• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      骨質(zhì)疏松癥的腎素-血管緊張素系統(tǒng)發(fā)生機(jī)制及治療靶點(diǎn)研究進(jìn)展

      2016-01-30 02:01:18陳廖斌張先榮上官揚(yáng)帆潘正啟
      關(guān)鍵詞:腎素骨組織骨細(xì)胞

      肖 浩,陳廖斌,,張先榮,上官揚(yáng)帆,潘正啟,汪 暉

      (武漢大學(xué)1.中南醫(yī)院骨科,2.發(fā)育源性疾病湖北省重點(diǎn)實(shí)驗(yàn)室,湖北 武漢 430071)

      骨質(zhì)疏松癥的腎素-血管緊張素系統(tǒng)發(fā)生機(jī)制及治療靶點(diǎn)研究進(jìn)展

      肖 浩1,陳廖斌1,2,張先榮2,上官揚(yáng)帆1,潘正啟1,汪 暉2

      (武漢大學(xué)1.中南醫(yī)院骨科,2.發(fā)育源性疾病湖北省重點(diǎn)實(shí)驗(yàn)室,湖北 武漢 430071)

      骨質(zhì)疏松癥(OP)是一種骨代謝疾病,表現(xiàn)為骨形成減少和骨吸收增加,導(dǎo)致骨量丟失、骨組織微結(jié)構(gòu)破壞,全身各處易于骨折。骨組織局部可表達(dá)腎素-血管緊張素系統(tǒng)(RAS)的主要成分并通過(guò)經(jīng)典及非經(jīng)典途徑參與細(xì)胞氧化應(yīng)激、增殖、分化及凋亡等過(guò)程。骨組織局部RAS過(guò)度激活時(shí),一方面可以抑制成骨細(xì)胞分化或直接損傷其骨形成功能,另一方面促進(jìn)破骨細(xì)胞分化和成熟,二者共同導(dǎo)致骨形成減少、骨吸收增加,參與OP發(fā)生。RAS抑制劑包括腎素抑制劑、血管緊張素轉(zhuǎn)換酶抑制劑和血管緊張素Ⅱ受體拮抗劑,已經(jīng)被證實(shí)可以有效地拮抗RAS慢性激活時(shí)產(chǎn)生的病理效應(yīng),因此被認(rèn)為是治療OP的候選藥物之一。

      腎素-血管緊張素系統(tǒng);骨質(zhì)疏松癥;骨代謝

      骨質(zhì)疏松癥(osteoporosis,OP)是一種病理性骨代謝改變,表現(xiàn)為骨形成減少和骨吸收增加,導(dǎo)致骨量丟失、骨組織微結(jié)構(gòu)破壞,易于骨折[1]。OP常見的原因有缺乏雌激素、長(zhǎng)期使用糖皮質(zhì)激素等,但其進(jìn)一步發(fā)生機(jī)制尚不明確[2-3]。流行病學(xué)和實(shí)驗(yàn)研究均表明,骨組織局部腎素-血管緊張素系統(tǒng)(renin-angiotensin system,RAS)過(guò)度激活是OP的重要發(fā)生機(jī)制之一[4-5]。研究發(fā)現(xiàn),應(yīng)用RAS抑制劑治療高血壓的同時(shí),患者骨量增加,OP得到緩解,揭示RAS抑制劑對(duì)OP的藥理價(jià)值[6-7]。本文綜述了骨組織局部RAS在OP發(fā)生機(jī)制中的重要作用以及常見RAS抑制劑對(duì)OP的治療作用及應(yīng)用前景,為OP的臨床用藥提供新見解。

      1 RAS在骨組織的表達(dá)和作用途徑

      RAS主要由腎素、血管緊張素Ⅱ(angiotensinⅡ,AngⅡ)、血管緊張素轉(zhuǎn)換酶(angiotensin con?verting enzyme,ACE)和血管緊張素受體(angio?tensin receptors,ATR)等組成,其中AngⅡ是RAS的主要效應(yīng)因子[8]。AngⅡ的產(chǎn)生和作用需要經(jīng)過(guò)3個(gè)過(guò)程:①腎素的作用下,血管緊張素原水解為AngⅠ,這是RAS級(jí)聯(lián)反應(yīng)的限速步驟;②AngⅠ在ACE的作用下轉(zhuǎn)變?yōu)锳ngⅡ;③AngⅡ通過(guò)結(jié)合不同的ATR產(chǎn)生不同的生物效應(yīng)[9]。研究表明,骨組織局部可以表達(dá)RAS相關(guān)成分,例如成骨細(xì)胞和破骨細(xì)胞均可表達(dá)ACE,AT1R和AT2R;骨髓組織中也存在局部RAS,參與骨髓中前體細(xì)胞的增殖及分化等過(guò)程[10-13]。

      RAS作用途徑可分為經(jīng)典和非經(jīng)典途徑。RAS的經(jīng)典途徑主要通過(guò)ACE-AngⅡ-AT1R軸發(fā)揮作用,非經(jīng)典途徑則通過(guò)ACE-AngⅡ-AT2R軸和(或)ACE2-Ang-(1-7)-Mas受體軸發(fā)揮作用[14]。在循環(huán)中,RAS通過(guò)經(jīng)典和非經(jīng)典途徑共同維持血壓穩(wěn)定和水鹽平衡。除了循環(huán)中的RAS,各臟器組織(包括骨組織)中也存在局部RAS,通過(guò)上述2種途徑介導(dǎo)細(xì)胞氧化應(yīng)激、增殖、分化及凋亡等過(guò)程[15]。

      2 骨組織RAS通過(guò)調(diào)控骨代謝參與OP發(fā)生

      骨代謝是一個(gè)動(dòng)態(tài)過(guò)程,主要包括成骨細(xì)胞形成骨及破骨細(xì)胞吸收骨,二者相對(duì)平衡是維持骨代謝穩(wěn)定的重要條件。OP表現(xiàn)為嚴(yán)重的骨代謝失衡且具體發(fā)生機(jī)制至今尚未明確。越來(lái)越多的研究表明,骨組織局部RAS過(guò)度激活時(shí),可通過(guò)經(jīng)典和非經(jīng)典途徑調(diào)節(jié)成骨細(xì)胞和破骨細(xì)胞分化和成熟或影響二者的功能,導(dǎo)致骨形成減少及骨吸收增加,隨之發(fā)生OP。

      2.1骨組織RAS與成骨細(xì)胞

      成骨細(xì)胞是一種由骨髓間充質(zhì)干細(xì)胞分化而來(lái)的特異性細(xì)胞,通過(guò)分泌骨基質(zhì)參與骨形成,也參與調(diào)節(jié)破骨細(xì)胞分化與成熟。成骨細(xì)胞的分化和成熟過(guò)程受到多種細(xì)胞因子調(diào)節(jié),如Runt相關(guān)轉(zhuǎn)錄因子2(runt-related transcription factor 2,Runx2)、骨鈣素和骨形態(tài)發(fā)生蛋白等[16]。Zhang等[4]研究發(fā)現(xiàn),過(guò)度激活的骨局部RAS可致骨形成減少,骨量降低,從整體水平闡明了骨組織局部RAS過(guò)度激活是OP的重要發(fā)生機(jī)制之一。進(jìn)一步研究發(fā)現(xiàn),AngⅡ可通過(guò)結(jié)合于前成骨細(xì)胞和大鼠骨肉瘤細(xì)胞系(ROS17/2.8)表面的AT1R抑制Runx2及骨鈣素表達(dá),從而影響其分化和成熟,從細(xì)胞水平證實(shí)骨組織局部RAS過(guò)度激活可影響成骨細(xì)胞分化和成熟,導(dǎo)致骨基質(zhì)合成及礦化減少,誘發(fā)OP[17-19]。

      骨組織RAS除影響細(xì)胞分化和成熟以外,也可參與氧化應(yīng)激和細(xì)胞凋亡等過(guò)程。骨組織RAS是否可通過(guò)氧化應(yīng)激直接損傷成骨細(xì)胞而影響骨代謝仍不清楚。最近有研究者提出,氧化應(yīng)激反應(yīng)增強(qiáng)可能是老年性O(shè)P的發(fā)病機(jī)制之一[20]。流行病學(xué)調(diào)查也發(fā)現(xiàn),人體內(nèi)活性氧(reactive oxygen spe?cies,ROS)含量隨著年齡增長(zhǎng)不斷增加,而動(dòng)物實(shí)驗(yàn)也證實(shí)了ROS會(huì)嚴(yán)重危害成骨細(xì)胞、破骨細(xì)胞及骨細(xì)胞的正常生理活動(dòng),導(dǎo)致骨代謝失衡[21-22]。進(jìn)一步研究表明,AngⅡ可升高成骨細(xì)胞線粒體中ROS和超氧化物水平,而降低呼吸酶復(fù)合物和ATP水平,直接損傷成骨細(xì)胞線粒體,導(dǎo)致成骨細(xì)胞凋亡[23-24]。

      由此可知,過(guò)度激活的骨組織局部RAS對(duì)成骨細(xì)胞的影響主要是通過(guò)RAS經(jīng)典途徑,即ACEAngⅡ-AT1R軸抑制成骨細(xì)胞分化和成熟或通過(guò)氧化應(yīng)激反應(yīng)直接損傷成骨細(xì)胞,導(dǎo)致骨形成減少和OP發(fā)生。

      2.2 骨組織RAS與破骨細(xì)胞

      破骨細(xì)胞來(lái)源于造血干細(xì)胞,其分化過(guò)程主要受成骨細(xì)胞分泌的NF-κB受體活化因子配體(re?ceptor activator for nuclear factor-κB ligand,RANKL)及骨保護(hù)素(osteoprotegerin,OPG)調(diào)控[25]。許多細(xì)胞因子和激素可以通過(guò)調(diào)節(jié)RANKL和OPG表達(dá)水平,從而調(diào)控破骨細(xì)胞分化和成熟,如維生素D3、雌激素、甲狀旁腺激素和糖皮質(zhì)激素等。骨組織RAS也不例外。Gu等[26-27]研究發(fā)現(xiàn),老年性O(shè)P以及糖皮質(zhì)激素誘發(fā)性O(shè)P與骨組織RAS激活有關(guān),同時(shí)RANKL表達(dá)增加,提示骨組織RAS可能通過(guò)促進(jìn)破骨細(xì)胞分化和成熟,導(dǎo)致骨吸收增加,參與OP發(fā)生。Shimizu等[28]通過(guò)雌性去勢(shì)大鼠模型進(jìn)一步研究也證實(shí),骨組織RAS激活參與了老年性O(shè)P發(fā)生。在進(jìn)一步的前成骨細(xì)胞及破骨細(xì)胞聯(lián)合培養(yǎng)實(shí)驗(yàn)中,發(fā)現(xiàn)AngⅡ通過(guò)與前成骨細(xì)胞表面AT1R結(jié)合,刺激前成骨細(xì)胞表達(dá)和分泌RANKL,導(dǎo)致RANKL/OPG表達(dá)比增加,從而促進(jìn)破骨細(xì)胞分化和成熟。也有研究者提出,AngⅡ可以刺激成骨細(xì)胞表達(dá)RANKL,并呈劑量和時(shí)間依賴性改變,且其發(fā)生機(jī)制是AngⅡ與成骨細(xì)胞表面的AT1R結(jié)合后,增強(qiáng)NADPH氧化酶活性以及刺激ROS產(chǎn)生,上調(diào)細(xì)胞外信號(hào)調(diào)節(jié)激酶信號(hào)通路,從而導(dǎo)致RANKL表達(dá)增加[29,30]。以上研究均證實(shí),骨組織局部激活的RAS可以通過(guò)ACE-AngⅡ-AT1R軸調(diào)控破骨細(xì)胞的分化和成熟。

      然而,Kaneko等[31]在整體及細(xì)胞實(shí)驗(yàn)發(fā)現(xiàn),AT1aR敲除后可增加RANKL/OPG表達(dá)比并促進(jìn)破骨細(xì)胞分化和成熟,導(dǎo)致骨吸收增加,提示骨組織RAS并非通過(guò)ACE-AngⅡ-AT1R軸調(diào)節(jié)破骨細(xì)胞分化和成熟。Asaba等[32]進(jìn)一步細(xì)胞實(shí)驗(yàn)表明,AngⅡ可通過(guò)與前成骨細(xì)胞表面的AT2R結(jié)合,刺激其釋放RANKL,并與前破骨細(xì)胞表面的受體RANK結(jié)合,促進(jìn)前破骨細(xì)胞分化為成熟的破骨細(xì)胞,參與骨吸收過(guò)程。

      綜上,骨組織RAS可通過(guò)ACE-AngⅡ-AT1R軸或ACE-AngⅡ-AT2R軸促進(jìn)前成骨細(xì)胞表達(dá)RANKL,誘導(dǎo)前破骨細(xì)胞過(guò)度分化為成熟的破骨細(xì)胞,導(dǎo)致骨吸收增加,OP發(fā)生。但是,AT1R和AT2R在過(guò)度激活的骨組織局部RAS刺激破骨細(xì)胞分化過(guò)程中的具體作用仍需進(jìn)一步研究加以明確。

      3 RAS抑制劑治療骨質(zhì)疏松

      目前已發(fā)現(xiàn)和應(yīng)用于臨床的RAS抑制劑主要是通過(guò)減少AngⅡ產(chǎn)生或阻斷AngⅡ與AT1R結(jié)合來(lái)治療RAS過(guò)度激活所誘發(fā)的疾病,因此,RAS抑制劑或許可成為治療OP的候選藥物之一[33-34]。目前已發(fā)現(xiàn)和應(yīng)用于臨床的RAS抑制劑主要包括腎素抑制劑、ACE抑制劑(angiotensin converting enzyme inhibitor,ACEI)和血管緊張素Ⅱ受體拮抗劑(angiotensinⅡreceptor blockers,ARB)。

      3.1 腎素抑制劑

      腎素抑制劑可以抑制血管緊張素原轉(zhuǎn)換為AngⅠ,從而減少AngⅡ生成,理論上可以有效地改善高血壓和OP[35]。阿利吉侖(aliskiren)是腎素抑制劑的代表性藥物。目前研究已經(jīng)證實(shí),阿利吉侖可以有效地延緩骨吸收,從而改善雌性去勢(shì)小鼠骨量丟失、骨小梁變細(xì)、骨密度降低等表現(xiàn),其機(jī)制可能是阿利吉侖抑制了破骨細(xì)胞分化以及減弱其吸收能力[36-37]。由于目前尚無(wú)臨床試驗(yàn)表明阿利吉侖可以有效治療OP,所以臨床應(yīng)用其治療OP尚不普遍。但是,阿利吉侖作為一種新型的RAS抑制劑,其對(duì)OP治療的應(yīng)用前景仍然值得關(guān)注和進(jìn)一步探索。

      3.2 血管緊張素轉(zhuǎn)換酶抑制劑

      ACEI通過(guò)減少AngⅡ的產(chǎn)生可達(dá)到抑制循環(huán)及組織中RAS的功能。目前,關(guān)于ACEI對(duì)OP的治療作用說(shuō)法不一。臨床研究顯示,患者使用ACEI治療后可以增加骨密度以及減少骨折發(fā)生風(fēng)險(xiǎn)[38]。然而,通過(guò)大規(guī)模的回顧性研究顯示,長(zhǎng)期使用ACEI對(duì)老年人骨密度有降低作用,甚至加重OP[39]。還有研究表明,ACEI可以改善卵巢切除術(shù)后及自發(fā)性高血壓大鼠骨量丟失等表現(xiàn),其機(jī)制為阻斷慢性激活的骨組織局部RAS對(duì)骨代謝的不利影響,從而抑制骨吸收并促進(jìn)骨形成[40-41]。另外,也有研究表明,卡托普利對(duì)正常骨代謝具有危害作用,可能與骨組織局部RAS以及緩激肽系統(tǒng)被激活有關(guān),而后二者被認(rèn)為可減少成骨細(xì)胞分化,刺激破骨細(xì)胞形成及降低骨密度[35,42]。ACEI雖已成為治療心血管疾病的支柱藥物,治療效果也得到了一致認(rèn)可,但對(duì)OP患者的治療效果仍處在探索過(guò)程??傊珹CEI對(duì)OP的治療作用是否與藥物種類、藥物劑量、個(gè)體差異、ACE表型及其他因素有關(guān)仍需進(jìn)一步研究。

      3.3 血管緊張素Ⅱ受體拮抗劑

      ARB作為RAS抑制劑另一類代表性藥物,具有其他抑制劑不可比擬的優(yōu)勢(shì)。由于絕大多數(shù)的研究都證實(shí)骨代謝紊亂源于AngⅡ與AT1R結(jié)合所產(chǎn)生的病理效應(yīng),因此ARB通過(guò)阻斷AngⅡ與AT1R結(jié)合,可以抑制骨組織局部過(guò)度激活的RAS對(duì)骨代謝的不良影響,從而達(dá)到治療OP的效果[43-45]。也有少量研究認(rèn)為,AT2R抑制劑可增加成年大鼠骨量,從而緩解OP[46]。近年來(lái),多種選擇性抑制AT1R的藥物被開發(fā)并應(yīng)用于臨床,包括洛沙坦、纈沙坦和厄貝沙坦等,而且這些藥物的副作用遠(yuǎn)少于ACEI,因此被普遍應(yīng)用于心血管疾病治療,尤其適用于高血壓合并OP。但是選擇性AT2R阻斷劑是否可以改善OP仍存在爭(zhēng)議。

      4 結(jié)語(yǔ)

      綜上所述,骨組織RAS在介導(dǎo)OP發(fā)生過(guò)程中具有重要作用,并可能成為治療OP的潛在靶點(diǎn)。大量研究提示,RAS抑制劑可以改善OP患者骨量丟失,或許可以成為治療OP的另一類新藥物,而且這種“一藥多用,老藥新用”的研究可以減少患者的服藥種類和降低社會(huì)經(jīng)濟(jì)負(fù)擔(dān),因此受到研究者廣泛關(guān)注。但是,RAS抑制劑對(duì)OP的確切療效和作用機(jī)制仍有待全面證實(shí)。此外,隨著對(duì)RAS深入了解,RAS新成員如ACE2、Ang-(1-7)相繼被研究者熟知,其參與的RAS另一條非經(jīng)典途徑即ACE2-Ang-(1-7)-Mas受體軸的保護(hù)作用,例如促進(jìn)血管舒張、降低氧化應(yīng)激、抑制炎癥反應(yīng)以及刺激細(xì)胞分化等被廣大研究者認(rèn)可。許多研究提示,ACE2和Ang-(1-7)具有藥理作用,并可能成為繼腎素抑制劑、ACEI和ARB之后又一類治療心血管疾病的代表性藥物[47-49]。進(jìn)一步研究表明,鑒于ACE2和Ang-(1-7)具有抗炎、抗氧化應(yīng)激以及舒張血管的作用,ACE2和Ang-(1-7)甚至被認(rèn)為是治療和預(yù)防心腦血管意外如心肌梗死、腦梗死和腦出血等疾病的潛在藥物之一[50-52]。此外,最近研究發(fā)現(xiàn),Ang-(1-7)與Mas受體結(jié)合后可以增加胰島素敏感性、促進(jìn)脂質(zhì)代謝和減少機(jī)體脂肪沉積,因此被認(rèn)為可以預(yù)防和治療肥胖、糖尿病和血脂異常等代謝綜合征[53-54]。然而,目前尚未有研究報(bào)道ACE2-Ang-(1-7)-Mas受體軸在OP發(fā)生過(guò)程中的具體作用。因此,進(jìn)一步探討ACE2-Ang-(1-7)-Mas受體軸的作用,并發(fā)揮其拮抗ACE-AngⅡ-AT1R軸的藥理效應(yīng),達(dá)到治療RAS過(guò)度激活產(chǎn)生的OP,將可能是繼研究RAS抑制劑對(duì)OP的療效之后又一個(gè)研究熱點(diǎn)。

      [1]Lupsa BC,Insogna K.Bone health and osteoporosis[J].Endocrinol Metab Clin North Am,2015,44(3):517-530.

      [2]Whittier X,Saag KG.Glucocorticoid-induced osteo?porosis[J].Rheum Dis Clin North Am,2016,42(1):177-189.

      [3]Miyamoto T.Mechanism underlying post-meno?pausal osteoporosis:HIF1α is required for osteo?clast activation by estrogen deficiency[J].Keio J Med,2015,64(3):44-47.

      [4] Zhang YT, Wang KZ,Zheng JJ,Shan H,Kou JQ,Liu RY,et al.Glucocorticoids activate the local renin-angiotensin system in bone:possible mechanism for glucocorticoid-induced osteoporosis[J].Endocrine,2014,47(2):598-608.

      [5]Woo J,Kwok T,Leung J,Tang N.Dietary intake,blood pressure and osteoporosis[J].J Hum Hyper?tens,2009,23(7):451-455.

      [6]Ghosh M,Majumdar SR.Antihypertensive medica?tions,bone mineral density,and fractures:a review of old cardiac drugs that provides new insights into osteoporosis[J].Endocrine,2014,46(3):397-405.

      [7]Aga?ayak KS,Güven S,Koparal M,Güne? N,Atalay Y,At?lgan S.Long-term effects of antihyper?tensive medications on bone mineral density in men older than 55 years[J].Clin Interv Aging,2014,9:509-513.

      [8]Chappell MC.Biochemical evaluation of the reninangiotensin system:the good,bad,and abso?lute?[J].Am J Physiol Heart Circ Physiol,2016,310(2):H137-H152.

      [9]Paul M,Poyan Mehr A,Kreutz R.Physiology of local renin-angiotensin systems[J].Physiol Rev,2006,86(3):747-803.

      [10]Tsukamoto I,Akagi M,Inoue S,Yamagishi K,Mori S,Asada S.Expressions of local renin-angio?tensin system components in chondrocytes[J].Eur J Histochem,2014,58(2):2387.

      [11]Rodgers KE,Dizerega GS.Contribution of the local RAS to hematopoietic function:a novel thera?peutic target[J].Front Endocrinol(Lausanne),2013,4:157.

      [12]Uz B,Tatonyan S?,Sayitoglu M,Erbilgin Y,Hat?rnaz O,Aksu S,et al.Local renin-angiotensin system in normal haematopoietic and multiple myeloma-related progenitor cells[J].Turk J Hae?matol,2014,31(2):136-142.

      [13]Zhang Y,Wang K,Song Q,Liu R,Ji W,Ji L,et al.Role of the local bone renin-angiotensin system in steroid-induced osteonecrosis in rabbits[J].Mol Med Rep,2014,9(4):1128-1134.

      [14]Lv LL,Liu BC.Role of non-classical renin-angio?tensin system axis in renal fibrosis[J].Front Physi?ol,2015,6:117.

      [15]Skov J,Persson F,F(xiàn)r?ki?r J,Christiansen JS. Tissue renin-angiotensin systems: a unifying hypothesis of metabolic disease[J].Front Endocri?nol(Lausanne),2014,5:23.

      [16]Rahman MS, Akhtar N,Jamil HM,Banik RS,Asaduzzaman SM.TGF-β/BMP signaling and other molecular events:regulation of osteoblasto?genesis and bone formation[J].Bone Res,2015,3:15005.

      [17]Hagiwara H,Hiruma Y,Inoue A,Yamaguchi A,Hirose S.Deceleration by angiotensinⅡof the dif?ferentiation and bone formation of rat calvarial osteoblastic cells[J].J Endocrinol,1998,156(3):543-550.

      [18]Nakai K,Kawato T,Morita T,Yamazaki Y,Tanaka H,Tonogi M,et al.AngiotensinⅡ sup?presses osteoblastic differentiation and mineral?ized nodule formation via AT1 receptor in ROS17/ 2.8 cells[J].Arch Med Sci,2015,11(3):628-637.

      [19]Guan XX,Zhou Y,Li JY.Reciprocal roles of angiotensinⅡ and angiotensinⅡ receptors block?ade(ARB)in regulating Cbfa1/RANKL via cAMP signaling pathway:possible mechanism for hyper?tension-related osteoporosis and antagonistic effect of ARB on hypertension-related osteoporosis[J].Int J Mol Sci,2011,12(7):4206-4213.

      [20]Hendrickx G,Boudin E,Van Hul W.A look behind the scenes:the risk and pathogenesis of primary osteoporosis[J].Nat Rev Rheumatol,2015,11(8):462-474.

      [21]Yang YH,Li B,Zheng XF,Chen JW,Chen K,Jiang SD,et al.Oxidative damage to osteoblasts can be alleviated by early autophagy through the endoplasmic reticulum stress pathway-implications for the treatment of osteoporosis[J].Free Radic Biol Med,2014,77:10-20.

      [22]Callaway DA,Jiang JX.Reactive Oxygen species and oxidative stress in osteoclastogenesis,skele?tal aging and bone diseases[J].J Bone Miner Metab,2015,33(4):359-370.

      [23]Li G,Wang M,Hao L,Loo WT,Jin L,Cheung MN,et al.AngiotensinⅡinduces mitochondrial dysfunc?tion and promotes apoptosis via JNK signalling pathway in primary mouse calvaria osteoblast[J].Arch Oral Biol,2014,59(5):513-523.

      [24]Li Y,Shen G,Yu C,Li G,Shen J,Gong J,et al. AngiotensinⅡ induces mitochondrial oxidative stress and mtDNA damage in osteoblasts by inhib?iting SIRT1-FoxO3a-MnSOD pathway[J].Bio?chem Biophys Res Commun,2014,455(1-2):113-118.

      [25] Boyce BF.Advances in the regulation of osteo?clasts and osteoclast functions[J].J Dent Res,2013,92(10):860-867.

      [26]Gu SS,Zhang Y,Li XL,Wu SY,Diao TY,Hai R,et al.Involvement of the skeletal renin-angiotensin system in age-related osteoporosis of ageing mice[J].Biosci Biotechnol Biochem,2012,76(7):1367-1371.

      [27]Shuai B,Yang YP,Shen L,Zhu R,Xu XJ,Ma C,et al.Local renin-angiotensin system is associated with bone mineral density of glucocorti?coid-induced osteoporosis patients[J].Osteoporos Int,2015,26(3):1063-1071.

      [28]Shimizu H,Nakagami H,Osako MK,Hanayama R,Kunugiza Y,Kizawa T,et al.AngiotensinⅡaccel?erates osteoporosis by activating osteoclasts[J].FASEB J,2008,22(7):2465-2475.

      [29]Zhang Y,Zhang Y,Kou J,Wang C,Wang K. Role of reactive oxygen species in angiotensinⅡ:induced receptoractivator of nuclear factor-κB ligand expression in mouse osteoblastic cells[J].Mol Cell Biochem,2014,396(1-2):249-255.

      [30]Baek KH,Oh KW,Lee WY,Lee SS,Kim MK,Kwon HS,et al.Association of oxidative stress with postmenopausal osteoporosis and the effects of hydrogen peroxide on osteoclast formation in hu?man bone marrow cell cultures[J].Calcif Tissue Int,2010,87(3):226-235.

      [31]Kaneko K,Ito M,F(xiàn)umoto T,F(xiàn)ukuhara R,Ishida J,F(xiàn)ukamizu A,et al.Physiological function of the an?giotensin AT1a receptor in bone remodeling[J].J Bone Miner Res,2011,26(12):2959-2966.

      [32]Asaba Y, Ito M, Fumoto T, Watanabe K,F(xiàn)ukuhara R,Takeshita S,et al.Activation of reninangiotensin system induces osteoporosis indepen?dently of hypertension[J].J Bone Miner Res,2009,24(2):241-250.

      [33]Gebru Y,Diao TY,Pan H,Mukwaya E,Zhang Y. Potential of RAS inhibition to improve metabolic bone disorders[J].Biomed Res Int,2013,2013:932691.

      [34]Nakagami H,Osako MK,Morishita R.Potential effectofangiotensinⅡ receptorblockade in adipose tissue and bone[J].Curr Pharm Des,2013,19(17):3049-3053.

      [35]Riccioni G.The role of direct renin inhibitors in the treatment of the hypertensive diabetic patient[J].Ther Adv Endocrinol Metab,2013,4(5):139-145.

      [36]Zhang Y,Wang L,Song Y,Zhao X,Wong MS,Zhang W.Renin inhibitor aliskiren exerts beneficial effect on trabecular bone by regulating skeletal renin-angiotensin system and kallikrein-kinin system in ovariectomized mice[J].Osteoporos Int,2016,27(3):1083-1092.

      [37]Zhang FY,Yang FJ,Yang JL,Wang L,Zhang Y. Renin inhibition improves ovariectomy-induced osteoporosis of lumbar vertebra in mice[J].Biol Pharm Bull,2014,37(12):1994-1997.

      [38]Yamamoto S,Kido R,Onishi Y,F(xiàn)ukuma S,Akizawa T,F(xiàn)ukagawa M,et al.Use of reninangiotensin system inhibitors is associated with reduction of fracture risk in hemodialysis patients[J].PLoS One,2015,10(4):e0122691.

      [39]Masunari N,F(xiàn)ujiwara S,Nakata Y,F(xiàn)urukawa K,Kasagi F.Effect of angiotensin converting enzyme inhibitor and benzodiazepine intake on bone loss in older Japanese[J].Hiroshima J Med Sci,2008,57(1):17-25.

      [40]Liu YY,Yao WM,Wu T,Xu BL,Chen F,Cui L. Captopril improves osteopenia in ovariectomized rats and promotes bone formation in osteoblasts[J].J Bone Miner Metab,2011,29(2):149-158.

      [41]Shimizu H,Nakagami H,Osako MK,Nakagami F,Kunugiza Y,Tomita T,et al.Prevention of osteo?porosis by angiotensin-converting enzyme inhibitor in spontaneous hypertensive rats[J].Hypertens Res,2009,32(9):786-790.

      [42]Liu JX,Wang L,Zhang Y.Involvement of reninangiotensin system in damage of angiotensin-con?verting enzyme inhibitor captopril on bone of nor?mal mice[J].Biol Pharm Bull,2015,38(6):869-875.

      [43]Zhang Y,Diao TY,Gu SS,Wu SY,Gebru YA,Chen X,et al.Effects of angiotensinⅡ type 1 receptor blocker on bones in mice with type 1 dia?betes induced by streptozotocin[J].J Renin Angio?tensin Aldosterone Syst,2014,15(3):218-227.

      [44]Donmez BO,Ozdemir S,Sarikanat M,Yaras N,Koc P,Demir N,et al.Effect of angiotensinⅡtype 1 receptor blocker on osteoporotic rat femurs[J].Pharmacol Rep,2012,64(4):878-888.

      [45]Aoki M,Kawahata H,Sotobayashi D, Yu H,Moriguchi A,Nakagami H,et al.Effect of angio?tensinⅡ receptor blocker,olmesartan,on turn?overofbone metabolism in bedridden elderly hypertensive women with disuse syndrome[J].Geriatr Gerontol Int,2015,15(8):1064-1072.

      [46]Izu Y,Mizoguchi F,Kawamata A,Hayata T,Nakamoto T,Nakashima K,et al.AngiotensinⅡtype 2 receptor blockade increases bone mass[J].J Biol Chem,2009,284(8):4857-4864.

      [47]Mendoza-Torres E,Oyarzún A,Mondaca-Ruff D,Azocar A,Castro PF,Jalil JE,et al.ACE2 and vasoactive peptides:novel players in cardiovascu?lar/renal remodeling and hypertension[J].Ther Adv Cardiovasc Dis,2015,9(4):217-237.

      [48]Padda RS,Shi Y,Lo CS,Zhang SL,Chan JS. Angiotensin-(1-7):A novel peptide to treat hyper-tension and nephropathy in diabetes?[J].J Diabetes Metab,2015,6(10).DOI:10.4172/2155-6156. 1000615.

      [49]Patel VB,Zhong JC,Grant MB,Oudit GY.Role of the ACE2/angiotensin 1-7 axis of the reninangiotensin system in heart failure[J].Circ Res,2016,118(8):1313-1326.

      [50]Fontes MA,Martins Lima A,Santos RA.Brain angiotensin-(1-7)/mas axis:A new target to reduce the cardiovascular risk to emotional stress[J].Neu?ropeptides,2016,56:9-17.

      [51]Bennion DM,Haltigan E,Regenhardt RW,Steck?elings UM,Sumners C.Neuroprotective mecha?nisms of the ACE2-angiotensin-(1-7)-mas axis in stroke[J].Curr Hypertens Rep,2015,17(2):3.

      [52]Pernomian L,Pernomian L,Baraldi Araújo Restini C. Counter-regulatory effects played by the ACE-AngⅡ-AT1 and ACE2-Ang-(1-7)-Mas axes on the reac?tive oxygen species-mediated control of vascular function:perspectives to pharmacological approaches in controlling vascular complications[J].Vasa,2014,43(6):404-414.

      [53]Dominici FP,Burghi V,Mu?oz MC,Giani JF. Modulation of the action of insulin by angiotensin-(1-7)[J].Clin Sci(Lond),2014,126(9):613-630.

      [54]Santos SH,Andrade JM.Angiotensin 1-7:a pep?tide for preventing and treating metabolic syndrome[J].Peptides,2014,59:34-41.

      Mechanisms of renin-angiotensin system and therapeutic targets of osteoporosis:research progress

      XIAO Hao1,CHEN Liao-bin1,2,ZHANG Xian-rong2,SHANG-GUAN Yang-fan1,PAN Zheng-qi1,WANG Hui2
      (1.Department of Orthopedics,Zhongnan Hospital,2.Hubei Provincial Key Laboratory of Developmentally Originated Disease,Wuhan University,Wuhan 430071,China)

      Osteoporosis is a bone metabolic disease,characterized by reduced bone formation and increased bone resorption that lead to loss of bone mass,microarchitecture changes in bone tis?sue and susceptibility to fracture.Bone tissue expresses the main components of the renin-angiotensin sys?tem(RAS),which is involved in many biological processes through classic and non-classic pathways,including oxidative stress,cell proliferation,differentiation,apoptosis.Excessive activation of the bone tissue RAS can inhibit osteoblast differentiation,damage its bone formation function directly,and pro?mote osteoclast differentiation and maturation,leading to decreased bone formation and increased bone resorption,and inducing osteoporosis.RAS inhibitors include renin inhibitor,angiotensin converting enzyme inhibitor and angiotensinⅡreceptor blockers,which have been shown to antagonize pathological effects resulting from chronic activation of RAS effectively.Therefore,RAS inhibitors are considered one of the potential drugs for osteoporosis.

      renin-angiotensin system;osteoporosis;bone metabolism

      CHEN Liao-bin,E-mail:lbchen@whu.edu.cn

      R966

      A

      1000-3002-(2016)10-1114-06

      10.3867/j.issn.1000-3002.2016.10.005

      Foundation item:The project supported by National Natural Science Foundation of China(81220108026);and National Natural Science Foundation of China(81371940)

      2016-04-21 接受日期:2016-06-21)

      (本文編輯:?jiǎn)?虹)

      國(guó)家自然科學(xué)基金(81220108026);國(guó)家自然科學(xué)基金(81371940)

      肖 浩(1992-),男,碩士研究生,從事骨質(zhì)疏松癥研究;陳廖斌(1963-),男,教授,主要從事骨質(zhì)疏松癥及骨關(guān)節(jié)炎研究。

      陳廖斌,E-mail:lbchen@whu.edu.cn

      猜你喜歡
      腎素骨組織骨細(xì)胞
      機(jī)械應(yīng)力下骨細(xì)胞行為變化的研究進(jìn)展
      調(diào)節(jié)破骨細(xì)胞功能的相關(guān)信號(hào)分子的研究進(jìn)展
      繼發(fā)性高血壓患者尿微量蛋白含量與腎素-血管緊張素-醛固酮系統(tǒng)中腎素的關(guān)系研究
      AAV9-Jumonji對(duì)慢性心力衰竭犬心臟腎素-血管緊張素-醛固酮系統(tǒng)活性的影響
      硅+鋅+蠶絲 印度研制出促進(jìn)骨組織生成的新型材料
      山東陶瓷(2019年2期)2019-02-17 13:08:24
      骨細(xì)胞在正畸牙移動(dòng)骨重塑中作用的研究進(jìn)展
      鈦夾板應(yīng)用于美學(xué)區(qū)引導(dǎo)骨組織再生1例
      長(zhǎng)期應(yīng)用糖皮質(zhì)激素對(duì)大鼠骨組織中HMGB1、RAGE、OPG和RANKL表達(dá)的影響
      醛固酮腎素定量比值篩查原發(fā)性醛固酮增多癥的探討
      腎素-血管緊張素系統(tǒng)與糖尿病的研究進(jìn)展
      遂川县| 玉龙| 广饶县| 定西市| 石棉县| 江口县| 凤阳县| 岳池县| 武山县| 长岭县| 巨鹿县| 怀仁县| 定襄县| 开鲁县| 冀州市| 股票| 南郑县| 缙云县| 郓城县| 三河市| 塘沽区| 阿克苏市| 葵青区| 洛川县| 梁河县| 灵川县| 临沂市| 锡林郭勒盟| 繁峙县| 淳化县| 汪清县| 邵东县| 通榆县| 望江县| 樟树市| 舟山市| 济源市| 梅河口市| 芦溪县| 巧家县| 开平市|