齊 輝, 丁曉浩, 趙元博
(哈爾濱工程大學(xué) 航天與建筑工程學(xué)院,哈爾濱 150001)
?
雙相介質(zhì)彈性半空間垂直界面附近橢圓形夾雜對SH波的散射
齊輝, 丁曉浩, 趙元博
(哈爾濱工程大學(xué) 航天與建筑工程學(xué)院,哈爾濱150001)
彈性空間中的各種缺陷對SH波散射影響的研究是彈性波研究領(lǐng)域的基礎(chǔ)課題之一,其在復(fù)合材料、現(xiàn)代聲學(xué)、無損檢測、地下結(jié)構(gòu)抗震及抗爆等領(lǐng)域都有很重要的研究價(jià)值。近幾十年來,眾多學(xué)者對地下復(fù)雜地形、缺陷等對彈性波散射的研究已經(jīng)取得的大量的研究成果[1-9],但多數(shù)成果集中在對全空間、半空間單相介質(zhì)中波的研究,而對雙相介質(zhì)半空間內(nèi)SH波散射的研究卻很少見[10-13],雙相介質(zhì)半空間垂直界面附近橢圓形夾雜對SH波散射問題的研究則尚未見到公開發(fā)表的成果。
本文采用保角映射、Green函數(shù)法、“鏡像”法、多極坐標(biāo)移動(dòng)法并利用“契合”的思想研究了雙相介質(zhì)彈性半空間內(nèi)垂直界面附近的橢圓形彈性夾雜對SH波散射問題。首先,通過保角映射的方法將橢圓形夾雜外域映射成單位圓外域,并通過“虛設(shè)點(diǎn)源”方法構(gòu)造出四分之一空間內(nèi)滿足邊界條件的散射波場和Green函數(shù),利用“鏡像”方法將問題模型轉(zhuǎn)換為全空間模型,從而得到平面波入射時(shí)區(qū)域Ⅰ內(nèi)的散射波場,采用界面“契合”的思想在界面上添加附加力系并通過界面處應(yīng)力和位移連續(xù)的邊界條件建立了求解未知力系的定解積分方程組,最終求得雙相介質(zhì)半空內(nèi)的散射波場。本文最后給出具體算例并分析了垂直界面、入射角度、入射波數(shù)、介質(zhì)參數(shù)等不同物理參數(shù)條件下橢圓形夾雜周邊的動(dòng)應(yīng)力集中情況。
1問題模型
圖1為本文的理論模型,模型共分為三個(gè)區(qū)域,分別為不包括夾雜的左側(cè)區(qū)域Ⅰ,不含夾雜的右側(cè)區(qū)域Ⅱ和橢圓形夾雜區(qū)域Ⅲ。其中a,b分別為橢圓夾雜的半長軸和半短軸長度,α0為SH波的入射角度,橢圓中心O到垂直界面的距離為d,到水平面的距離為h。圖2為通過“虛設(shè)點(diǎn)源”方法將四分之一延伸為無限彈性半空間的模型,用以求解四分之一空間內(nèi)的Green函數(shù)。
圖1 SH波作用下雙相介質(zhì)半空間理論模型Fig.1 Theoretical model of bi-material half space impacted by SH wave
圖2 虛設(shè)點(diǎn)源模型Fig.2 Model of dummy point source loads
2Green函數(shù)的求解
2.1控制方程
(1)
引入保角映射函數(shù)
(2)
式中:R=(a+b)/2 ,m=(a+b)/(a-b),a,b分別為橢圓的半長軸和半短軸長。
(3)
其對應(yīng)的應(yīng)力方程為
(4)
2.2Green具體表達(dá)式
在四分之一空間中利用“虛設(shè)點(diǎn)源”的方法和多級坐標(biāo)移動(dòng)技術(shù)可以構(gòu)造出Green函數(shù)入射波場的位移表達(dá)式:
(5)
參考文獻(xiàn)根據(jù)[13],四分之一空間內(nèi)橢圓形夾雜產(chǎn)生的散射波具有如下形式:
(6)
其中:
在橢圓形彈性夾雜內(nèi)所激發(fā)的駐波表達(dá)式可以寫成如下形式:
(7)
在區(qū)域Ⅰ中,線源荷載產(chǎn)生的總位移波場為:
(8)
根據(jù)橢圓形夾雜邊界上的位移和應(yīng)力連續(xù)的邊界條件,可得:
(9)
根據(jù)文獻(xiàn)[11]的方法,將位移和應(yīng)力表達(dá)式代入式(9)在方程兩邊同乘exp(-imθ),并在(-π,π)上積分,得到一系列的代數(shù)方程組,通過有限項(xiàng)截?cái)嗲蠼鈩t可以求出An和Bn。
區(qū)域Ⅱ內(nèi)不存在由夾雜產(chǎn)生的散射波,故:
(10)
3入射波,反射波,折射波與散射波
(11)
式中:γ0=π-α0,α0為SH波入射的角度。雙相介質(zhì)半空間中的反射波和折射波可以分別表示為如下形式:
(12)
(13)
式中:α1,α2分別為雙相介質(zhì)界面處的反射角度和折射角度,α1=-α0,γ1=π-α1,γ2=π-α2。相應(yīng)的應(yīng)力代入公式(4)即可求得。
平面SH波入射時(shí)由橢圓形夾雜產(chǎn)生的散射波及其內(nèi)部的駐波具有和前文相同的形式,待求系數(shù)的求解方法與Green函數(shù)的求解方法一致,此處不再贅述。
4定解積分方程組
(14)
其中:z″=r″e(cuò)xp(iθ″)且z″=z-d。當(dāng)θ″0=β1=-π/2時(shí)0≤r″0≤∞,當(dāng)θ″0=β2=π/2時(shí)0≤r″0≤h。
利用已求得Green函數(shù)及界面左右兩側(cè)的位移分量和應(yīng)力分量的對等關(guān)系,則可以得到剖分面上的位移連續(xù)條件,建立待求附加力系f的定解積分方程組。
G2(r″,β1;r″0,β2)]dr″0+
G2(r″,β1;r″0,β1)]dr″0
(15)
G2(r″,β1;r″0,β1)]dr″0=[-W(S)]θ″0=β2
(16)
式中:G1和G2分別為介質(zhì)Ⅰ和介質(zhì)Ⅱ中的Green函數(shù)位移表達(dá)式。
通過直接離散法并考慮散射波衰減性質(zhì),可以將上述方程組轉(zhuǎn)變?yōu)榫€性代數(shù)方程組,從而求得附加力系的值。
5動(dòng)應(yīng)力集中系數(shù)(DSCF)
(17)
6算例及結(jié)果分析
圖4 SH波水平入射時(shí)隨的分布情況Fig.4 Distribution of around the elliptic inclusion edge with disturbed by SH wave horizontally
圖5 SH波水平入射時(shí)隨的分布情況Fig.5 Distribution of around the elliptic inclusion edge with disturbed by SH wave horizontally
圖6 SH波水平入射時(shí)θ=90°處隨d/a的變化Fig.6 Variation of (θ=90°) around the elliptic inclusion with d/a disturbed by SH wave horizontally
7結(jié)論
[1] Lee V W, Manoogian M E. Surface motion above an arbitrary shape underground cavity for incident SH wave[J]. European Earthquake Engineering, 1995, 8(1): 3-11.
[2] Chen J T, Chen P Y, Chen C T. Surface motion of multiple alluvial valleys for incident plane SH-waves by using a semi-analytical approach[J]. Soil Dynamic and Earthquake Engineering, 2008, 28: 58-72.
[3] 陳志剛,劉殿魁. SH波沖擊下淺埋任意圓形孔洞的動(dòng)力分析[J].地震工程與工程振動(dòng),2004,24(4):32-36.
CHEN Zhi-gang, LIU Dian-kui. Dynamic response on a shallowly buried cavity of arbitrary shape impacted by vertical SH-wave[J]. Earthquake Engineering Vibration, 2004, 24(4): 32-36.
[4] 劉殿魁,陳志剛. 橢圓孔邊裂紋對SH波的散射及其動(dòng)應(yīng)力強(qiáng)度因子[J]. 應(yīng)用數(shù)學(xué)和力學(xué),2004, 25(9): 958-965.
LIU Dian-kui, CHEN Zhi-gang. Scattering of SH-wave by cracks originating at elliptic hole and dynamic stress intensity factor[J]. Applied Mathematics and Mechanics, 2004, 25(9): 958-965.
[5] 楊在林,許華南,黑寶平. SH波上方垂直入射時(shí)界面附近橢圓夾雜與裂紋的動(dòng)態(tài)響應(yīng)[J]. 巖土力學(xué),2013, 34(8): 2378-2384.
YANG Zai-lin, XU Hua-nan, HEI Bao-ping. Dynamic response of elliptical inclusion and crack neat interface under vertically incident SH-wave from above[J]. Rock and Soil Mechanics, 2013, 34(8): 2378-2384.
[6] 楊在林,許華南,黑寶平. 半空間橢圓夾雜與裂紋對SH波的散射[J]. 振動(dòng)與沖擊,2013, 32(11): 56-61.
YANG Zai-lin, XU Hua-nan, HEI Bao-ping. Interaction of elliptical and crack under incident SH-wave in a half-space[J]. Journal of Vibration and Shock, 2013, 32(11): 56-61.
[7] 史文譜,楊洪蘭,張春萍,等. 四分之一空間內(nèi)橢圓孔對SH(shearing horizontal反平面剪切)波的散射[J]. 機(jī)械強(qiáng)度,2010, 32(5): 774-780.
SHI Wen-pu, YANG Hong-lan, ZHANG Chun-ping, et al. Scattering of an elliptic cavity in a quarter of plane to SH(shearing horizontal) wave[J]. Journal of Mechanical Strength, 2010, 32(5): 774-780.
[8] 史文譜,陳瑞平,張春萍. 直角平面內(nèi)彈性圓夾雜對入射平面SH波的散射[J]. 應(yīng)用力學(xué)學(xué)報(bào),2007,14(1):154-161.
SHI Wen-pu, CHEN Rui-ping, ZHANG Chun-ping. Scattering of circular inclusion in right-angle plane to incident plane SH-wave[J]. Chinese Journal of Applied Mechanics, 2007, 14(1): 154-161.
[9] 曹欣榮,宋天舒,劉殿魁. 任意形狀凸起地形對平面SH波的散射[J].應(yīng)用力學(xué)和數(shù)學(xué),2001, 22(9): 976-982.
CAO Xin-rong, SONG Tian-shu, LIU Dian-kui. Scattering of plane SH-wave by a cylindrical hill of arbitrary shape[J]. Applied Mathematics and Mechanics, 2001, 22(9): 976-982.
[10] 齊輝,楊杰. SH波入射雙相介質(zhì)半空間淺埋任意位置圓形夾雜的動(dòng)力分析[J]. 工程力學(xué),2012, 29(7): 320-327.
QI Hui, YANG Jie. Dynamic analysis for shallowly buried circular inclusions of arbitrary positons impacted by SH-wave in bi-material half space[J]. Engineering Mechanics,2012, 29(7): 320-327.
[11] Qi Hui, Yang Jie. Dynamic analysis for circular inclusion of arbitrary positions near interfacial crack impacted by SH-wave in half-space[J]. European Journal of Mechanics /A Solids, 2012, 36: 18-24.
[12] Qi Hui, Yang Jie, Shi Yong. Scattering of SH-wave by cylindrical inclusion near interface in bi-material half-space [J].Journal of Mechanics, 2011, 27(1): 37-45.
第一作者 齊輝 男,教授,博士生導(dǎo)師,1963年生
摘要:采用復(fù)變函數(shù)法和Green函數(shù)法研究了SH對雙相介質(zhì)彈性半空間垂直界面附近橢圓形夾雜的散射問題。首先,利用保角映射的方法將橢圓邊界外域映射為單位圓外域,得到橢圓夾雜對SH波的散射位移場,并通過“虛設(shè)點(diǎn)源”的方法求出四分之一區(qū)域內(nèi)的Green函數(shù);其次,利用界面“契合”的思想,通過在界面上添加附加力系建立待解外力系的第一類Fredholm積分方程組,通過離散的方法并考慮波函數(shù)的衰減性將無窮代數(shù)方程組進(jìn)行截?cái)?,求出剖分面上的未知外力系。最后,通過具體算例給出了不同參數(shù)條件下橢圓形夾雜周邊的動(dòng)應(yīng)力集中情況。結(jié)果表明,垂直界面、入射角度、入射波數(shù)、介質(zhì)參數(shù)等因素均對動(dòng)應(yīng)力集中系數(shù)有一定的影響。
關(guān)鍵詞:SH波;垂直界面;橢圓夾雜;保角映射;動(dòng)應(yīng)力集中系數(shù)(DSCF)
Scattering of SH-wave by an elliptic inclusion near vertical interface in a bi-material half-space
QIHui,DINGXiao-hao,ZHAOYuan-bo(College of Aerospace and Civil Engineering, Harbin Engineering University, Harbin 150001, China)
Abstract:The diffraction of harmonic SH-wave by an elliptic inclusion near vertical interface in a bi-material half-space was considered by using the complex function and the method of Green’s function. The conformal mapping method was used to map the outer boundary of elliptic inclusion into a unit circle in order to construct an expression for the dsisplacement field of scattering wave. With the ridding of image method, the Green’s function in 1/4 space was constructed. The interface “conjunction” technique was utilized to obtain a series of first kind Fredholm integral equations containing unknown forces at the interface. The integral equations were reduced to a system of algebraic equations and solved numerically by using the effective truncation. The numerical results demonstrate that the verticlal interface, incident angle, incident wave number, medium parameters under consideration are indeed capable of effecting the DSCF around the inclusion.
Key words:SH-wave; vertical interface; elliptic inclusion; conformal mapping; dynamic stress concentration factor (DSCF)
中圖分類號(hào):O343.1;P315.3
文獻(xiàn)標(biāo)志碼:A DOI:10.13465/j.cnki.jvs.2015.24.013
收稿日期:2014-09-02修改稿收到日期:2014-12-12
基金項(xiàng)目:黑龍江省自然科學(xué)基金資助(A201404)