 retinal ganglion cells. J Agric Food Chem 64:1528-1539.

    Wang H, Zhou X, Huang J, Mu N, Guo Z, Wen Q, Wang R, Chen S, Feng ZP, Zheng W (2013) The role of Akt/FoxO3a in the protective effect of venlafaxine against corticosterone-induced cell death in PC12 cells. Psychopharmacology 228:129-141.

    Wang H, Liao S, Geng R, Zheng Y, Liao R, Yan F, Thrimawithana T, Little PJ, Feng ZP, Lazarovici P, Zheng W (2015a) IGF-1 signaling via the PI3K/Akt pathway confers neuroprotection in human retinal pigment epithelial cells exposed to sodium nitroprusside insult. J Mol Neurosci 55:931-940.

    Wang R, Yang J, Peng L, Zhao J, Mu N, Huang J, Lazarovici P, Chen H, Zheng W (2015b) Gardenamide A attenuated cell apoptosis induced by serum deprivation insult via the ERK1/2 and PI3K/AKT signaling pathways. Neuroscience 286:242-250.

    Wen Q, Duan X, Liao R, Little P, Gao G, Jiang H, Lalit S, Quirion R, Zheng W (2011) Characterization of intracellular translocation of Forkhead transcription factor O (FoxO) members induced by NGF in PC12 cells. Neurosci Lett 498:31-36.

    Wiese S, Digby MR, Gunnersen JM, G?tz R, Pei G, Holtmann B, Lowenthal J, Sendtner M (1999) The anti-apoptotic protein ITA is essential for NGF-mediated survival of embryonic chick neurons. Nat Neurosci 2:978-983.

    Wilkinson-Berka JLM, A G. (2008) Update on the treatment of diabetic retinopathy. ScientificWorldJournal 8:98-120.

    Wong KL, Wu YR, Cheng KS, Chan P, Cheung CW, Lu DY, Su TH, Liu ZM, Leung YM (2014) Palmitic acid-induced lipotoxicity and protection by (+)-catechin in rat cortical astrocytes. Pharmacol Rep 66:1106-1113.

    Wu Y, Tang L, Chen B (2014) Oxidative stress: implications for the development of diabetic retinopathy and antioxidant therapeutic perspectives. Oxid Med Cell Longev 2014:752387.

    Yam JC, Kwok AK (2007) Update on the treatment of diabetic retinopathy. Hong Kong Med J 13:46-60.

    Zeng Z, Wang H, Shang F, Zhou L, Little PJ, Quirion R, Zheng W (2016a) Lithium ions attenuate serum-deprivation-induced apoptosis in PC12 cells through regulation of the Akt/FoxO1 signaling pathways. Psychopharmacology 233:785-794.

    Zeng Z, Wang X, Bhardwaj SK, Zhou X, Little PJ, Quirion R, Srivastava LK, Zheng W (2016b) The atypical antipsychotic agent, clozapine, protects against corticosterone-induced death of PC12 cells by regulating the Akt/FoxO3a signaling pathway. Mol Neurobiol doi: 10.1007/s12035-016-9904-4.

    Zhang P, Zhou Z (2015) Combination of bevacizumab and NGF reduces the risk of diabetic retinopathy. Cell Biochem Biophys 73:79-85.

    Zhang X, Tang N, Hadden TJ, Rishi AK (2011) Akt, FoxO and regulation of apoptosis. Biochim Biophys Acta 1813:1978-1986.

    Zheng WH, Quirion R (2009) Glutamate acting on N-methyl-D-aspartate receptors attenuates insulin-like growth factor-1 receptor tyrosine phosphorylation and its survival signaling properties in rat hippocampal neurons. J Biol Chem 284:855-861.

    Zheng Y, He M, Congdon N (2012) The worldwide epidemic of diabetic retinopathy. Indian J Ophthalmol 60:428-431.

    Copyedited by Allen J, Frenchman B, Yan PS, Yu J, Li CH, Li JY, Song LP, Zhao M

    *Correspondence to: Qiang Wen, Ph.D., or Zhi-wen Zeng, Ph.D., qiangwen7619@163.com or zengzw1122@163.com.

    #These authors contributed equally to this study.

    orcid: 0000-0002-3437-2457 (Qiang Wen)

    10.4103/1673-5374.194758

    Accepted: 2016-10-21

    欧美 日韩 精品 国产| 欧美日韩亚洲国产一区二区在线观看 | 久久 成人 亚洲| 黄色怎么调成土黄色| 国产精品免费大片| 亚洲综合色网址| xxx大片免费视频| 欧美国产精品一级二级三级| 国产一区亚洲一区在线观看| 老司机午夜十八禁免费视频| 欧美中文综合在线视频| 国产激情久久老熟女| 久久久久久久久免费视频了| 久久精品久久精品一区二区三区| 欧美另类一区| 国产一区亚洲一区在线观看| 国产成人欧美在线观看 | 日本av手机在线免费观看| 成人18禁高潮啪啪吃奶动态图| 亚洲欧美日韩高清在线视频 | 久久免费观看电影| 亚洲精品久久久久久婷婷小说| 麻豆国产av国片精品| 十分钟在线观看高清视频www| 国产男女内射视频| a 毛片基地| 国产三级黄色录像| 国产成人一区二区三区免费视频网站 | 99国产精品一区二区三区| 嫩草影视91久久| www.av在线官网国产| 国产一区二区三区av在线| 国产精品一区二区在线不卡| 久久久久国产精品人妻一区二区| 国产成人系列免费观看| 亚洲av欧美aⅴ国产| 婷婷丁香在线五月| 国产精品99久久99久久久不卡| 亚洲国产毛片av蜜桃av| 交换朋友夫妻互换小说| 国产人伦9x9x在线观看| 国产无遮挡羞羞视频在线观看| 宅男免费午夜| 成人黄色视频免费在线看| 久久综合国产亚洲精品| 纯流量卡能插随身wifi吗| 十八禁网站网址无遮挡| 婷婷色综合大香蕉| 亚洲欧美一区二区三区久久| 搡老岳熟女国产| 久久人妻熟女aⅴ| 爱豆传媒免费全集在线观看| 五月天丁香电影| 国产真人三级小视频在线观看| 免费观看人在逋| 在线av久久热| 97人妻天天添夜夜摸| 国产淫语在线视频| 久久99精品国语久久久| av在线播放精品| 欧美日韩亚洲高清精品| 人体艺术视频欧美日本| 啦啦啦在线观看免费高清www| 国产精品熟女久久久久浪| 国产成人系列免费观看| 亚洲av国产av综合av卡| 亚洲精品av麻豆狂野| 午夜视频精品福利| 狠狠婷婷综合久久久久久88av| 两人在一起打扑克的视频| 一级毛片我不卡| 精品亚洲成国产av| 美女大奶头黄色视频| 国产激情久久老熟女| 国产黄色视频一区二区在线观看| 国产精品二区激情视频| 国产麻豆69| 午夜福利视频精品| 午夜影院在线不卡| 只有这里有精品99| 久久青草综合色| 午夜视频精品福利| 日本a在线网址| 大码成人一级视频| 国产精品免费视频内射| 十八禁网站网址无遮挡| 国产极品粉嫩免费观看在线| 一级毛片我不卡| 国产精品久久久av美女十八| 交换朋友夫妻互换小说| 一本色道久久久久久精品综合| 一本色道久久久久久精品综合| 激情视频va一区二区三区| 搡老岳熟女国产| 成在线人永久免费视频| 中文字幕人妻熟女乱码| 国产成人啪精品午夜网站| 青青草视频在线视频观看| 一边摸一边做爽爽视频免费| 午夜福利乱码中文字幕| 亚洲国产精品一区二区三区在线| 日韩一卡2卡3卡4卡2021年| 色播在线永久视频| 亚洲少妇的诱惑av| 捣出白浆h1v1| 亚洲五月婷婷丁香| www.精华液| 老司机深夜福利视频在线观看 | 高清欧美精品videossex| 真人做人爱边吃奶动态| 欧美成人午夜精品| 亚洲欧美精品综合一区二区三区| 成人国产一区最新在线观看 | 中文字幕最新亚洲高清| 一本大道久久a久久精品| 国产高清视频在线播放一区 | 午夜福利,免费看| 久久免费观看电影| 日本猛色少妇xxxxx猛交久久| 丰满少妇做爰视频| 国产成人欧美| 国产亚洲精品第一综合不卡| 久久久久精品人妻al黑| 18禁裸乳无遮挡动漫免费视频| 2021少妇久久久久久久久久久| 成年动漫av网址| 亚洲精品久久久久久婷婷小说| 免费在线观看日本一区| 97在线人人人人妻| 国产黄色免费在线视频| 精品卡一卡二卡四卡免费| 亚洲欧美色中文字幕在线| 亚洲激情五月婷婷啪啪| 日日摸夜夜添夜夜爱| av天堂在线播放| 国产成人精品久久二区二区91| 久久久久精品国产欧美久久久 | 午夜福利视频在线观看免费| a级毛片在线看网站| 天堂8中文在线网| 自线自在国产av| 性色av乱码一区二区三区2| 日韩av免费高清视频| 午夜两性在线视频| 国产亚洲欧美在线一区二区| 婷婷丁香在线五月| 午夜视频精品福利| 欧美精品一区二区大全| 亚洲精品av麻豆狂野| 少妇精品久久久久久久| 久久天躁狠狠躁夜夜2o2o | 国产有黄有色有爽视频| 亚洲av电影在线观看一区二区三区| 午夜福利免费观看在线| 亚洲精品乱久久久久久| 一区二区三区激情视频| 亚洲国产日韩一区二区| 中文欧美无线码| 亚洲黑人精品在线| 精品少妇黑人巨大在线播放| 日本a在线网址| 狂野欧美激情性xxxx| 中文字幕高清在线视频| 激情视频va一区二区三区| 赤兔流量卡办理| 欧美精品一区二区大全| 久久久久久亚洲精品国产蜜桃av| 亚洲成人手机| 日韩制服丝袜自拍偷拍| 色94色欧美一区二区| 视频区图区小说| av天堂久久9| 老司机深夜福利视频在线观看 | 欧美 亚洲 国产 日韩一| 男人舔女人的私密视频| 人妻 亚洲 视频| 亚洲成色77777| 波多野结衣一区麻豆| xxx大片免费视频| 亚洲av片天天在线观看| 国产成人欧美| 宅男免费午夜| 男女免费视频国产| av片东京热男人的天堂| 国精品久久久久久国模美| 97人妻天天添夜夜摸| 国产精品麻豆人妻色哟哟久久| 国产高清不卡午夜福利| 丰满迷人的少妇在线观看| 嫩草影视91久久| 欧美精品一区二区大全| 精品久久久精品久久久| 91精品三级在线观看| 久久久久视频综合| 亚洲精品国产av蜜桃| 永久免费av网站大全| av国产精品久久久久影院| 巨乳人妻的诱惑在线观看| 午夜av观看不卡| 午夜福利影视在线免费观看| 日本黄色日本黄色录像| 成年女人毛片免费观看观看9 | 亚洲欧美清纯卡通| 美女中出高潮动态图| 成人黄色视频免费在线看| 老司机深夜福利视频在线观看 | 69精品国产乱码久久久| 2021少妇久久久久久久久久久| 国产成人一区二区在线| 国产精品 欧美亚洲| 亚洲国产成人一精品久久久| 中国美女看黄片| 精品国产国语对白av| 80岁老熟妇乱子伦牲交| 日韩大片免费观看网站| 在线亚洲精品国产二区图片欧美| 国产成人精品无人区| 看免费av毛片| 宅男免费午夜| 免费久久久久久久精品成人欧美视频| 精品亚洲成a人片在线观看| 视频在线观看一区二区三区| 中文字幕高清在线视频| 亚洲人成网站在线观看播放| 亚洲成国产人片在线观看| 亚洲中文字幕日韩| 母亲3免费完整高清在线观看| 国产成人a∨麻豆精品| 欧美变态另类bdsm刘玥| 两人在一起打扑克的视频| 丰满饥渴人妻一区二区三| 免费女性裸体啪啪无遮挡网站| 黄色a级毛片大全视频| 国产精品久久久av美女十八| 亚洲欧美成人综合另类久久久| 欧美日韩精品网址| 久久人妻福利社区极品人妻图片 | 人体艺术视频欧美日本| 久久国产亚洲av麻豆专区| 国产av一区二区精品久久| 国产成人一区二区三区免费视频网站 | 精品一区二区三卡| 日本vs欧美在线观看视频| 黄网站色视频无遮挡免费观看| 中文字幕人妻丝袜制服| 午夜日韩欧美国产| 国产欧美亚洲国产| 欧美日韩视频高清一区二区三区二| 午夜影院在线不卡| 女人精品久久久久毛片| 自线自在国产av| 十八禁人妻一区二区| 婷婷色综合www| 在线精品无人区一区二区三| 亚洲欧洲精品一区二区精品久久久| 黑人巨大精品欧美一区二区蜜桃| 一区在线观看完整版| 国产精品99久久99久久久不卡| 国产高清不卡午夜福利| 啦啦啦在线免费观看视频4| 亚洲精品久久成人aⅴ小说| 国产成人一区二区三区免费视频网站 | 人妻 亚洲 视频| 最新在线观看一区二区三区 | 亚洲一区二区三区欧美精品| 国产老妇伦熟女老妇高清| 久久久国产精品麻豆| 搡老乐熟女国产| 欧美精品高潮呻吟av久久| 国产熟女午夜一区二区三区| 亚洲精品成人av观看孕妇| 国产熟女欧美一区二区| 欧美日韩国产mv在线观看视频| 欧美黑人欧美精品刺激| 欧美大码av| 国产一区有黄有色的免费视频| 99热国产这里只有精品6| 一边摸一边做爽爽视频免费| 久久99一区二区三区| 丁香六月欧美| 精品少妇黑人巨大在线播放| 两个人看的免费小视频| kizo精华| 亚洲精品国产色婷婷电影| 免费少妇av软件| 老司机午夜十八禁免费视频| 伊人久久大香线蕉亚洲五| 久久性视频一级片| 久久人人爽人人片av| 久久中文字幕一级| 一本久久精品| 天天添夜夜摸| 日日摸夜夜添夜夜爱| 国产伦理片在线播放av一区| 青春草亚洲视频在线观看| 精品一区二区三卡| 成人三级做爰电影| 国产日韩欧美在线精品| 大码成人一级视频| 亚洲一卡2卡3卡4卡5卡精品中文| 水蜜桃什么品种好| 美女大奶头黄色视频| 欧美人与性动交α欧美软件| 视频区欧美日本亚洲| 91老司机精品| 宅男免费午夜| 精品第一国产精品| 国产主播在线观看一区二区 | 免费在线观看完整版高清| 亚洲欧洲日产国产| 两个人免费观看高清视频| 成年女人毛片免费观看观看9 | 最黄视频免费看| 亚洲熟女毛片儿| 亚洲av欧美aⅴ国产| 99国产精品一区二区三区| 国产高清不卡午夜福利| 一级毛片我不卡| 90打野战视频偷拍视频| 黄色a级毛片大全视频| 午夜免费男女啪啪视频观看| 一级毛片电影观看| 国产欧美日韩一区二区三 | 一区二区三区四区激情视频| 久久久久精品人妻al黑| 亚洲色图综合在线观看| 国产三级黄色录像| 精品高清国产在线一区| 免费高清在线观看日韩| 大片免费播放器 马上看| 啦啦啦 在线观看视频| 黑人欧美特级aaaaaa片| 男女床上黄色一级片免费看| xxxhd国产人妻xxx| 看免费成人av毛片| 国产1区2区3区精品| 欧美黑人欧美精品刺激| 国产日韩一区二区三区精品不卡| 国产91精品成人一区二区三区 | 色综合欧美亚洲国产小说| 一个人免费看片子| 国产成人欧美在线观看 | 久久午夜综合久久蜜桃| 久久av网站| 制服人妻中文乱码| 亚洲av美国av| 免费在线观看日本一区| 国产三级黄色录像| 精品卡一卡二卡四卡免费| 日韩熟女老妇一区二区性免费视频| 亚洲色图综合在线观看| 性高湖久久久久久久久免费观看| 精品少妇内射三级| 大陆偷拍与自拍| 亚洲国产欧美网| 国产精品.久久久| 我的亚洲天堂| 19禁男女啪啪无遮挡网站| 久久精品久久精品一区二区三区| 国产欧美亚洲国产| 亚洲国产欧美网| 亚洲人成77777在线视频| 精品高清国产在线一区| 99国产综合亚洲精品| 亚洲成人手机| 久久人妻福利社区极品人妻图片 | 汤姆久久久久久久影院中文字幕| 性色av一级| 成年人黄色毛片网站| 亚洲熟女毛片儿| 91国产中文字幕| 精品国产超薄肉色丝袜足j| 91国产中文字幕| 啦啦啦啦在线视频资源| 美女主播在线视频| 午夜视频精品福利| 老司机午夜十八禁免费视频| av在线老鸭窝| 国产精品三级大全| 蜜桃在线观看..| 9色porny在线观看| 欧美激情极品国产一区二区三区| 精品少妇内射三级| 天天添夜夜摸| 色婷婷久久久亚洲欧美| 1024视频免费在线观看| 国产精品国产三级国产专区5o| 大香蕉久久成人网| 韩国高清视频一区二区三区| 精品熟女少妇八av免费久了| av线在线观看网站| 国产一区亚洲一区在线观看| 精品人妻在线不人妻| 自拍欧美九色日韩亚洲蝌蚪91| 中文字幕亚洲精品专区| 1024视频免费在线观看| 国产黄色视频一区二区在线观看| 又大又爽又粗| 超碰成人久久| 视频区欧美日本亚洲| 成人18禁高潮啪啪吃奶动态图| 久久狼人影院| 亚洲av男天堂| 三上悠亚av全集在线观看| 老鸭窝网址在线观看| 国产免费视频播放在线视频| 久久亚洲精品不卡| 国产熟女午夜一区二区三区| a级毛片黄视频| 国产欧美日韩精品亚洲av| 日本一区二区免费在线视频| 欧美 亚洲 国产 日韩一| 成人亚洲精品一区在线观看| 啦啦啦在线观看免费高清www| 日韩中文字幕欧美一区二区 | 一级毛片我不卡| 19禁男女啪啪无遮挡网站| 精品一区在线观看国产| 晚上一个人看的免费电影| 欧美激情高清一区二区三区| 制服人妻中文乱码| 亚洲伊人色综图| 国产精品国产三级专区第一集| 老司机亚洲免费影院| 日韩熟女老妇一区二区性免费视频| 久久久久久久久免费视频了| 久久精品aⅴ一区二区三区四区| 国产97色在线日韩免费| 老司机靠b影院| 男女之事视频高清在线观看 | 精品亚洲乱码少妇综合久久| 精品免费久久久久久久清纯 | 男人舔女人的私密视频| 在线观看免费日韩欧美大片| 男人爽女人下面视频在线观看| 大陆偷拍与自拍| 黄色毛片三级朝国网站| 国产成人一区二区在线| 久久久久精品国产欧美久久久 | 晚上一个人看的免费电影| 又大又爽又粗| 午夜激情av网站| 大香蕉久久成人网| 亚洲av成人不卡在线观看播放网 | 美女国产高潮福利片在线看| 这个男人来自地球电影免费观看| 久久久久网色| 亚洲一区二区三区欧美精品| 午夜视频精品福利| 一本—道久久a久久精品蜜桃钙片| 国产精品香港三级国产av潘金莲 | 亚洲成色77777| 高清欧美精品videossex| 老鸭窝网址在线观看| 啦啦啦啦在线视频资源| 日韩一卡2卡3卡4卡2021年| 欧美在线黄色| 中文字幕最新亚洲高清| 看十八女毛片水多多多| 成年人午夜在线观看视频| 18在线观看网站| 国产欧美日韩一区二区三区在线| 久久久久视频综合| a级片在线免费高清观看视频| 免费在线观看日本一区| 少妇裸体淫交视频免费看高清 | 美女视频免费永久观看网站| 超色免费av| 国产欧美日韩一区二区三区在线| 狂野欧美激情性xxxx| 久久毛片免费看一区二区三区| 脱女人内裤的视频| 黄频高清免费视频| 国产视频一区二区在线看| 在线观看免费午夜福利视频| 国产免费又黄又爽又色| 黄片播放在线免费| 国产熟女欧美一区二区| 国产亚洲av高清不卡| 久久精品久久久久久噜噜老黄| 欧美精品高潮呻吟av久久| 久久ye,这里只有精品| 亚洲中文av在线| 又黄又粗又硬又大视频| 国产成人精品在线电影| 九色亚洲精品在线播放| 日韩伦理黄色片| 国产又爽黄色视频| 50天的宝宝边吃奶边哭怎么回事| 国产高清不卡午夜福利| 久久久久国产精品人妻一区二区| 国产极品粉嫩免费观看在线| 久久狼人影院| 亚洲 欧美一区二区三区| 国产亚洲精品久久久久5区| 秋霞在线观看毛片| 视频区图区小说| 亚洲国产看品久久| 午夜免费鲁丝| 欧美激情高清一区二区三区| 亚洲成人免费电影在线观看 | 久久亚洲精品不卡| 中文字幕av电影在线播放| 国产成人精品久久久久久| 一区二区三区激情视频| 亚洲免费av在线视频| 免费看不卡的av| 热re99久久国产66热| 人成视频在线观看免费观看| 国产高清视频在线播放一区 | 曰老女人黄片| 精品熟女少妇八av免费久了| 日韩 欧美 亚洲 中文字幕| 午夜免费鲁丝| 亚洲国产精品一区二区三区在线| 老汉色∧v一级毛片| 国产精品亚洲av一区麻豆| 免费看不卡的av| 99久久综合免费| 老鸭窝网址在线观看| 久久久久久久国产电影| 日韩av免费高清视频| 在线天堂中文资源库| 不卡av一区二区三区| 午夜av观看不卡| 在线观看一区二区三区激情| 黄色怎么调成土黄色| 51午夜福利影视在线观看| 啦啦啦啦在线视频资源| 可以免费在线观看a视频的电影网站| 18禁国产床啪视频网站| 人妻人人澡人人爽人人| 亚洲五月婷婷丁香| 波多野结衣av一区二区av| 搡老乐熟女国产| 精品国产一区二区三区久久久樱花| 精品少妇一区二区三区视频日本电影| 日本vs欧美在线观看视频| 国产不卡av网站在线观看| 咕卡用的链子| 国产黄色免费在线视频| 国产野战对白在线观看| 91老司机精品| 国产熟女欧美一区二区| 欧美日韩精品网址| 免费人妻精品一区二区三区视频| 亚洲专区国产一区二区| tube8黄色片| 亚洲国产av新网站| 亚洲av电影在线观看一区二区三区| 九草在线视频观看| av电影中文网址| 天天躁夜夜躁狠狠久久av| 妹子高潮喷水视频| 久久精品久久久久久噜噜老黄| 久久久国产欧美日韩av| 国产精品三级大全| www.999成人在线观看| 午夜日韩欧美国产| 纵有疾风起免费观看全集完整版| 亚洲专区国产一区二区| 成人黄色视频免费在线看| 亚洲av成人不卡在线观看播放网 | 少妇人妻久久综合中文| 精品视频人人做人人爽| 久久久久久久久免费视频了| 90打野战视频偷拍视频| 一边摸一边抽搐一进一出视频| 制服诱惑二区| 精品亚洲成a人片在线观看| √禁漫天堂资源中文www| 国产一区二区三区综合在线观看| 天天躁日日躁夜夜躁夜夜| 男女边摸边吃奶| 国产高清视频在线播放一区 | 久久国产精品人妻蜜桃| 黄色一级大片看看| 亚洲欧美一区二区三区久久| 最近最新中文字幕大全免费视频 | 母亲3免费完整高清在线观看| 国产精品国产三级国产专区5o| 久9热在线精品视频| 欧美日韩亚洲高清精品| av片东京热男人的天堂| 日韩电影二区| 久久午夜综合久久蜜桃| 岛国毛片在线播放| 中文字幕精品免费在线观看视频| 亚洲av欧美aⅴ国产| 免费看av在线观看网站| 亚洲伊人久久精品综合| 日韩 欧美 亚洲 中文字幕| 中国国产av一级| 国产一区二区激情短视频 | 侵犯人妻中文字幕一二三四区| 麻豆国产av国片精品| 精品亚洲成国产av| 欧美另类一区| 19禁男女啪啪无遮挡网站| 老司机深夜福利视频在线观看 | 亚洲人成电影免费在线| 丝袜喷水一区| 中文字幕最新亚洲高清| 美女高潮到喷水免费观看| 五月天丁香电影| 国产一区二区在线观看av| 中文字幕人妻丝袜一区二区| 色婷婷久久久亚洲欧美| 亚洲国产av新网站| www.999成人在线观看| 亚洲欧美精品综合一区二区三区| 在线av久久热| 女性生殖器流出的白浆| 亚洲三区欧美一区| 国产男女内射视频|