一類具三點(diǎn)邊值問(wèn)題的分?jǐn)?shù)階微分方程正解的存在性
劉小剛1,劉慧敏2
(1.西北大學(xué) 現(xiàn)代學(xué)院,西安 710130; 2.鄭州成功財(cái)經(jīng)學(xué)院 共同學(xué)科部,鄭州 451200)
摘要:討論了一類具三點(diǎn)邊值問(wèn)題的分?jǐn)?shù)階微分方程正解的存在性,給出解的存在性條件,并運(yùn)用Schauder不動(dòng)點(diǎn)定理進(jìn)行討論,推廣已有的某些結(jié)論.
關(guān)鍵詞:分?jǐn)?shù)階微分方程;邊值問(wèn)題;正解;不動(dòng)點(diǎn)定理;格林函數(shù)
中圖分類號(hào):O175.8文獻(xiàn)標(biāo)志碼:A
文章編號(hào):1008-5564(2015)03-0031-04
收稿日期:2015-04-08
基金項(xiàng)目:西安財(cái)經(jīng)學(xué)院科研
作者簡(jiǎn)介:郭妞萍(1978—),女,山西永濟(jì)人,西安財(cái)經(jīng)學(xué)院統(tǒng)計(jì)學(xué)院講師,碩士,主要從事數(shù)值分析研究.
ExistenceofPositiveSolutionsofFractionalDifferentialEquationsforAClassofThree-pointBoundaryValueProblems
LIUXiao-gang1,LIU Hui-min2
(1.SchoolofModern,NorthwestUniversity,Xi’an710130,China; 2.DepartmentofGeneralSubjects,
ZhengzhouChenggongUniversityofFinanceandEconomics,Zhengzhou451200,China)
Abstract:In this paper, the existence of positive solutions of fractional differential equations for a class of three-point boundary value problems was discussed and the existence conditions of solutions were given. The Schauder fixed-point theorem was used to promote some existing conclusions.
Keywords:fractionaldifferentialequations;boundaryvalueproblem;positivesolution;theSchauderfixed-pointtheorem;Greenfunction.
近年來(lái),分?jǐn)?shù)階微分方程在工程、科技、圖像處理以及非線性動(dòng)力系統(tǒng)等眾多領(lǐng)域都有重要應(yīng)用,其研究受到越來(lái)越多的關(guān)注,特別是分?jǐn)?shù)階微分方程邊值問(wèn)題引起了廣泛的研究,一些相關(guān)專著已經(jīng)出版.[1-2]
趙霞在文獻(xiàn)[3]中利用不動(dòng)點(diǎn)定理,給出了非線性分?jǐn)?shù)階微分方程邊值問(wèn)題
(1)
正解的存在性,1<α2,0<β1,0γ1,Dα是標(biāo)準(zhǔn)的Riemann-Liouville型分?jǐn)?shù)階微分.
受到此文獻(xiàn)的啟發(fā),本文研究下面一類具三點(diǎn)邊值問(wèn)題分?jǐn)?shù)階微分方程正解的存在性:
(2)
2<α3, 0<β1,0<ξ1,Dα,DβCaputo均為Caputo微分.利用不動(dòng)點(diǎn)定理,得到了邊值問(wèn)題(2)至少具有一個(gè)正解的存在性條件.
1預(yù)備知識(shí)和引理
參考文獻(xiàn)Caputo型分?jǐn)?shù)階微分的定義見(jiàn)[3].
引理2[4](Banach 壓縮映射原理) 設(shè)U是Banach空間X的有界閉子集,如果T:U→U滿足?0 引理4[5]設(shè)函數(shù)g∈L[0,1],則邊值問(wèn)題 其中: 證明對(duì)方程(2)兩邊同時(shí)進(jìn)行α階積分,根據(jù)邊界條件很容易得到. 引理5函數(shù)G(t,s)具有以下性質(zhì): (1)G(t,s)∈C([0,1]×[0,1]); (2)對(duì)任意的t,s∈[0,1],有G(t,s)>0成立. 2主要結(jié)果 在證明主要結(jié)論前,首先給出下列假設(shè): (H1)f:[0,1]×[0,+)×[0,+)→[0,+)關(guān)于t∈[0,1]是勒貝格可測(cè)的; (H2)f:[0,1]×[0,+)×[0,+)→[0,+)關(guān)于x∈[0,)是連續(xù)的; (H3)存在非負(fù)實(shí)值函數(shù)m(t)∈C([0,1],[0,)),使得; 下面給出本文的主要結(jié)果: 定理1設(shè)(1-ξ1-β)(2-β)Γ(α)>2Γ(α)(1-ξ2-β)+2Γ(α-2)(2-β)(1-ξ1-β), 則邊值問(wèn)題(2)的解x≥0. 所以函數(shù)x(t)在[0,1]是凹函數(shù).又因?yàn)閤(0)=0,并且 f(s,x(s)Dβx(s))ds≥0.因此,邊值問(wèn)題(2)的解x≥0. 定理2如果(H1),(H2),(H4)成立,并且0<κ<1, 接著證明算子T在E中將一個(gè)有界集映射成有界集.取Ω?H是一個(gè)有界集,?x∈Ω,結(jié)合條件(H4)有 (3) (4) 因?yàn)?/p> (5) 所以算子Tx將一個(gè)有界集映射成有界集. 最后證明算子Tx是等度連續(xù)集.對(duì)任意的x∈H,0 (6) (7) 綜上所述,根據(jù)Ascoli-Arzela定理可知,T是全連續(xù)算的. 因此,根據(jù)引理2,T至少存在一個(gè)正解. 證明對(duì)任意的x,y∈H,t∈[0,1],有 (8) (9) 下證λ=1不是算子L的特征值.事實(shí) 所以,‖x‖=‖Lx‖ 根據(jù)條件(H5),?ε>0,存在充分大的N>0,使得對(duì)任意的t∈[0,1],有 (10) (11) 根據(jù)引理3,算子T存在一個(gè)不動(dòng)點(diǎn). [參考文獻(xiàn)] [1]CABADAA,WANGGT.Positivesolutionsofnonlinearfractionaldifferentialequationswithintegralboundaryvalueconditions[J].JournalofMathmaticalAnalysisandApplications,2012,389(1):403-411. [2]ZHANGYing-han,BAIZhang-bing.Existenceofsolutionsfornonlinearthree-pointboundaryvalueproblematreso-nance[J].JApplMathComput,2011,36(1/2):417-440. [3]趙霞,劉洋,胡衛(wèi)敏.分?jǐn)?shù)階微分方程三點(diǎn)邊值問(wèn)題正解的存在性和唯一性[J].伊犁師范學(xué)院學(xué)報(bào):自然科學(xué)版,2013(1):1-4. [4]ZEIDLERE.Nonlinearfunctionalanalysisanitsapplication-I:Fixed-pointtheorems[M].Springer:NewYork,NY,USA,1986. [5]ZHANGS.Positivesolutionsforboundaryvalueproblemofnonlinearfractionaldifferentialequations[J].ElectronJDifferEqu.,2006,36:1-12. [6]SAMKOSG,KILBASAA,MARICHEVOI.Fractionalintegralsandderivatives[M].GordonandBreach,Amsterdam,1993. [責(zé)任編輯王新奇] Vol.18No.3Jul.2015