玄春花,李香丹,洪 蘭,許東元*
(1.延邊大學(xué)附屬醫(yī)院 心內(nèi)科,吉林 延吉133002;2.延邊大學(xué)醫(yī)學(xué)院 a.形態(tài)學(xué)實(shí)驗(yàn)中心;b.生理學(xué)教研室)
?
房顫與細(xì)胞內(nèi)鈣離子濃度變化的關(guān)系
玄春花1,李香丹2a,洪蘭2b,許東元2a*
(1.延邊大學(xué)附屬醫(yī)院 心內(nèi)科,吉林 延吉133002;2.延邊大學(xué)醫(yī)學(xué)院 a.形態(tài)學(xué)實(shí)驗(yàn)中心;b.生理學(xué)教研室)
心房顫動(dòng)(Af)是臨床上常見的心律失常之一。離子通道在Af 的發(fā)生及維持過程中起非常重要的作用,其中鈣離子通道重構(gòu)是最主要的機(jī)制之一。隨著各種分子生物學(xué)技術(shù)的廣泛應(yīng)用,目前已經(jīng)開始在分子水平上分析Af離子通道的變化。近年來,在Af 的發(fā)病機(jī)制中,心房電重構(gòu)起著重要作用,對(duì)于Af時(shí)心房鈣離子通道的深入研究可能有助于解釋Af 電重構(gòu)的機(jī)制。房顫開始后,由于伴隨的APD縮短,使AERP逐步縮短,內(nèi)流K+通路增加[1],外流K+通路瞬變現(xiàn)象減少。另外房顫發(fā)生時(shí)L-型鈣離子通路顯著減少使APD縮短,并產(chǎn)生了更多AP[2]。
1房顫發(fā)生時(shí)ICa,L減少的機(jī)制
ICa,L減少是房顫-誘導(dǎo)電重構(gòu)的一個(gè)標(biāo)記。但是有研究顯示,房顫中成孔α1C亞組蛋白表達(dá)降低[3-5],這與先前的一些研究存在分歧[6-8]。機(jī)體內(nèi)各種激酶可以調(diào)節(jié)ICa,L[9,10],這些激酶都可以增加ICa,L通路。雖然PKA信號(hào)傳導(dǎo)在房顫中未起作用[11],但還會(huì)出現(xiàn)CaMKII活性增加[12]。有趣的是,CaMKII活性增加會(huì)被磷酸酶(PP)活性的增加所抵消,導(dǎo)致ICa,L的減少。PP抑制劑岡田酸會(huì)使房顫患者心房肌細(xì)胞中ICa,L增加到正常水平。無受體酪氨酸激酶對(duì)人類心房肌細(xì)胞中ICa,L的影響存在一些爭議。兩項(xiàng)研究都發(fā)現(xiàn)正常細(xì)胞對(duì)ICa,L有抑制作用[13],而在房顫中卻不存在。另一項(xiàng)研究報(bào)道src激酶對(duì)ICa,L沒有影響,但是會(huì)增加src-激酶蛋白的表達(dá)[14]。單一的通道記錄顯示人類房顫心房肌細(xì)胞會(huì)出現(xiàn)L-型鈣離子通道開放概率的增加,而這目前與強(qiáng)烈減少全部細(xì)胞L-型鈣離子通路不相一致。
在山羊房顫模型中ICa,L只是略有減少。然而,當(dāng)通過移液管鈣離子螯合劑測量時(shí),ICa,L只在控制細(xì)胞中增加,在房顫細(xì)胞中并沒有改變。這與較少鈣離子-依賴ICa,L失活相一致[14],這可能是由于亞肌纖維膜鈣離子瞬變現(xiàn)象減少,或細(xì)胞內(nèi)鈣離子緩沖增加有關(guān)。
2細(xì)胞[Ca2+]i瞬變現(xiàn)象與ICa,L的相互關(guān)系
房顫中,由于ICa,L的減少,每次細(xì)胞激活鈣離子的進(jìn)入明顯較少,因此,減少觸發(fā)鈣離子的次數(shù),可以引起jSR鈣離子釋放,以及隨后激活向心的鈣離子波(seeabove)。確實(shí),ICa,L和全部細(xì)胞[Ca2+]i瞬變現(xiàn)象在各式的房顫模型中都顯示減少趨勢[15,16],減少ICa,L可能造成[Ca2+]i減少。然而,近期的亞細(xì)胞分析顯示,在山羊和兔子模型中,亞肌纖維膜l區(qū)域[Ca2+]i瞬變現(xiàn)象在心房心跳過速-誘導(dǎo)的重構(gòu)中并未減少[17]。藥理學(xué)的ICa,L減少在標(biāo)準(zhǔn)的左心房兔子心肌細(xì)胞中明顯減少了亞肌纖維膜[Ca2+]i瞬變現(xiàn)象,顯示了附加的因素,除ICa,L減少外,還有助于模型中改變亞細(xì)胞的鈣離子釋放和減少[Ca2+]i。
3SR功能的改變
如上所述,兔子心跳過速-誘導(dǎo)的重構(gòu)模型中,維持的亞肌纖維膜[Ca2+]i瞬變現(xiàn)象表明,較少的ICa,L會(huì)引出[Ca2+]i瞬變現(xiàn)象,這與控制細(xì)胞相似。這是更高效的CICR的象征。RyR2s過度磷酸化會(huì)增加鈣離子通道的敏感度和開放概率,還會(huì)促進(jìn)SR鈣離子釋放[18],二者目前還存在爭議[19]。確實(shí),人類房顫中,盡管磷酸酶s1(PP1)和2A有所增加,但是發(fā)現(xiàn)在PKA(Ser-2809)和CaMKII(Ser-2815)位置RyR2磷酸化出現(xiàn)了增加情況。
鈣離子瞬變現(xiàn)象的另一重要決定因素是SR鈣離子負(fù)載。在房顫模型和人類房顫中,并沒有出現(xiàn)SR鈣離子負(fù)載的變化[12,15,16,20]。RyR2磷酸化增加和保持SR鈣離子負(fù)載最初發(fā)現(xiàn)于人類房顫中,與此同時(shí)還有鈣離子閃動(dòng)頻率增加。房顫中Serca2a的功能一直不確定,實(shí)驗(yàn)數(shù)據(jù)顯示也無明顯變化 (基于蛋白表達(dá)和磷酸化水平)。近期對(duì)大鼠的研究表明心房PLB/Serca2a 比率比心室的低,這與心房Serca2a功能增加相匹配。然而,心房心肌Serca2a功能還受到另一種輔助蛋白的調(diào)節(jié),即肌脂蛋白(SLN),而此蛋白是心房肌細(xì)胞的特定蛋白[21]。SLN,不包括PLBmRNA,在房顫患者右心房組織中有所減少[22],這表明,房顫中SNL的表達(dá)和功能都是可調(diào)控的。
另外,NCX上調(diào),與房顫有著一致性,通過增加鈣離子噴出進(jìn)一步擺脫SR。因此,目前還不清楚是否增加dRyR2磷酸化和開放概率會(huì)導(dǎo)致SR鈣離子顯著流失,以及房顫中是否存在著補(bǔ)償性的增加鈣離子重?cái)z取進(jìn)入SR。SR鈣離子流失定量化和重?cái)z取會(huì)有助于闡明這些問題。
4亞細(xì)胞鈣離子釋放的改變
山羊心房肌細(xì)胞中,存在功能性相關(guān)的TTs,而房顫誘導(dǎo)了此類TTs顯著的減少。這與SR鈣離子釋放的不同步性有關(guān)[15],有助于減少模型中全部細(xì)胞鈣離子瞬變現(xiàn)象。在兔子心房肌細(xì)胞中,沒有T型小管,誘導(dǎo)心房重構(gòu)后會(huì)導(dǎo)致無法向心地傳播細(xì)胞內(nèi)鈣離子波,并引起鈣離子緩慢地釋放到肌細(xì)胞的中心區(qū)域[23]。因此,如果出現(xiàn)TTs,改變亞細(xì)胞的鈣離子釋放是誘導(dǎo)房顫的重要機(jī)制。沒有TTs的心房肌細(xì)胞,房顫會(huì)顯著改變亞細(xì)胞的鈣離子處理。
5鈉離子/鈣離子交換體(NCX)的變化
房顫中同時(shí)出現(xiàn)了NCX上調(diào)[11,15],研究表明KB-R7943使鈣離子進(jìn)入NCX模式(reverse mode)受到阻滯。發(fā)現(xiàn)鈣離子通過NCX的反向模式進(jìn)入,這對(duì)早期心房重構(gòu)過程起到了重要的作用。然而,KB-R7943還會(huì)抑制Na+,K+,以及L-型鈣離子通路[24]。[Na+]i在犬類房顫模型中輕微下降[25]。降低了[Na+]i會(huì)有助于增加鈣離子通過NCX(‘forward mode’)而遷移到亞肌纖維膜l區(qū)域。在山羊和兔子房顫模型中發(fā)現(xiàn),亞肌纖維膜l鈣離子瞬變現(xiàn)象縮短,表明NCX可以增加鈣離子的流出[17]。
6改變神經(jīng)激素調(diào)節(jié)對(duì)細(xì)胞內(nèi)鈣離子處理的影響
在房顫患者右心房肌細(xì)胞中,發(fā)現(xiàn)有所增加的5-羥色胺(5-HT4)的mRNA通過5-HT4受體和隨后的PKA增加L-型鈣離子通道的活性。使用5-HT4拮抗劑會(huì)降低了AP的收縮[26]。因此,5-HT4對(duì)鈣離子的調(diào)節(jié)還需要更深入的研究。
另一方面,當(dāng)腎素-血管緊張素系統(tǒng)(RAS)激活時(shí),增加的血管緊縮素II(ATII)可以增加人類心房肌細(xì)胞鈣離子閃動(dòng)頻率[27],最終會(huì)導(dǎo)致心律失常。然而,減少血管緊縮素II(ATII)卻不能減輕房顫的負(fù)擔(dān),表明非結(jié)構(gòu)性心臟病患者細(xì)胞性的心律不齊機(jī)制不受RAS激活的影響。
7展望
綜上所述,房顫是一種多因素疾病,會(huì)使心房組織、細(xì)胞形態(tài)和分子特征均發(fā)生改變,還可能存在許多更為復(fù)雜的臨床類型。房顫發(fā)生時(shí),心肌細(xì)胞內(nèi)鈣離子變化與誘導(dǎo)房顫的產(chǎn)生和延緩房顫的發(fā)生時(shí)間密切相關(guān)。鈣離子不穩(wěn)定是證明房顫發(fā)生的重要表現(xiàn),闡明細(xì)胞內(nèi)信號(hào)轉(zhuǎn)導(dǎo)通路對(duì)鈣離子處理的調(diào)節(jié)作用,能進(jìn)一步理解基因和分子因素在房顫機(jī)制中的作用,并會(huì)更加深入探討房顫發(fā)病機(jī)制,為開發(fā)抗心律失常藥物提供有利的理論基礎(chǔ)。但目前,房顫的發(fā)病機(jī)制仍不夠完善,需要從更多角度開展更長時(shí)間的循證醫(yī)學(xué)和基礎(chǔ)研究。
參考文獻(xiàn):
[1]Dobrev D,Friedrich A,Voigt N,et al.The G protein-gated potassium current I(K,ACh) is constitutively active in patients with chronic atrial fibrillation[J].Circulation,2005,112:3697.
[2]Workman AJ,Kane KA,Rankin AC.Cellular bases for human atrial fibrillation[J].Heart Rhythm,2008,5:S1.
[3]Brundel BJ,Van Gelder IC,Henning RH,et al.Ion channel remodeling is related to intraoperative atrial effective refractory periods in patients with paroxysmal and persistent atrial fibrillation[J].Circulation,2001,103:684.
[4]Gaborit N,Steenman M,Lamirault G,et al.Human atrial ion channel and transporter subunit gene-expression remodeling associated with valvular heart disease and atrial fibrillation[J].Circulation,2005,112:471.
[5]Klein G,Schr?der F,Vogler D,et al.Increased open probability of single cardiac L-type calcium channels in patients with chronic atrial fibrillation.Role of phosphatase 2A[J].Cardiovasc Res,2003,59:37.
[6]Schotten U,Haase H,Frechen D,et al.The L-type Ca2+-channel subunits alpha1C and beta2 are not downregulated in atrial myocardium of patients with chronic atrial fibrillation[J].J Mol Cell Cardiol,2003,35:437.
[7]Christ T,Boknik P,W?hrl S,et al.L-type Ca2+current downregulation in chronic human atrial fibrillation is associated with increased activity of protein phosphatases[J].Circulation,2004,110:2651.
[8]Greiser M,Halaszovich CR,Frechen D,et al.Pharmacological evidence for altered src kinase regulation of I (Ca,L) in patients with chronic atrial fibrillation[J].Naunyn Schmiedebergs Arch Pharmacol,2007,375:383.
[9]Koller ML,Maier SK,Gelzer AR,et al.Altered dynamics of action potential restitution and alternans in humans with structural heart disease[J].Circulation,2005,112:1542.
[10]Benitah JP,Alvarez JL,Gómez AM.L-type Ca(2+) current in ventricular cardiomyocytes[J].J Mol Cell Cardiol,2010,48:26.
[11]Schotten U,Greiser M,Benke D,et al.Atrial fibrillation-induced atrial contractile dysfunction:a tachycardiomyopathy of a different sort[J].Cardiovasc Res,2002,53:192.
[12]Neef S,Dybkova N,Sossalla S,et al.CaMKII-dependent diastolic SR Ca2+leak and elevated diastolic Ca2+levels in right atrial myocardium of patients with atrial fibrillation[J].Circ Res,2010,106:1134.
[13]Schr?der F,Klein G,Frank T,et al.Src family tyrosine kinases inhibit single L-type: Ca2+channel activity in human atrial myocytes[J].J Mol Cell Cardiol,2004,37:735.
[14]Rao F,Deng CY,Wu SL,et al.Involvement of Src in L-type Ca2+channel depression induced by macrophage migration inhibitory factor in atrial myocytes[J].J Mol Cell Cardiol,2009,47:586.
[15]Lenaerts I,Bito V,Heinzel FR,et al.Ultrastructural and functional remodeling of the coupling between Ca2+influx and sarcoplasmic reticulum Ca2+release in right atrial myocytes from experimental persistent atrial fibrillation[J].Circ Res,2009,105:876.
[16]Kneller J,Sun H,Leblanc N,et al.Remodeling of Ca(2+)-handling by atrial tachycardia:evidence for a role in loss of rate-adaptation[J].Cardiovasc Res,2002,54:416.
[17]Greiser M,Verheule S,Allessie M,et al.Preserved subsarcoelmmal Ca2+fluxes despite reduced L-Type Ca2+current reduction in tachycardia-Induced atrial remodeling[J].Heart Rhythm,2009,6:S231.
[18]Bers DM.Cardiac ryanodine receptor phosphorylation: target sites and functional consequences[J].Biochem J,2006,396:e1.
[19]Carter S,Colyer J,Sitsapesan R.Maximum phosphorylation of the cardiac ryanodine receptor at serine-2809 by protein kinase a produces unique modifications to channel gating and conductance not observed at lower levels of phosphorylation[J].Circ Res,2006,98:1506.
[20]Hove-Madsen L,Llach A,Bayes-Genís A,et al.Atrial fibrillation is associated with increased spontaneous calcium release from the sarcoplasmic reticulum in human atrial myocytes[J].Circulation,2004,110:1358.
[21]Babu GJ,Bhupathy P,Carnes CA,et al.Differential expression of sarcolipin protein during muscle development and cardiac pathophysiology[J].J Mol Cell Cardiol,2007,43:215.
[22]Uemura N,Ohkusa T,Hamano K,et al.Down-regulation of sarcolipin mRNA expression in chronic atrial fibrillation[J].Eur J Clin Invest,2004,34:723.
[23]Greiser M,Harks E,Verheule S,et al.Failure of intracellular Ca2+wave propagation in tachycardia-induced atrial remodeling:a novel mechanism behind atrial contractile dysfunction[J].Heart Rhythm,2008,5:S11.
[24]Tanaka H,Nishimaru K,Aikawa T,et al.Effect of SEA0400,a novel inhibitor of sodium-calcium exchanger,on myocardial ionic currents[J].Br J Pharmacol,2002,135:1096.
[25]Akar JG,Everett TH,Ho R,et al.Intracellular chloride accumulation and subcellular elemental distribution during atrial fibrillation[J].Circulation,2003,107:1810.
[26]Leftheriotis DI,Theodorakis GN,Poulis D,et al.The effects of 5-HT4 receptor blockade and stimulation,during six hours of atrial fibrillation[J].Europace,2005,7:560.
[27]Gassanov N,Brandt MC,Michels G,et al.Angiotensin II-induced changes of calcium sparks and ionic currents in human atrial myocytes: potential role for early remodeling in atrial fibrillation[J].Cell Calcium,2006,39:175.
(收稿日期:2015-07-29)
*通訊作者
基金項(xiàng)目:國家自然科學(xué)基金(81160022);吉教科合字(2015)第31號(hào)
文章編號(hào):1007-4287(2016)04-0689-03