超彈性介電型EAP圓柱形驅(qū)動(dòng)器變激勵(lì)電壓下動(dòng)態(tài)響應(yīng)分析
朱銀龍1,王化明2,羅華安2, 3,周宏平1
(1. 南京林業(yè)大學(xué)機(jī)械電子工程學(xué)院,南京210037;2.南京航空航天大學(xué)機(jī)電學(xué)院,南京210016; 3.南京信息職業(yè)技術(shù)學(xué)院機(jī)電學(xué)院,南京210023)
摘要:超彈性電活性聚合物(electroactive polymer, EAP)圓柱形驅(qū)動(dòng)器的動(dòng)態(tài)特性是進(jìn)行合理設(shè)計(jì)、使用及優(yōu)化驅(qū)動(dòng)器的重要依據(jù)。結(jié)合介電型EAP機(jī)電耦合方程,構(gòu)建了驅(qū)動(dòng)器軸向線性運(yùn)動(dòng)的動(dòng)力學(xué)方程。通過計(jì)算得到驅(qū)動(dòng)器的電壓-軸向位移曲線,研究了驅(qū)動(dòng)器在準(zhǔn)靜態(tài)點(diǎn)附近的穩(wěn)定性。最后,分析了驅(qū)動(dòng)器在施加階躍和周期電壓激勵(lì)時(shí)的動(dòng)態(tài)響應(yīng)。結(jié)果表明,在有效工作范圍內(nèi)驅(qū)動(dòng)器是穩(wěn)定的,階躍電壓激勵(lì)使驅(qū)動(dòng)器在準(zhǔn)靜態(tài)點(diǎn)附近產(chǎn)生軸向振動(dòng),周期電壓使驅(qū)動(dòng)器產(chǎn)生包含自振的擬周期軸向振動(dòng)。進(jìn)一步分析表明,階躍電壓激勵(lì)更易導(dǎo)致驅(qū)動(dòng)器的電擊穿失效。
關(guān)鍵詞:超彈性 介電型EAP;圓柱形驅(qū)動(dòng)器;動(dòng)態(tài)響應(yīng)
中圖分類號(hào):TP24
文獻(xiàn)標(biāo)志碼:A
DOI:10.13465/j.cnki.jvs.2015.19.035
Abstract:The dynamic performance of a dielectric electroactive polymer (EAP) cylindrical actuator was a basis for its reasonable design, operation and optimization. Combined with the dielectric EAP electromechanical coupled equation, the dynamic equation for the axial linear movement of the actuator was deduced. The relation between the axial displacement of the cylindrical actuator and the applied voltage was obtained with the numerical solution to the dynamic equation, and the stability neigh bouring the quasi static point was analyzed. Finally, the dynamic responses of the actuator to applied step and periodic voltages were studied. The results showed that the actuator is stable in its effective working range, the sudden step voltage can cause the actuator’s axial vibration around the quasi-static position, and the periodic voltage generates its quasi-periodic axial vibration including its natural oscillation; furthermore, the sudden step voltage is easy to cause the actuator’s electric breakdown and damage.
Dynamic responses of a hyperelastic dielectric EAP cylindrial actuator under varying excitation voltage
ZHUYin-long1,WANGHua-ming2,LUOHua-an2,3,ZHOUHong-ping1(1. College of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing 210037, China;2. College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;3. College of Mechanical and Electrical Engineering, Nanjing College of Information Technology, Nanjing 210023, China)
Key words:hyperelastic; dielectric electroactive polymer (EAP); cylindrical actuator; dynamic response
由于具有彈性變形大、能量密度高及重量輕等優(yōu)點(diǎn),EAP材料在驅(qū)動(dòng)器應(yīng)用方面的研究得到了廣泛重視,并出現(xiàn)部分商業(yè)產(chǎn)品[1]。圓柱形驅(qū)動(dòng)器[2-3]由EAP膜預(yù)拉伸后卷繞而成,內(nèi)部由壓縮彈簧支撐,通過對(duì)膜兩側(cè)表面的柔性電極施加電壓,產(chǎn)生的靜電壓力使膜軸向拉應(yīng)力減小,驅(qū)動(dòng)器軸向伸長(zhǎng)。圓柱形驅(qū)動(dòng)器結(jié)構(gòu)簡(jiǎn)單、能輸出較大的位移和力,在力反饋設(shè)備、機(jī)器人手臂、仿生昆蟲等方面具有應(yīng)用前景[1-2, 4]。
靜態(tài)特性是驅(qū)動(dòng)器的基本特性,但驅(qū)動(dòng)器的工作過程本質(zhì)上是動(dòng)態(tài)的,研究其動(dòng)態(tài)特性是優(yōu)化結(jié)構(gòu)、合理應(yīng)用的重要依據(jù)。采用非線性動(dòng)力學(xué)研究超彈性薄膜動(dòng)態(tài)響應(yīng)受到研究者的關(guān)注[5-13], 任等[5-9]對(duì)超彈性薄膜的非線性動(dòng)力學(xué)問題進(jìn)行了較深入的研究,研究發(fā)現(xiàn)球殼在周期載荷下,當(dāng)施加的平均載荷超過臨界值時(shí),在球殼中心會(huì)突然生成空穴并產(chǎn)生擬周期振動(dòng)[5];圓柱殼在動(dòng)載荷作用下也存在易導(dǎo)致其破壞的臨界值,且不動(dòng)點(diǎn)與動(dòng)態(tài)響應(yīng)及運(yùn)動(dòng)性質(zhì)存在關(guān)系[6];球形薄膜在某些情形下周期振動(dòng)的振幅會(huì)出現(xiàn)“∞”型同宿軌道以及周期振動(dòng)的振幅會(huì)出現(xiàn)不連續(xù)增長(zhǎng)現(xiàn)象[7];另外,考慮到溫度場(chǎng)下熱傳導(dǎo)因素,任等還對(duì)熱超彈性圓柱殼[8]、球殼[9]的振動(dòng)、破壞及穩(wěn)定性問題進(jìn)行研究。Goncalves等[10]分析了預(yù)拉伸率對(duì)超彈性圓形膜的振動(dòng)頻率、非線性幅頻曲線、分岔圖的影響。Zhu等[11-14]分析了介電型EAP單層圓形、筒形[12]、球形膜[13]在其兩側(cè)表面施加電壓作用后動(dòng)態(tài)響應(yīng)問題,Yong還進(jìn)一步分析了膜厚度對(duì)球殼穩(wěn)定性的影響[14],在文獻(xiàn)[11]中Zhu還指出可通過改變周向固定的圓形薄膜的預(yù)拉伸率、內(nèi)側(cè)表面的壓力、施加電壓的值改變其自然頻率。
上述文獻(xiàn)僅涉及具有典型幾何結(jié)構(gòu)的單層薄膜在施加壓力載荷(或電壓)時(shí)的動(dòng)態(tài)響應(yīng)問題,但上述的圓柱形驅(qū)動(dòng)器與這些典型結(jié)構(gòu)是有區(qū)別的。為研究多層圓柱形驅(qū)動(dòng)器施加電壓后的動(dòng)態(tài)響應(yīng),本文首先提出圓柱形驅(qū)動(dòng)器的簡(jiǎn)化幾何結(jié)構(gòu),在此基礎(chǔ)上利用介電型EAP膜機(jī)電耦合方程建立了驅(qū)動(dòng)器軸向位移的動(dòng)力學(xué)方程,分析了超彈性介電型EAP驅(qū)動(dòng)器在不動(dòng)點(diǎn)處的穩(wěn)定性。最后,對(duì)驅(qū)動(dòng)器在施加階躍及周期激勵(lì)電壓時(shí)的動(dòng)態(tài)響應(yīng)問題進(jìn)行研究。
1圓柱形驅(qū)動(dòng)器的簡(jiǎn)化結(jié)構(gòu)
圓柱形驅(qū)動(dòng)器[3]是由經(jīng)過預(yù)拉伸的EAP膜在經(jīng)過預(yù)壓縮的彈簧外圈卷繞而成,在驅(qū)動(dòng)器兩端用端蓋及熱縮套管對(duì)EAP膜進(jìn)行固定,膜的兩面涂覆有柔性電極。電極涂覆區(qū)域一般稱為活動(dòng)(或主動(dòng))區(qū)域。當(dāng)在EAP膜上施加電壓時(shí),彈簧的壓縮力與EAP膜的預(yù)拉伸力平衡被破壞,驅(qū)動(dòng)器產(chǎn)生軸向伸長(zhǎng)變形。根據(jù)文獻(xiàn)[3]對(duì)圓柱形驅(qū)動(dòng)器靜態(tài)特性分析結(jié)果,在卷繞層數(shù)不多、驅(qū)動(dòng)器電壓激勵(lì)產(chǎn)生軸向變形不大的情況下,為簡(jiǎn)化分析可作如下假設(shè):
(1)驅(qū)動(dòng)器軸向伸長(zhǎng)過程中,由于周向被固定,EAP膜只發(fā)生沿其軸向及厚度方向變形,各層EAP膜變形均勻一致;
(2)忽略EAP膜卷繞后周向側(cè)邊收縮變形對(duì)軸向拉力的影響;
(3)忽略EAP膜層間壓力的影響。
于是,可將EAP圓柱形驅(qū)動(dòng)器的活動(dòng)區(qū)域簡(jiǎn)化為圖1所示結(jié)構(gòu),該結(jié)構(gòu)主要由經(jīng)過預(yù)拉伸的矩形EAP膜和預(yù)壓縮彈簧組成,D0為彈簧外徑,EAP膜活動(dòng)區(qū)域的初始幾何尺寸為L(zhǎng)1×L2×H。設(shè)在未施加電壓,驅(qū)動(dòng)器軸向力平衡時(shí)其周向及軸向預(yù)拉伸率分別為λp1和λp2。當(dāng)驅(qū)動(dòng)器EAP膜在電壓U刺激作用下軸向伸長(zhǎng)到λ2L2(λ2為EAP膜的軸向延伸率)時(shí),其周向長(zhǎng)度根據(jù)上述假設(shè)仍為L(zhǎng)1λp1,而厚度變薄為H/(λ2λp1)。根據(jù)變形關(guān)系,設(shè)EAP膜在電場(chǎng)作用下產(chǎn)生的軸向延伸率為λza,則有λ2=λp2λza。
圖1 圓柱形驅(qū)動(dòng)器結(jié)構(gòu)示意圖 Fig.1 Structure schematic of o cylindrical actuator
2驅(qū)動(dòng)器動(dòng)力學(xué)方程
假設(shè)驅(qū)動(dòng)器EAP膜材料為理想的超彈性介電型EAP[15],則可采用neo-Hookean模型來(lái)描述其非線性超彈性應(yīng)變。在電場(chǎng)作用下,EAP膜的周向應(yīng)力σ1、軸向應(yīng)力σ2、徑向應(yīng)力σ3有如下關(guān)系[12]
(1)
式中,ε=ε0εr,ε0為真空介電常數(shù),εr為EAP材料的相對(duì)介電常數(shù);λ1、λ2、λ3為圖1中驅(qū)動(dòng)器EAP膜的周向、軸向和徑向延伸率,且λ1=λp1、λ3=1/λ1/λ2;E=λ1λ2U/H為電場(chǎng)強(qiáng)度;μ為材料的剪切模量。
當(dāng)忽略驅(qū)動(dòng)器卷繞層之間的壓力時(shí),可得邊界條件σ3=0。根據(jù)式(1)可求得σ1和σ2,并可求得在電壓激勵(lì)作用下,EAP膜軸向彈性力Fela為
Fela=σ2L1H/(λp2λza)
(2)
圓柱形驅(qū)動(dòng)器采用軸向預(yù)壓縮的壓縮彈簧提供預(yù)載荷。假設(shè)彈簧為線性恒剛度彈簧,則其軸向彈性回復(fù)力Fs為
Fs=Fp-kspringλp2L2(λza-1)
(3)
式中,kspring為彈簧剛度;Fp為彈簧預(yù)壓縮力。
驅(qū)動(dòng)器未通電時(shí),EAP膜的軸向彈性力Fela與Fp相等,即式(2)中當(dāng)U=0,λza=1時(shí)Fela的值,故實(shí)際計(jì)算Fp時(shí)也可按下式確定
(4)
施加電壓后驅(qū)動(dòng)器伸長(zhǎng)實(shí)際上是壓縮彈簧克服EAP膜的彈性阻力而發(fā)生軸向位移的過程。根據(jù)牛頓第二定律,其軸向位移的動(dòng)力學(xué)方程為
Fs-Fela=kmFm
(5)
式中,F(xiàn)m為膜活動(dòng)部分(即涂覆電極部分)質(zhì)量慣性力;km為折算系數(shù),主要考慮彈簧、固定端蓋及膜的非驅(qū)動(dòng)部分等附加質(zhì)量引起的慣性力。驅(qū)動(dòng)器活動(dòng)部分薄膜的慣性力
(6)
式中,me=2ρL1L2H為活動(dòng)部分(雙層)膜的質(zhì)量。于是,驅(qū)動(dòng)器軸向運(yùn)動(dòng)方程可簡(jiǎn)化
(7)
(8)
3驅(qū)動(dòng)器空載時(shí)準(zhǔn)靜態(tài)平衡位置分析
表1 圓柱形驅(qū)動(dòng)器參數(shù)值
注:剪切模量μ由等軸拉伸試驗(yàn)[16]數(shù)據(jù)擬合獲得
圖2 驅(qū)動(dòng)器準(zhǔn)靜態(tài)電壓-位移曲線 Fig.2 Quasi-static curve of voltage and displacement for actuator
(9)
表2 Jacobi矩陣的值
4驅(qū)動(dòng)器的動(dòng)態(tài)響應(yīng)
圓柱形驅(qū)動(dòng)器施加電壓后的軸向伸長(zhǎng)是一個(gè)動(dòng)態(tài)過程,本文仍以表1所列參數(shù)為例來(lái)分析超彈性EAP圓柱形驅(qū)動(dòng)器在施加階躍及周期電壓激勵(lì)時(shí)的動(dòng)態(tài)響應(yīng)。
4.1施加階躍電壓時(shí)的動(dòng)態(tài)響應(yīng)
(10)
圖中計(jì)算得到的λza-υλ曲線為封閉“橢圓形”曲線,準(zhǔn)靜態(tài)平衡點(diǎn)為其中心。于是,可認(rèn)為基于上述理想的幾何模型,當(dāng)在圓柱形驅(qū)動(dòng)器EAP膜上施加階躍電壓時(shí),驅(qū)動(dòng)器會(huì)產(chǎn)生繞其準(zhǔn)靜態(tài)平衡點(diǎn)的軸向周期振動(dòng);進(jìn)一步分析可知,激勵(lì)電壓越高其軸向伸長(zhǎng)率及伸長(zhǎng)速率越大。對(duì)照?qǐng)D3(a)及3(b),附加質(zhì)量會(huì)減小驅(qū)動(dòng)器最大伸長(zhǎng)速率,但對(duì)軸向伸長(zhǎng)率幅度無(wú)影響。由于采用可變預(yù)載荷,驅(qū)動(dòng)器雖沒有發(fā)生失穩(wěn)現(xiàn)象,但振幅會(huì)使EAP膜的最大工作電場(chǎng)超過其電擊穿強(qiáng)度。因此,考慮到EAP膜的電擊穿,實(shí)際驅(qū)動(dòng)器的最大工作電壓比準(zhǔn)靜態(tài)計(jì)算得到的最大工作電壓要低。
圖3 驅(qū)動(dòng)器軸向位移運(yùn)動(dòng)相圖 Fig.3 Phase diagram for axial displacement of actuator
4.2施加周期電壓時(shí)的動(dòng)態(tài)響應(yīng)
圖4 U 1=3 kV, U 2=1 kV時(shí)驅(qū)動(dòng)器軸向位移時(shí)程曲線 Fig.4 Axial displacement time history curve of actuator (U 1=3 kV, U 2=1 kV)
研究當(dāng)施加形如U(t)=U1+U2sin(ωt)的周期電壓時(shí)驅(qū)動(dòng)器的軸向位移動(dòng)態(tài)響應(yīng),可對(duì)上式采用Runge-Kutta法進(jìn)行數(shù)值積分,U1、U2分別為周期電壓的直流電壓分量及正弦電壓分量的幅值。圖4、圖5分別列出了當(dāng)周期激勵(lì)電壓的最大幅值相同(即U1、U2之和相同)情況下,ω=0.1π及ω=10π時(shí),驅(qū)動(dòng)器軸向位移的時(shí)程曲線。
圖5 U 1=2 kV, U 2=2 kV時(shí)驅(qū)動(dòng)器軸向位移時(shí)程曲線 Fig.5 Axial displacement time history curve of actuator (U 1=2 kV, U 2=2 kV)
由圖可知,在施加周期電壓時(shí),驅(qū)動(dòng)器的軸向位移運(yùn)動(dòng)是擬周期振動(dòng),可認(rèn)為是由自振和強(qiáng)迫振動(dòng)疊加而成。附加質(zhì)量影響自振頻率,強(qiáng)迫振動(dòng)頻率取決于周期電壓的頻率ω。由于自振的存在,驅(qū)動(dòng)器軸向振動(dòng)時(shí),膜的最大延伸率會(huì)超過其相應(yīng)恒值直流電壓激勵(lì)產(chǎn)生的變形;同時(shí),當(dāng)周期激勵(lì)電壓的瞬時(shí)電壓為(或接近)0V時(shí),EAP膜最小延伸率會(huì)小于1(λza<1)。
通過計(jì)算可知,驅(qū)動(dòng)器軸向位移幅度主要受U1、U2值的影響。雖然U1、U2之和相同(4 kV),但直流分量U1越大則驅(qū)動(dòng)器的軸向位移幅度越大,越易導(dǎo)致膜電擊穿。當(dāng)U1= 3kV、U2=1 kV時(shí),其最大軸向伸長(zhǎng)λza可達(dá)1.76;而當(dāng)U1=2 kV、U2=2 kV時(shí),膜的最大軸向延伸率λza只有1.61,比上述小10%左右。另外,從圖5可知,當(dāng)周期電壓波谷值接近0 V時(shí),驅(qū)動(dòng)器軸向擬周期振動(dòng)呈現(xiàn)波谷平坦,而波峰尖銳的特征,這對(duì)避免EAP膜的電擊穿是有利的。
因此,從電擊穿角度來(lái)講,突加恒值激勵(lì)電壓易使驅(qū)動(dòng)器發(fā)生電擊穿失效。一般來(lái)講,黏性會(huì)對(duì)振動(dòng)有一定的抑制作用,為方便分析,上述論述中采用具有黏性的VHB4910膜作為超彈性EAP材料的參數(shù)進(jìn)行理論計(jì)算,這在具有分析時(shí)需引起注意。
5結(jié)論
本文通過構(gòu)建超彈性EAP圓柱形驅(qū)動(dòng)器的動(dòng)力學(xué)方程,分析了其在準(zhǔn)靜態(tài)平衡點(diǎn)附近的穩(wěn)定性問題,并對(duì)其動(dòng)態(tài)響應(yīng)進(jìn)行研究,得到如下結(jié)論:
(1) 由于圓柱形驅(qū)動(dòng)器采用變載荷的預(yù)加載形式,施加電壓后驅(qū)動(dòng)器不會(huì)發(fā)生機(jī)電失穩(wěn),但EAP膜的電擊穿失效會(huì)限制其電壓許用范圍。
(2) 驅(qū)動(dòng)器的附加質(zhì)量主要影響其最大伸長(zhǎng)速率及自振頻率,在一定伸長(zhǎng)范圍內(nèi)不影響驅(qū)動(dòng)器的穩(wěn)定性,對(duì)其軸向位移幅值影響也不明顯。
(3) 施加形如U(t)=U1+U2sinωt的周期激勵(lì)電壓,在U1、U2之和相同時(shí),其直流分量(U1)越大,驅(qū)動(dòng)器軸向振動(dòng)最大幅值也越大;增加其交流分量幅值U2,會(huì)產(chǎn)生波谷平坦的非對(duì)稱擬周期振動(dòng),在瞬時(shí)電壓0 V附近出現(xiàn)λza<1。
(4)相對(duì)于周期電壓,階躍電壓激勵(lì)更易導(dǎo)致驅(qū)動(dòng)器EAP膜的電擊穿失效。
參考文獻(xiàn)
[1]Carpi F, De Rossi D, Kornbluh R, et al. Dielectric elastomers as electromechanical transducers[M]. Amsterdam: Elsevier, 2008.
[2]Kovacs G, Lochmatter P, Wissler M. An arm wrestling robot driven by dielectric elastomer actuators[J]. Smart Structures and Materials, 2007, 16(2): 306-317.
[3]羅華安, 王化明, 游有鵬. 介電彈性體圓柱形驅(qū)動(dòng)器靜態(tài)特性分析[J].農(nóng)業(yè)機(jī)械學(xué)報(bào), 2012,43(9): 202-208.
LUO Hua-an, WANG Hua-ming,YOU You-peng. Static characteristic of dielectric elastomer cylindrical actuator[J]. Transactions of the Chinese Society for Agricultural Machinery, 2012,43(9): 202-208.
[4]Zhang Rui, Kunz Andreas, Lochmatter P, et al. Dielectric elastomer spring roll actuators for a portable force feedback device[C] // 14th Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, Virginia, USA: IEEE Computer Society, 2006: 347-353.
[5]任九生, 沈佳鋮, 袁學(xué)剛. 周期載荷下不可壓超彈性材料的空穴動(dòng)生成[J]. 振動(dòng)與沖擊, 2012,31(18):10-13.
REN Jiu-sheng, SHEN Jia-cheng, YUAN Xue-gang. Dynamical Cavitation for an incompressible hyper-elastic material sphere under periodic load[J].Journal of Vibration and Shock, 2012,31(18):10-13.
[6]Ren Jiu-sheng. Dynamical response of hyper-elastic cylindrical shells under periodic load[J]. Applied Mathematics and Mechanics, 2008, 29(10): 1319-1327.
[7]袁學(xué)剛,張洪武,任九生,等. 動(dòng)載荷下不可壓縮超彈性球形薄膜的若干定性性質(zhì)[J]. 應(yīng)用數(shù)學(xué)和力學(xué),2010, 31(7):860-867.
YUAN Xue-gang, ZHANG Hong-wu, REN Jiu-sheng, et al. Some qualitative properties of incompressive hyperelastic spherical membranes under dynamic loads[J].Applied Mathematics and Mechanics, 2010, 31 (7): 860-867.
[8]任九生. 熱超彈性圓柱殼的振動(dòng)與破壞[J]. 振動(dòng)與沖擊, 2008,27(12):36-39.
REN Jiu-sheng.Finite oscillation and destruction of thermo-hyperelastic cylindrical shells[J].Journal of Vibration and Shock,2008,27(12):36-39.
[9]任九生, 程昌鈞. 受內(nèi)壓熱超彈性球殼的不穩(wěn)定性[J]. 上海大學(xué)學(xué)報(bào):自然科學(xué)版,2007,13(6):732-735.
REN Jiu-sheng, CHENG Chang-jun. Instability of inflated incompressible thermo-hyperelastic spherical shells[J]. Journal of Shanghai University:Natural Science, 2007, 13(6): 732-735.
[10]Goncalves P B, Soares R M, Pamplona D. Nonlinear vibrations of a radially stretched circular hyperelastic membrane[J]. Journal of Sound and Vibration,2009,327(1/2):231-248.
[11]Zhu Jian, Cai Sheng-qiang, Suo Zhi-gang. Resonant behavior of a membrane of a dielectric elastomer[J]. International Journal of Solids and Structures, 2010,47: 3254-3262.
[12]Zhu J, Stoyanov H, Kofod G, et al. Large deformation and electromechanical instability of a dielectric elastomer tube actuator[J]. Journal of Applied Physics, 2010,108:074113.
[13]Zhu Jian, Cai Sheng-qiang, Suo Zhi-gang. Nonlinear oscillation of a dielectric elastomer balloon[J]. Polym Int, 2010, 59: 378-383.
[14]Yong Hua-dong, He Xin-zhen, Zhou You-he. Dynamics of a thick-walled dielectric elastomer spherical shell[J]. International Journal of Engineering Science, 2011,49:792- 800.
[15]Zhao Xuan-he, Wei Hong, Suo Zhi-gang. Electromechanical coexistent states and hysteresis in dielectric elastomers[J]. Physical Review B, 2007, 76: 134113.
[16]羅華安,王化明, 游有鵬,等.超彈性膜的等軸拉伸試驗(yàn)方法及仿真[J]. 華南理工大學(xué)學(xué)報(bào):自然科學(xué)版, 2011,39(4):56-61.
LUO Hua-an, WANG Hua-ming, YOU You-peng, et al. Experimental methods of equiaxial tension of hyperelastic membrane and corresponding simulations[J]. Journal of South China University of Technology:Natural science edition, 2011, 39(4): 56-61.
[17]Medhat A, Besada A. Developing spring-roll dielectric elastomer actuator system based on optimal design parameters[J/OL]. IJCSI International Journal of Computer Science Issues,2011, 5(8), No 2, ISSN: 1694-0814. http://www.IJCSI.org.