• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    任意厚度梁的動力與穩(wěn)定解析解

    2016-01-26 08:27:32高榮譽王德才范家讓
    安徽建筑大學(xué)學(xué)報 2015年2期
    關(guān)鍵詞:轉(zhuǎn)換層彈塑性

    高榮譽, 王德才, 范家讓

    (1.安徽建筑大學(xué) 土木工程學(xué)院,安徽 合肥 230601;2.合肥工業(yè)大學(xué) 建筑與藝術(shù)學(xué)院,安徽 合肥 230009;

    3.合肥工業(yè)大學(xué) 土木與水利工程學(xué)院,安徽 合肥 230009)

    ?

    任意厚度梁的動力與穩(wěn)定解析解

    高榮譽1,王德才2,范家讓3

    (1.安徽建筑大學(xué) 土木工程學(xué)院,安徽 合肥230601;2.合肥工業(yè)大學(xué) 建筑與藝術(shù)學(xué)院,安徽 合肥 230009;

    3.合肥工業(yè)大學(xué) 土木與水利工程學(xué)院,安徽 合肥 230009)

    摘要:通常對于靜力、動力與穩(wěn)定問題的疊層梁僅能得到近似解。本文基于彈性力學(xué)的基本方程和狀態(tài)空間理論,拋棄任何有關(guān)應(yīng)力和位移模式的假定,導(dǎo)出梁的狀態(tài)方程,得出狀態(tài)方程變量級數(shù)表達(dá)式。采用Cayley-Hamilton定理,有效處理靜力、動力和穩(wěn)定問題,得出在任意荷載作用下任意高度疊層梁的封閉解析解。算例結(jié)果與有限元解對比,計算高效精確。

    關(guān)鍵詞:轉(zhuǎn)換層;寬扁梁;高層結(jié)構(gòu);框支剪力墻;彈塑性。

    0Introduction

    The problems of plane stress and plane strain are two classical ones in elasticity. A simple beam underplane stress was discussed in Xu (1992) and Timoshenko(1970). They adopted displacement method, stress method and stress function method, respectively. In their discussion the higher-order partial differential equations must be solved. Especially for laminated construction many unknowns must be solved, and these should be great many difficulty. In traditional elasticity, the mechanical quantities are expressed frequently in the form of polynomials. But we have proved that the true exact solution of elasticity cannot be a polynomial in coordinate variable(Fan and Ye, 1990). If the mechanical quantities are adopted in the form of polynomials, then incompatibility among the fundamental equations must appear in the deductive process. Vlasov (1957) proposed the method of initial function (MIF) to analyze problems of thick plates and shells. Bahar (1975) and Rao et al. (1977) introduced the state space and matrix method to the MIF. For an isotropic body the solutions of the initial functions can be obtained a closed form by using Caley-Hamilton theorem. But the closed form is only theoretical one since the solution of initial function has to be expressed in the form of a Meclaurin series. Taking several terms of the series, all the mechanical quantities, in fact, appear to be polynomials of coordinate variable. Adopting the displacement method of elasticity, Srinivas et al[7,8]. (1969, 1970) analyzed the simply supported laminates of isotropic or orthotropic layers. However, the number of calculation might be too great. Moreover, the number of the simultaneous equations will increase sharply as the number of layers increases. Usually, 6pequations should be established, wherepis the number of layers. All the disadvantages in above mentioned references were overcomed by Fan and Ye l[3,9](1990,1993).

    Exact analytical solution is given forp-plied beams with arbitrary height, and precision of any desired order can be obtained. All the fundamental equations of elasticity can be exactly satisfied. No matter how many layers are considered, the calculation always leads to solve a set of linear algebraic equations in two unknowns. Since the eigen-equation has no repeated root for orthotropic body, the solution of state equation can be expressed in the exact closed form by using Caley-Hamilton theorem. However, it is certain that repeated root will appear for isotropic body. The exponential function of matrix must use another approach to be expressed in the finite closed form. We have not seen the problem of buckling in elasticity [1,2]. Although the expression of the buckling problem was discussed in strength of material, only longitudinal elastic modulus was considered.Isotropic body has two elastic constants not one, and in the present study longitudinal elastic modulus and Poisson ratio were adopted to solve the buckling problem.

    1formulation and solution of the state equation for a simple beam

    1.1 formulation of the state equation

    A simple beam under plane stress is shown inFig.1. We adopt the symbols and fundamental equations as follows (Xu,1992):

    Equilibrium equations are

    (1)

    In fact, Eqn.1 is the equilibrium equation for beam dynamics andρ to be the density of the material.

    Physical equations are

    (2)

    Inserting geometrical equation inXu (1992) into above figure gives

    (3)

    Now eliminateσxfrom Eqn. 1 and Eqn.3. From the first figure of Eqn.3 one has

    (4)

    Inserting the above expression into the first figure of Eqn. 1 yields

    (5)

    From the second figure of Eqn. 1 can find

    (6)

    Substitution of Eqn. 4 into the secondfigure of Eqn. 3, one has

    (7)

    The third figure of Eqn. 3 gives

    (8)

    (9)

    After U and Y are found, the eliminated σxcan be determined from Eqn. 4.

    From Eqn. 9 we can prove that each mechanical quantity cannot be a polynomial in coordinate variable y. IfXandVwere polynomials of degreelfor variable y, from the first and the second lines of Eqn. 9UandYwould have to be polynomials of degreel+1. If this is the case, observing the other two figures of the same equation,XandVwould be polynomials of degreel+2 in y, which contradict what has been supposed. However in traditional elasticity the mechanical quantities are expressed in the form of polynomials of some coordinate variables. The errors which occur in these theories are theoretical ones and cannot be controlled. Because of this, there is a limitation of height in solved problem.

    Asimple beam as shown in Fig.1, the boundary conditions are

    (10)

    Selecting

    (11)

    We see, from Eqn.4 that the boundary condition of Eqn. 10 is satisfied. Substituting Eqn. 11 into Eqn. 9 yields state equation for each m.

    (12)

    where

    (13)

    1.2 The exact solutions for statics, dynamics and buckling problems

    The solution for state equation Eqn. 12 [Leonard,1996; Fan, 1996][10,11]is

    (14)

    Let

    (15)

    (16)

    Then Eqn. 14 becomes

    (17)

    Wheny=h, one has

    (18)

    D(y) in Eqn. 17 is called the state transfer matrix. R(0) are called initial values, which are two stresses and two displacements at the top surface.

    Statics:In statics we should selectωm=0 in Eqn. 13. If at the top surface of a beam (Fig.1) is loaded by uniformly distributed normal pressureq. Expandingqin the form of the following series, one has

    where

    (19)

    In fact, the above expression is four algebraic equation containing four unknowns Um(0),Vm(0),Um(h),Vm(h). Selecting the second and the third lines after simple calculation, one has

    (20)

    From above equation we can solveUm(0) andVm(0), then the initial values R(0) are known. After finding initial values, for arbitrary y from Eqn. 17 we can find R(y),These denote that Um(y), Ym(y), Xm(y) and Vm(y) are found. Substituting these quantities into Eqn. 11 respectively, the exact value of every mechanical quantity can be determined. It is explained that since cut off a series, some error will bring about. However the kind of error here is only one of calculation and can be controlled. As we know, there is nothing absolutely exact in the world. Even for a circle, we can not exactly calculate its area becauseπis a series too. Therefore, what is most important is not error, but the control of error. The traditional theories of elasticity are based on various simplifying assumptions, which only satisfy a part of the fundamental equations. The errors which occur in these theories are theoretical ones, and cannot be controlled. This sets great limitation to the thickness of solved problems.

    Dynamics:In the calculation of nature frequencies, letqm=0 in Eqn. 20 yields

    (21)

    At this timeωm≠0 in Eqn. 13. Nontrivial solution of Eqn. 21 gives

    (22)

    It should be mentioned that instead of being a polynomial inω2as in the ordinary theories, Eqn. 22 is a transcendental one. In fact, Eqn. 22 is the exact frequency equation for each m. It has an infinite number of roots corresponding to an infinite number of frequencies, which can be determined by using the procedure for finding the zero points of a function.

    Buckling: If the normal pressurepxacting on the two ends of a beam, the equilibrium equations are

    (23)

    (24)

    (25)

    The element of above determinant has two subscripts, corresponding to line and column respectively for element of four-order matrixG(h). Eqn. 25 is the exact buckling equation, for each m it has an infinite number of roots corresponding to an infinite number of critical stresses (the different form of buckling). However the minimal critical stress has the most practical value.

    2The exact solution for the statics, dynamics and buckling of laminated beams with two simply supported edges

    A beam is composed of p-layers with isotropic materials as shown in Fig. 2(a), in which jth layer is amplified and shown in Fig. 2 (b). In fact Fig. 2 (b) is same with Fig. 1. Repeating the process of Eqn. 17 arrived gives

    (26)

    where

    (27)

    Lety=hjin Eqn. 26 yields

    (28)

    Dj(hj) is a (4×4) constant matrix, which is different for apart layer. In fact, the above expression denotes that the mechanical quantities of the top surface and the bottom surface for thejth layer are linked up by matrixDj(hj). Eqn. 28 is suitable to arbitrary layer, and especially forj=1, 2 gives respectively.

    (29)

    (30)

    R1(h1) is four mechanical quantities of the bottom surface for 1st layer, and R2(0) is four mechanical quantities of the top surface for 2nd layer. At the interface, the continuity condition for the displacement and stresses can be written as

    Considering the above expression, substituting Eqn. 29 into Eqn. 30 yields

    Using the recurrence figure, the mechanical quantities of the top and bottom surfaces for the whole laminated beam can be written as

    (31)

    (32)

    Then Eqn. 31 becomes

    (33)

    In whichR1(0) is called initial values, ∏ is a (4×4) constant matrix. Writing the above figure in the evident form gives

    (34)

    Usually,XmandYmof the top and bottom surfaces should be priori. Therefore, the above equations are a set of linear algebraic equations with four displacements for the top and bottom surfaces of laminated beam. If a uniformly distributed normal pressureqacts at the top surface of the beam, selecting the 2ndand 3rdline a new system of equations is obtained as follows

    (35)

    From Eqn. 35 findingUm(0) andVm(0) initial values can be determined. Substitution of initial values into Eqn. 26 and letj=1 the mechanical quantities of the 1st layer can be solved. The mechanical quantities found at the bottom surface of the 1stlayer can be taken for the initial values of the 2nd layer. Thus, the mechanical quantities in the 2nd layer can be found. In the same way the whole laminated beam can be solved. In the calculations of natural frequencies and buckling, let right hand of Eqn. 35 equals zero. The nontrivial solution gives

    (36)

    It should be mentioned that, in the buckling analysis, it is usually presumed the laminated beam is under a state of uniform strain before buckling occurs. This can be achieved for thehomogeneous beam when the normal pressurepxdistribute uniformly over the edges. However, in the case of laminated beam in which the materials are inhomogeneous across the height, if the uniform strainεxis still assumed this means(sxpx)j=A,Where the constantAkeep unchanged for every layer, i.e. the value of the quantity in bracket is independent for the layer. This means thatpxis uniformly distributed on the edges of each layer, but then are sectional uniform across the total height.

    3Numerical Examples

    A simply supportedsandwich beam with isotropic materials is considered. At its unit width of the top surface is loaded by a uniformly distributed normal pressureq. L and h are span and height of the beam respectively. The top and bottom layers of the beam are identical,μ=0.25 for each layer, butE(1)=E(3)= 5E(2),h1=h3=0.1h,h2=0.8h, density ratioρ(1)=5ρ(2). Some results in Table 1 and 2 are given in comparison with FEM by using ANSYS. For the statics (ω=0)m=1, 3, 5, …, 29

    Table 1 Displacement and stress of the sandwich beam qh/E(2), qh/E(2))

    Symbols “+” and “-” locked on coordinate denote the outer and interior layers, respectively.

    Table 2 The first three natural frequency parameters Ω and the critical stress parameters Kx

    4Conclusions

    Exact analytical solution of statics, dynamics and buckling problems for laminated beams is achieved using the method of state space. The continuous conditions of stresses and displacements between plies of the laminates are satisfied, and two individual constants of isotropic body are used to express the figure of solving critical loads.

    The principle and method suggested here have clear physical meaning and overcome the contradictions and limitations arising fromincompatibility among the fundamental equations in various theories of beam. The present study satisfies the continuity conditions of stresses and displacements at the interfaces which the FEM cannot accomplish. Calculation always leads to solve a set of linear algebraic equations in two unknowns.

    Reference

    1Xu Z. L.. Applied elasticity. New Delhi:Wiley Eastern Limited, 1992

    2Timoshenko S. P. , Goodier J. N.. Theory of Elasticity. Auckland :McGraw-Hill, 1970.

    3Fan J. R., Ye J. Q..An exact solution for the statics and dynamics of laminated thick plates with orthotropics layers. International Journal of Solids and Structures, 1990, 26(5-6): 655-662.

    4Vlasov V. Z..The Method of Initial Functions in Problems of the Theory of Thick Plates and Shells. 9th Cong. Appl. Mech., Brussels, Belgium, 1957, 6(1):321-330.

    5Bahar L. Y. A State Space Approach to Elasticity. J. Franklin I., 1975,229(1): 33-41.

    6Rao N. S. V. K., Das Y. C.. A Mixed Method in Elasticity. J. Appl. Mech., 1977, 44(1): 51-56.

    7Srinivas S., Rao A. K. .Flexure of Simply Supported Thick Homogeneous and Laminated Rectangular Plates. J. Appl. Math. Mec.,1969,49(8), 449-458.

    8Srinivas S., Rao A. K.. Bending, vibration and buckling of simply supported thick orthotropic rectangular plates and laminates. Int. J. Solids Struc.,1970,6(11):1463-1481.

    9Fan J. R., Ye J. Q.. Exact solutions of buckling for simply supported thick laminates. Composite Structures,1993,24(1): 23-28.

    10Fan J. R.. Exact Theory of Laminated Thick Plates and Shells. Beijing:Science Press, 1996.

    11Leonard I. E.. The Matrix Exponential. SIAM Review, 1996,36(3):507-512.

    Exact Analytical Solution for Laminated Beams with Arbitrary Height

    GAO Rongyu1, WANG Decai2, FAN Jiarang3

    (1. School of Civil Engineering, Anhui Jianzhu University, Hefei 230601, China;

    2. College of Architecture and Art, Hefei University of Technology, Hefei 230009, China;

    3. School of Civil Engineering, Hefei University of Technology, Hefei 230009, China)

    Abstract:The approximate solution usually can only be obtained on solving the problem of statics, dynamics and buckling of laminated beams with arbitrary height. Based on the theory of elasticity and the method of state space, the state equation for isotropic laminated beam with simply supported edges is established without any assumptions about displacement models and stress distributions. Series expansion was carried out on the variables of the state equation. Using Caley-Hamilton theory, the exact closed analytical solutions are presented for statics, dynamics and buckling of laminated beams with arbitrary height. The method of calculating critical loads is improved in present. Numerical results of the example are obtained and compared with finite element method. The results show that the convergent solution can be achieved with high accuracy.

    Key words:state-space; laminated beam; arbitrary height; exact analytical solution

    中圖分類號:TU411.01

    文獻(xiàn)標(biāo)識碼:A

    文章編號:2095-8382(2015)02-007-07

    DOI:10.11921/j.issn.2095-8382.20150202

    作者簡介:高榮譽(1964-),男,教授,主要研究方向為高層大跨度結(jié)構(gòu)理論。

    收稿日期:2014-09-24

    猜你喜歡
    轉(zhuǎn)換層彈塑性
    矮塔斜拉橋彈塑性地震響應(yīng)分析
    彈塑性分析在超高層結(jié)構(gòu)設(shè)計中的應(yīng)用研究
    江西建材(2018年4期)2018-04-10 12:36:52
    梁式轉(zhuǎn)換層建筑施工技術(shù)淺探
    價值工程(2017年2期)2017-02-06 21:44:32
    高層鋼結(jié)構(gòu)轉(zhuǎn)換層桁架施工技術(shù)應(yīng)用
    卷宗(2016年10期)2017-01-21 14:17:04
    高層建筑厚板轉(zhuǎn)換層混凝土施工技術(shù)研究
    某圓端型實心橋墩動力彈塑性時程分析
    建筑結(jié)構(gòu)規(guī)范中側(cè)向剛度比的理解與應(yīng)用
    科技視界(2016年18期)2016-11-03 23:39:32
    淺論建筑結(jié)構(gòu)轉(zhuǎn)換層混凝土施工新技術(shù)
    建筑轉(zhuǎn)換層結(jié)構(gòu)的設(shè)計問題分析
    考慮變摩擦系數(shù)的輪軌系統(tǒng)滑動接觸熱彈塑性應(yīng)力分析
    日本-黄色视频高清免费观看| 亚洲av男天堂| 欧美一区二区精品小视频在线| 大话2 男鬼变身卡| 欧美日韩综合久久久久久| 国产毛片a区久久久久| 青春草视频在线免费观看| 级片在线观看| 国产 一区 欧美 日韩| 如何舔出高潮| 韩国高清视频一区二区三区| 久99久视频精品免费| 久久久久网色| 国产老妇伦熟女老妇高清| 日韩制服骚丝袜av| 亚洲精品成人久久久久久| 亚洲欧洲国产日韩| www.色视频.com| 久久久成人免费电影| 中文精品一卡2卡3卡4更新| 日韩欧美国产在线观看| 一区二区三区免费毛片| 国产中年淑女户外野战色| 欧美成人午夜免费资源| 国产淫语在线视频| .国产精品久久| 久久99精品国语久久久| 在线免费观看的www视频| 国产黄片视频在线免费观看| 中文乱码字字幕精品一区二区三区 | 热99re8久久精品国产| 国产免费又黄又爽又色| 国产视频内射| 国语对白做爰xxxⅹ性视频网站| 亚洲五月天丁香| 午夜免费激情av| 韩国av在线不卡| 国产精品伦人一区二区| 国产在线一区二区三区精 | 伊人久久精品亚洲午夜| 日本免费在线观看一区| 亚洲av日韩在线播放| 亚洲欧美精品专区久久| 国产伦精品一区二区三区视频9| 亚洲欧洲国产日韩| 成人三级黄色视频| 亚洲精品成人久久久久久| 亚洲精品亚洲一区二区| 人人妻人人澡欧美一区二区| 久久这里只有精品中国| 国产成年人精品一区二区| 久久精品综合一区二区三区| 最近视频中文字幕2019在线8| 天天躁日日操中文字幕| 99久国产av精品国产电影| 韩国高清视频一区二区三区| 亚洲av不卡在线观看| 国产精品麻豆人妻色哟哟久久 | 国产亚洲精品av在线| 亚洲国产精品合色在线| 亚洲精品成人久久久久久| 偷拍熟女少妇极品色| a级毛色黄片| 中国美白少妇内射xxxbb| 汤姆久久久久久久影院中文字幕 | 免费搜索国产男女视频| 美女cb高潮喷水在线观看| 久久久久久国产a免费观看| 丝袜喷水一区| 国产av一区在线观看免费| 国产午夜精品一二区理论片| 国产熟女欧美一区二区| 1000部很黄的大片| 少妇人妻一区二区三区视频| 日韩强制内射视频| 水蜜桃什么品种好| 国产 一区 欧美 日韩| 高清视频免费观看一区二区 | 亚洲欧美日韩东京热| 成人亚洲欧美一区二区av| 少妇被粗大猛烈的视频| 深爱激情五月婷婷| 精品无人区乱码1区二区| 国产一区有黄有色的免费视频 | 国产精品蜜桃在线观看| 国产精品蜜桃在线观看| 免费av观看视频| 久久久欧美国产精品| 国产又色又爽无遮挡免| 国产免费一级a男人的天堂| 男人舔奶头视频| 久久精品夜夜夜夜夜久久蜜豆| 久久久精品94久久精品| 亚洲欧美一区二区三区国产| 亚洲三级黄色毛片| 亚洲在久久综合| 五月伊人婷婷丁香| 日日撸夜夜添| 成人无遮挡网站| 国产老妇伦熟女老妇高清| 中文乱码字字幕精品一区二区三区 | 搡女人真爽免费视频火全软件| 亚洲一级一片aⅴ在线观看| 最近视频中文字幕2019在线8| 国产亚洲一区二区精品| 日韩,欧美,国产一区二区三区 | 亚洲精品一区蜜桃| 欧美精品一区二区大全| 久久久久久大精品| 国产91av在线免费观看| 美女脱内裤让男人舔精品视频| 亚洲国产欧美在线一区| 国产中年淑女户外野战色| 亚洲,欧美,日韩| eeuss影院久久| 少妇猛男粗大的猛烈进出视频 | 晚上一个人看的免费电影| 免费无遮挡裸体视频| 精品一区二区免费观看| 成人性生交大片免费视频hd| 国产成人freesex在线| 热99在线观看视频| 久久久久网色| 久久鲁丝午夜福利片| 国产极品天堂在线| 欧美人与善性xxx| 97热精品久久久久久| 日韩人妻高清精品专区| 午夜福利在线观看免费完整高清在| 男人舔奶头视频| 国产精品人妻久久久影院| 免费观看人在逋| 亚洲五月天丁香| 午夜爱爱视频在线播放| 国产在线一区二区三区精 | 国产免费男女视频| 亚洲av成人精品一二三区| 久久国内精品自在自线图片| 成人欧美大片| 波多野结衣高清无吗| 国产高清视频在线观看网站| 国产精品三级大全| 国产高清有码在线观看视频| 欧美高清性xxxxhd video| 精品国产一区二区三区久久久樱花 | 亚洲欧美日韩卡通动漫| 啦啦啦韩国在线观看视频| 只有这里有精品99| 最后的刺客免费高清国语| 中文字幕久久专区| 免费观看a级毛片全部| 精品久久久久久久末码| 亚洲国产日韩欧美精品在线观看| 3wmmmm亚洲av在线观看| 国产成人aa在线观看| 欧美+日韩+精品| 免费av毛片视频| 国产精品久久久久久精品电影小说 | 免费不卡的大黄色大毛片视频在线观看 | a级毛色黄片| 看十八女毛片水多多多| 国产一区二区亚洲精品在线观看| 91精品国产九色| 九九在线视频观看精品| 男女国产视频网站| 日本三级黄在线观看| 国产女主播在线喷水免费视频网站 | 成人午夜高清在线视频| 麻豆一二三区av精品| 国产 一区精品| 国模一区二区三区四区视频| 久久久久久久久久成人| 亚洲内射少妇av| 国产精品久久久久久久久免| 在线观看av片永久免费下载| 日韩高清综合在线| 亚洲性久久影院| 免费av毛片视频| 精品人妻熟女av久视频| 夫妻性生交免费视频一级片| 国产亚洲午夜精品一区二区久久 | 热99re8久久精品国产| 岛国毛片在线播放| 有码 亚洲区| 嘟嘟电影网在线观看| 亚洲中文字幕日韩| 最近中文字幕高清免费大全6| 国产色爽女视频免费观看| 2022亚洲国产成人精品| 丰满少妇做爰视频| 国产在线男女| 在线免费观看的www视频| 在线免费观看不下载黄p国产| 久久久久国产网址| 亚洲国产欧美在线一区| 中文字幕制服av| 精品熟女少妇av免费看| 精品免费久久久久久久清纯| 亚洲天堂国产精品一区在线| 欧美日韩在线观看h| 97热精品久久久久久| 国产激情偷乱视频一区二区| 99热网站在线观看| 欧美丝袜亚洲另类| 成年女人看的毛片在线观看| 国产黄色小视频在线观看| 久久久久久久久久久丰满| 边亲边吃奶的免费视频| 国产黄片视频在线免费观看| a级一级毛片免费在线观看| 中文欧美无线码| 亚洲婷婷狠狠爱综合网| 国产午夜精品论理片| 精品一区二区免费观看| 女人被狂操c到高潮| 国产精品久久久久久久电影| 国产黄片视频在线免费观看| a级一级毛片免费在线观看| 26uuu在线亚洲综合色| 亚洲av免费高清在线观看| 欧美+日韩+精品| 少妇熟女aⅴ在线视频| 日韩中字成人| 亚洲欧美一区二区三区国产| 你懂的网址亚洲精品在线观看 | 欧美日韩综合久久久久久| 男女国产视频网站| 午夜影院在线不卡| 亚洲美女视频黄频| 啦啦啦啦在线视频资源| 22中文网久久字幕| 婷婷色综合www| 亚洲在久久综合| 久久久国产一区二区| 在线亚洲精品国产二区图片欧美| 国产精品 国内视频| 王馨瑶露胸无遮挡在线观看| 亚洲,欧美精品.| 久久精品久久久久久噜噜老黄| av电影中文网址| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 欧美国产精品一级二级三级| 丁香六月天网| 最新中文字幕久久久久| 在线观看www视频免费| 日本免费在线观看一区| av卡一久久| 赤兔流量卡办理| 亚洲国产av影院在线观看| 韩国av在线不卡| 免费观看在线日韩| 嫩草影院入口| 十八禁网站网址无遮挡| 精品第一国产精品| 男人添女人高潮全过程视频| 一级毛片 在线播放| 激情视频va一区二区三区| 亚洲第一区二区三区不卡| 免费av不卡在线播放| 久久精品国产自在天天线| 国产 精品1| 国产精品一区二区在线观看99| 在线观看国产h片| 一级爰片在线观看| 七月丁香在线播放| 九九爱精品视频在线观看| 免费人妻精品一区二区三区视频| 九色亚洲精品在线播放| 最近最新中文字幕大全免费视频 | 欧美最新免费一区二区三区| 9色porny在线观看| 蜜桃在线观看..| 大码成人一级视频| 成年av动漫网址| 亚洲av中文av极速乱| 看免费av毛片| 欧美精品高潮呻吟av久久| 大香蕉久久成人网| 纵有疾风起免费观看全集完整版| 日韩中文字幕视频在线看片| 考比视频在线观看| 亚洲国产看品久久| 最近最新中文字幕大全免费视频 | 国产成人午夜福利电影在线观看| 国产色爽女视频免费观看| 欧美日韩综合久久久久久| 久久人妻熟女aⅴ| 精品一区二区免费观看| 午夜91福利影院| av在线老鸭窝| 伊人亚洲综合成人网| 亚洲情色 制服丝袜| 99热全是精品| 国产不卡av网站在线观看| 18在线观看网站| 啦啦啦中文免费视频观看日本| 纯流量卡能插随身wifi吗| 老司机影院毛片| 国产精品人妻久久久影院| 一二三四在线观看免费中文在 | 一区二区三区精品91| 最近中文字幕高清免费大全6| 国产在线一区二区三区精| 久久99一区二区三区| 搡老乐熟女国产| 熟妇人妻不卡中文字幕| 久久人妻熟女aⅴ| 国产免费一区二区三区四区乱码| 伦理电影大哥的女人| 成人漫画全彩无遮挡| 精品一品国产午夜福利视频| 国产国拍精品亚洲av在线观看| 97在线人人人人妻| 日韩不卡一区二区三区视频在线| 内地一区二区视频在线| 99热国产这里只有精品6| 成人二区视频| 一区在线观看完整版| 三级国产精品片| 一级片免费观看大全| 热99国产精品久久久久久7| 99国产综合亚洲精品| 91精品伊人久久大香线蕉| 亚洲精品美女久久av网站| 丰满迷人的少妇在线观看| 赤兔流量卡办理| 有码 亚洲区| 亚洲国产毛片av蜜桃av| 777米奇影视久久| 精品亚洲成国产av| 一本色道久久久久久精品综合| 国产爽快片一区二区三区| 成人黄色视频免费在线看| 青春草国产在线视频| 一级片免费观看大全| 色婷婷久久久亚洲欧美| 亚洲国产精品一区二区三区在线| 免费日韩欧美在线观看| 天堂中文最新版在线下载| 9191精品国产免费久久| 熟女电影av网| 国产精品熟女久久久久浪| 九九在线视频观看精品| 一本大道久久a久久精品| 老司机影院毛片| 国产精品久久久久久av不卡| 久久久久久久久久人人人人人人| 一本久久精品| 中文字幕人妻丝袜制服| 婷婷色综合www| 老司机影院毛片| 18禁在线无遮挡免费观看视频| 欧美老熟妇乱子伦牲交| 国产欧美日韩综合在线一区二区| 伦理电影免费视频| 9热在线视频观看99| 999精品在线视频| 亚洲欧美成人精品一区二区| av网站免费在线观看视频| 国产精品三级大全| 飞空精品影院首页| 色网站视频免费| 夫妻午夜视频| 欧美日韩亚洲高清精品| 在线看a的网站| 亚洲色图综合在线观看| 色视频在线一区二区三区| 乱码一卡2卡4卡精品| 亚洲一区二区三区欧美精品| 啦啦啦视频在线资源免费观看| 美女中出高潮动态图| 制服诱惑二区| 欧美国产精品va在线观看不卡| 十八禁网站网址无遮挡| 欧美精品国产亚洲| 人妻系列 视频| 欧美激情极品国产一区二区三区 | 80岁老熟妇乱子伦牲交| 丰满乱子伦码专区| 色5月婷婷丁香| 成人漫画全彩无遮挡| 色5月婷婷丁香| 综合色丁香网| 性高湖久久久久久久久免费观看| 99久久综合免费| 黑丝袜美女国产一区| 国语对白做爰xxxⅹ性视频网站| 99精国产麻豆久久婷婷| 欧美 亚洲 国产 日韩一| 中文字幕另类日韩欧美亚洲嫩草| 在现免费观看毛片| 亚洲av欧美aⅴ国产| 国产 精品1| 日韩av不卡免费在线播放| 欧美xxxx性猛交bbbb| 一级片免费观看大全| 九色亚洲精品在线播放| 日产精品乱码卡一卡2卡三| 国产乱来视频区| 两性夫妻黄色片 | 成人毛片a级毛片在线播放| 午夜激情av网站| 一级片免费观看大全| 一二三四在线观看免费中文在 | 国产精品久久久久久av不卡| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 亚洲成国产人片在线观看| 大片免费播放器 马上看| 国产午夜精品一二区理论片| 国产欧美日韩综合在线一区二区| 中文乱码字字幕精品一区二区三区| 午夜免费男女啪啪视频观看| 精品一区二区三区四区五区乱码 | 亚洲人与动物交配视频| 色网站视频免费| av在线播放精品| 亚洲精品一二三| 国产亚洲欧美精品永久| 亚洲精品一区蜜桃| 街头女战士在线观看网站| 色婷婷久久久亚洲欧美| 国产精品一区二区在线观看99| 视频中文字幕在线观看| kizo精华| 夫妻午夜视频| 日韩视频在线欧美| 中国三级夫妇交换| 高清毛片免费看| 日本av免费视频播放| 久久人人爽人人片av| 亚洲国产精品一区二区三区在线| 精品少妇久久久久久888优播| 久久狼人影院| 国产熟女午夜一区二区三区| 九九爱精品视频在线观看| 七月丁香在线播放| 久久这里有精品视频免费| 国产视频首页在线观看| 看免费成人av毛片| 亚洲综合精品二区| 91午夜精品亚洲一区二区三区| 性色av一级| 最新中文字幕久久久久| 亚洲第一av免费看| 亚洲国产精品一区三区| 国产一区二区激情短视频 | 免费黄频网站在线观看国产| 夫妻午夜视频| 亚洲精品美女久久av网站| 色视频在线一区二区三区| 一级片'在线观看视频| 男人舔女人的私密视频| av网站免费在线观看视频| 午夜老司机福利剧场| 国产成人精品福利久久| 免费大片18禁| 久久久欧美国产精品| 国产激情久久老熟女| 国产色爽女视频免费观看| 一区二区av电影网| 女的被弄到高潮叫床怎么办| 91aial.com中文字幕在线观看| 侵犯人妻中文字幕一二三四区| 边亲边吃奶的免费视频| 热99国产精品久久久久久7| 人体艺术视频欧美日本| 嫩草影院入口| 国产精品.久久久| 一区二区三区四区激情视频| 亚洲精华国产精华液的使用体验| 欧美另类一区| 亚洲精品久久成人aⅴ小说| 色哟哟·www| 午夜免费观看性视频| 久久人人爽av亚洲精品天堂| 久久久久久久久久久免费av| a级毛片黄视频| 日产精品乱码卡一卡2卡三| 精品99又大又爽又粗少妇毛片| 99久久中文字幕三级久久日本| 免费人成在线观看视频色| 青青草视频在线视频观看| 黑丝袜美女国产一区| 午夜激情av网站| av播播在线观看一区| 日日啪夜夜爽| 丰满乱子伦码专区| 女性生殖器流出的白浆| 国产精品久久久久久精品电影小说| 中文欧美无线码| 黑人巨大精品欧美一区二区蜜桃 | 国产日韩欧美亚洲二区| 伦理电影免费视频| videosex国产| 欧美精品亚洲一区二区| 精品国产乱码久久久久久小说| 亚洲欧美色中文字幕在线| 成人18禁高潮啪啪吃奶动态图| 国产白丝娇喘喷水9色精品| 国产片特级美女逼逼视频| 在线观看免费日韩欧美大片| 精品亚洲成a人片在线观看| www.熟女人妻精品国产 | av不卡在线播放| 大香蕉久久成人网| 黑人巨大精品欧美一区二区蜜桃 | 黑人巨大精品欧美一区二区蜜桃 | 亚洲成色77777| 中国国产av一级| 免费人成在线观看视频色| 国产精品国产三级国产av玫瑰| 精品亚洲乱码少妇综合久久| 菩萨蛮人人尽说江南好唐韦庄| 黑人巨大精品欧美一区二区蜜桃 | 国产爽快片一区二区三区| 欧美bdsm另类| 免费黄网站久久成人精品| 亚洲av成人精品一二三区| 亚洲伊人色综图| 女人精品久久久久毛片| 大香蕉97超碰在线| 久久99一区二区三区| 亚洲国产色片| 边亲边吃奶的免费视频| 最近2019中文字幕mv第一页| 午夜日本视频在线| 最近的中文字幕免费完整| 日韩av在线免费看完整版不卡| 国产成人欧美| 国产亚洲欧美精品永久| 岛国毛片在线播放| 97人妻天天添夜夜摸| 最新中文字幕久久久久| 两个人免费观看高清视频| 高清不卡的av网站| 男的添女的下面高潮视频| 亚洲国产成人一精品久久久| 国产成人精品婷婷| 少妇高潮的动态图| 黄色视频在线播放观看不卡| 人人妻人人澡人人看| 午夜视频国产福利| 99九九在线精品视频| 最新的欧美精品一区二区| 新久久久久国产一级毛片| 两个人看的免费小视频| 成年美女黄网站色视频大全免费| 亚洲国产欧美日韩在线播放| 国产激情久久老熟女| 看十八女毛片水多多多| 亚洲五月色婷婷综合| 亚洲av男天堂| 亚洲,欧美,日韩| 色婷婷久久久亚洲欧美| 久久精品久久久久久噜噜老黄| 成人午夜精彩视频在线观看| 成人无遮挡网站| 免费人妻精品一区二区三区视频| 又黄又爽又刺激的免费视频.| 人人妻人人添人人爽欧美一区卜| 永久网站在线| 国产成人欧美| 国产男女内射视频| 久久久久久久久久久免费av| 久久人人爽人人片av| 最近最新中文字幕免费大全7| 色5月婷婷丁香| www日本在线高清视频| 中文字幕人妻熟女乱码| 成年动漫av网址| 日日爽夜夜爽网站| 亚洲精品自拍成人| 亚洲av在线观看美女高潮| 亚洲欧洲精品一区二区精品久久久 | 亚洲 欧美一区二区三区| 欧美xxⅹ黑人| 亚洲av综合色区一区| 国产精品国产三级国产av玫瑰| 捣出白浆h1v1| 欧美精品亚洲一区二区| 亚洲av.av天堂| 国产成人一区二区在线| a级毛片黄视频| 日本wwww免费看| 人妻一区二区av| 国产片特级美女逼逼视频| 草草在线视频免费看| 国产成人午夜福利电影在线观看| 婷婷色综合www| 少妇被粗大猛烈的视频| 国产精品国产av在线观看| 亚洲欧美清纯卡通| 最黄视频免费看| 免费看不卡的av| 欧美人与性动交α欧美软件 | 免费少妇av软件| 91精品伊人久久大香线蕉| 欧美亚洲 丝袜 人妻 在线| 国产xxxxx性猛交| 嫩草影院入口| 国产精品无大码| 两个人免费观看高清视频| 国产在视频线精品| 美女主播在线视频| 国产成人午夜福利电影在线观看| 亚洲四区av| 人人妻人人澡人人看| 亚洲性久久影院| 熟女人妻精品中文字幕| 我的女老师完整版在线观看| 免费大片黄手机在线观看| 99热6这里只有精品| 亚洲国产欧美在线一区| 免费av不卡在线播放| 美女视频免费永久观看网站|