第一作者楊青樂男,碩士,1990年7月生
通信作者肖云魁男,博士,教授,博士生導(dǎo)師,1956年9月生
Teager能量算子增強(qiáng)倒階次譜提取軸承微弱故障特征
楊青樂1,梅檢民1,肖靜2,張玲玲1,肖云魁1
(1.軍事交通學(xué)院軍用車輛系,天津300161; 2.軍事交通學(xué)院圖書館,天津 300161)
摘要:針對(duì)變速器加速過程下軸承故障特征易于暴露難以提取問題,提出一種Teager能量算子增強(qiáng)倒階次譜方法。計(jì)算加速過程等角度重采樣信號(hào)的Teager能量算子,對(duì)Teager能量算子輸出進(jìn)行倒譜分析,獲得Teager能量算子增強(qiáng)倒階次譜。對(duì)加速過程滾動(dòng)軸承外圈、內(nèi)圈剝落故障信號(hào)進(jìn)行分析,結(jié)果表明,Teager能量算子能有效增強(qiáng)沖擊成分,抑制非沖擊成分;倒階次譜能從干擾中準(zhǔn)確識(shí)別被增強(qiáng)的故障沖擊特征,提取軸承微弱故障特征。
關(guān)鍵詞:Teager能量算子;倒階次譜;滾動(dòng)軸承;故障診斷
收稿日期:2014-01-28修改稿收到日期:2014-04-13
中圖分類號(hào):TH165+.3文獻(xiàn)標(biāo)志碼:A
基金項(xiàng)目:國(guó)家自然科學(xué)基金(U1434203, 51377136,51407147);中國(guó)鐵路總公司科技研究開發(fā)計(jì)劃(2013J010-B)
Weak fault feature extraction for bearings based on an order cepstrum enhanced with Teager energy operator
YANGQing-le1,MEIJian-min1,XIAOJing2,ZHANGLing-ling1,XIAOYun-kui1(1. Department of Military Automobile,Military Transportation University,Tianjin 300161, China;2.The Library of Military Transportation University,Tianjin 300161, China)
Abstract:Bearing’s fault features are easy to be exposed and difficult to be extracted during acceleration of a gearbox. In order to solve this problem, an order cepstrum enhanced with Teager energy operator was presented. Firstly, Teager energy operator of a signal during acceleration resampled with even angle-interval was calculated. Then, the output of Teager energy operator was analyzed with the order cepstrum method, the order cepstrum enhanced with Teager energy operator was obtained. The signals of exfoliation faults of outside and inside rings of a rolling bearing during acceleration were analyzed. The results showed that Teager energy operator can be used to effectively enhance impulse components and restrain non-impulse components; the order cepstrum can be used to identify fault impact features from interferences accurately and extract the weak fault features of the bearing.
Key words:Teager energy operator; order cepstrum; rolling bearing; fault diagnosis
變速器滾動(dòng)軸承內(nèi)、外圈發(fā)生局部(剝落、腐蝕等)故障時(shí)振動(dòng)信號(hào)中會(huì)出現(xiàn)周期性沖擊成分,軸承早期故障周期沖擊振動(dòng)時(shí)間短、時(shí)域能量微弱、頻域帶寬較寬,不易檢測(cè)及提取。變速器變轉(zhuǎn)速過程更能突出故障特征,但其它干擾及噪聲背景更強(qiáng),更難提取微弱特征。為有效提取軸承早期故障微弱特征,亟需探索有效的特征提取方法。
解調(diào)是軸承故障特征提取中應(yīng)用較多的方法,通常需確定共振頻帶,且僅對(duì)信噪比較高的信號(hào)效果較好[1-2]。Teager能量算子(Teager Energy Operator,TEO)為非線性算子,能增強(qiáng)信號(hào)的瞬態(tài)特征,適合檢測(cè)信號(hào)中沖擊成分[3-7]。針對(duì)解調(diào)方法的局限性,文獻(xiàn)[8]利用Teager能量譜增強(qiáng)瞬態(tài)沖擊并提取軸承故障特征,有較強(qiáng)的抗噪能力,但不能分析多調(diào)制分量信號(hào)。倒階次譜是對(duì)角域重采樣后的振動(dòng)信號(hào)進(jìn)行倒譜分析,能有效識(shí)別多分量信號(hào)階比譜中難以辨識(shí)的周期特征,是一種非常有效的軸承故障診斷方法[9],但信噪比較低時(shí)效果不理想。
為有效提取軸承早期故障微弱沖擊特征,提出一種Teager能量算子增強(qiáng)倒階次譜,用Teager能量算子分析等角度重采樣信號(hào),增強(qiáng)沖擊特征,抑制非沖擊干擾;對(duì)Teager能量輸出進(jìn)行倒階次譜分析,從干擾中識(shí)別被增強(qiáng)的故障周期特征。變速器變轉(zhuǎn)速過程振動(dòng)信號(hào)的分析結(jié)果表明,Teager能量算子增強(qiáng)倒階次譜,能有效提取軸承內(nèi)、外圈早期故障微弱特征。
1Teager能量算子增強(qiáng)倒階次譜原理
1.1Teager能量算子
Teager能量算子由Teager[10]在研究非線性語音建模時(shí)提出的簡(jiǎn)單信號(hào)分析算法,記作φ,設(shè)有信號(hào)x(t),則有
(1)
設(shè)由質(zhì)量塊m及剛度為k彈簧組成的線性無阻尼振動(dòng)系統(tǒng)運(yùn)動(dòng)方程為
x(t)=Acos(ωt+φ)
(2)
式中:x(t)為質(zhì)量塊相對(duì)平衡位置位移;A為振動(dòng)幅值;ω=(k/m)1/2為固有(圓)頻率;φ為初始相位。
在任意時(shí)刻,該簡(jiǎn)諧振動(dòng)系統(tǒng)瞬時(shí)總能量為
(3)
將式(2)中的x(t)代入式(1)得
ψ[x(t)]=ψ[Acos(ωt+φ)]=A2ω2
(4)
對(duì)比式(3)、(4)可見,Teager能量算子輸出及簡(jiǎn)諧振動(dòng)瞬時(shí)總能量間只差常數(shù)m/2,因此它能跟蹤產(chǎn)生簡(jiǎn)諧振動(dòng)所需總能量。
傳統(tǒng)意義的信號(hào)能量定義為信號(hào)幅值的平方,若沖擊幅值較小,則沖擊成分可能被淹沒。Teager能量算子輸出為振動(dòng)瞬時(shí)幅值與瞬時(shí)頻率平方之積,相對(duì)傳統(tǒng)能量定義,增加了與頻率平方的乘積。由于瞬態(tài)沖擊的振動(dòng)頻率較高,因此Teager能量算子輸出能有效增強(qiáng)瞬態(tài)沖擊成分。
1.2倒階次譜
倒譜具有解卷積作用,可分離、提取原信號(hào)及傳輸系統(tǒng)特性,能將頻譜圖上成簇的邊頻帶譜線簡(jiǎn)化為單根譜線,可檢測(cè)出功率譜中難以辨識(shí)的周期性[11],倒階次譜可對(duì)角域重采樣后的振動(dòng)信號(hào)進(jìn)行倒譜分析。設(shè)角域里振動(dòng)信號(hào)x(θ)的功率譜為Sx(Xn),則倒階次譜Cx(ω)為
Cx(ω)=F-1[logSx(Xn)]
(5)
采用倒階次譜主要有兩個(gè)優(yōu)點(diǎn),即能在輸出信號(hào)中將信號(hào)源輸入效應(yīng)及傳遞通道效應(yīng)分開,便于查找故障源;能將階次譜中的周期分量簡(jiǎn)化成單根譜線,易識(shí)別。
1.3Teager能量算子增強(qiáng)倒階次譜
變速器加速過程中,滾動(dòng)軸承的振動(dòng)沖擊更加明顯,但噪聲及其它分量影響亦較強(qiáng),直接進(jìn)行倒階次譜分析難以提取軸承故障引起的沖擊特征。為有效提取故障特征,提出Teager能量算子增強(qiáng)倒階次譜方法,即①對(duì)變速器加速振動(dòng)信號(hào)進(jìn)行等角度重采樣,得到角域信號(hào)x(θ);②計(jì)算角域信號(hào)的Teager能量算子ψ[x(θ)];③對(duì)Teager能量算子增強(qiáng)后信號(hào)ψ[x(θ)]進(jìn)行倒譜計(jì)算,得到Teager能量算子增強(qiáng)倒階次譜Cx(ω)。
Teager能量算子只對(duì)沖擊信號(hào)增強(qiáng)效果明顯,能有效增強(qiáng)沖擊成分,抑制非沖擊成分;倒階次譜通過解卷積能抑制噪聲,在Teager能量算子增強(qiáng)基礎(chǔ)上,可有效從干擾中識(shí)別出被增強(qiáng)的故障周期特征。因此,Teager能量算子增強(qiáng)倒階次譜方法理論上既能有效增強(qiáng)故障引起的微弱沖擊,又能抑制非沖擊干擾和噪聲,從而有效提取滾動(dòng)軸承早期故障的微弱故障特征。
2診斷實(shí)例
試驗(yàn)裝置示意圖見圖1。采用電動(dòng)機(jī)模擬發(fā)動(dòng)機(jī)驅(qū)動(dòng)變速器,用變速器驅(qū)動(dòng)發(fā)電機(jī)模擬負(fù)載,通過基于PXI的數(shù)據(jù)采集模塊采集轉(zhuǎn)速及振動(dòng)信號(hào)。變速器型號(hào)為BJ2020S,傳動(dòng)示意圖見圖2。將8路601A01型振動(dòng)加速度傳感器布置在各軸承座徑向殼體易安裝位置,見圖3。轉(zhuǎn)速傳感器安裝于輸入軸。調(diào)節(jié)負(fù)載勵(lì)磁電壓為200 V模擬負(fù)載工況,采集變速器置二檔時(shí)的輸入軸轉(zhuǎn)速及振動(dòng)信號(hào),采樣頻率40 kHz,采樣點(diǎn)數(shù)65 536。
圖1 變速器試驗(yàn)裝置 Fig.1 Experimental setup of gearbox
圖2 BJ2020S變速器傳動(dòng)示意圖 Fig.2 Drive sketch map of BJ2020S gearbox
圖3 振動(dòng)傳感器分布 Fig.3 Distribution of vibration sensors
故障軸承安裝在輸出軸輸出端,見圖3。在不影響變速器正常運(yùn)轉(zhuǎn)情況下利用電火花在輸出軸承50307E外圈加工長(zhǎng)寬深1.5 mm×1.5 mm×0.5 mm點(diǎn)狀缺陷模擬剝落故障;在輸出軸承6 307 N內(nèi)圈加工長(zhǎng)寬深1.5 mm×1.5 mm×0.5 mm點(diǎn)狀缺陷模擬剝落故障。為減少安裝所致誤差,更換軸承時(shí)保持其它條件不變;更換后變速器走合10 min再進(jìn)行變速器振動(dòng)信號(hào)采集。
2.1軸承外圈剝落故障診斷實(shí)例
圖4 外圈故障轉(zhuǎn)速及振動(dòng)信號(hào) Fig.4 The rotate signal and vibration signal ofoutside exfoliation
圖5(a)為角域重采樣后的振動(dòng)信號(hào)。橫坐標(biāo)由時(shí)域時(shí)間轉(zhuǎn)化為角域弧度,縱坐標(biāo)為振動(dòng)信號(hào)加速度幅值。由于軸承元件故障引起高頻共振,因此對(duì)角域信號(hào)進(jìn)行250~280階次的帶通濾波預(yù)處理,消除齒輪嚙合低頻振動(dòng)成分影響。圖5(b)為角域信號(hào)倒階次譜圖。圖中無明顯的故障特征倒階次峰值,僅有957°,1 274°處對(duì)應(yīng)3,4倍的軸承外圈故障倒階次,且峰值不突出,無法判斷軸承存在故障。說明加速過程中在其它分量、噪聲干擾下直接進(jìn)行倒階次譜分析難以提取被干擾淹沒的外圈故障特征。
圖5 外圈故障角域重采樣信號(hào)及倒階次譜 Fig.5 Outside exfoliation signal resampled by even angle-interval and order cepstrum
圖6(a)為角域信號(hào)進(jìn)行Teager能量算子分析后的倒階次譜圖。圖中318°,637°,956°,1 275°,1 598°,1 911°處存在明顯峰值,分別對(duì)應(yīng)1~6倍軸承外圈故障倒階次。對(duì)比圖5(b)看出,經(jīng)Teager能量算子增強(qiáng)沖擊特征后,再采用倒階次譜從干擾中識(shí)別被增強(qiáng)的故障特征周期成分,能提取軸承外圈故障微弱特征。圖6(b)、(c)分別為同一信號(hào)帶通濾波后階次包絡(luò)譜及Teager能量譜。階次包絡(luò)譜中周期性峰值不明顯,僅在4.48及9階次處較突出,分別對(duì)應(yīng)4、8倍的外圈故障階次,無法判斷軸承外圈存在故障;Teager能量譜中在1~5,7~10倍外圈故障階次處出現(xiàn)峰值,周期性更加明顯,可判斷軸承外圈存在故障。對(duì)比圖6(a)知故障特征不太明顯直觀。
圖6 外圈故障信號(hào)分析結(jié)果 Fig.6 Analysis results of outside exfoliation signal
用本文方法對(duì)同型號(hào)正常軸承的加速振動(dòng)信號(hào)進(jìn)行分析,結(jié)果見圖7。圖7中未出現(xiàn)軸承外圈故障特征倒階次,與實(shí)際情況相符,從而表明本文方法的正確性。
圖7 正常軸承信號(hào)的Teager能量算子增強(qiáng)倒階次譜 Fig.7 order cepstrum enhanced by Teager energy operator ofnormal bearing signal
2.2軸承內(nèi)圈剝落故障診斷實(shí)例
圖8 軸承內(nèi)圈故障時(shí)轉(zhuǎn)速及振動(dòng)信號(hào) Fig.8 The rotate signal and vibration signal of inside exfoliation
圖9(a)為角域重采樣后振動(dòng)信號(hào)。對(duì)角域信號(hào)進(jìn)行250~280階次帶通濾波預(yù)處理,消除齒輪嚙合低頻振動(dòng)成分的影響。圖9(b)為角域信號(hào)倒階次譜圖,圖中無明顯內(nèi)圈特征倒階次峰值,僅有171°,509°處對(duì)應(yīng)1,3倍的軸承內(nèi)圈故障倒階次,且峰值不突出,無法判斷軸承內(nèi)圈存在故障。
圖9 內(nèi)圈故障角域重采樣信號(hào)及倒階次譜 Fig.9 Inside exfoliation signal resampled by even angle-interval and order cepstrum
圖10(a)為內(nèi)圈故障信號(hào)的Teager能量算子增強(qiáng)倒階次譜。圖中167°,340°,513°,682°,1 023°處存在明顯峰值,分別對(duì)應(yīng)1,2,3,4,6倍軸承內(nèi)圈故障倒階次。對(duì)比圖9(b)看出,Teager能量算子增強(qiáng)倒階次譜能有效增強(qiáng)并準(zhǔn)確識(shí)別內(nèi)圈故障引起的微弱故障特征。圖10(b)、(c)分別為同一信號(hào)帶通濾波后階次包絡(luò)譜及Teager能量譜。階次包絡(luò)譜中峰值雜亂,僅在4.17,6.25階次處較突出,分別對(duì)應(yīng)2、3倍內(nèi)圈故障階次,無法判斷軸承存在內(nèi)圈故障;Teager能量譜中存在突出峰值,分別為2.09、4.17、6.33、8.46階次處,與1~4內(nèi)圈故障階次對(duì)應(yīng),說明Teager能量譜比階次包絡(luò)譜更能突出內(nèi)圈故障引起的沖擊特征,但周期性峰值仍不明顯。因此,對(duì)軸承內(nèi)圈微弱故障特征,階次包絡(luò)譜及Teager能量譜的故障識(shí)別效果均不理想,而Teager能量算子增強(qiáng)倒階次譜能清晰、準(zhǔn)確識(shí)別軸承內(nèi)圈故障。
圖10 內(nèi)圈故障信號(hào)分析結(jié)果 Fig.10 Analysis results of inside exfoliation signal
3結(jié)論
(1)變速器加速過程能突出故障特征,但其他干擾和噪聲背景也更強(qiáng),直接對(duì)角域重采樣后的信號(hào)進(jìn)行倒階次譜分析,難以從干擾中有效提取軸承早期故障微弱特征;
(2)Teager能量算子能有效增強(qiáng)沖擊成分,抑制非沖擊成分,對(duì)Teager能量算子輸出進(jìn)行倒階次譜分析,能從噪聲中有效識(shí)別被增強(qiáng)的故障周期特征,從而提取出軸承早期故障微弱特征。
參考文獻(xiàn)
[1]毛永芳. 機(jī)械測(cè)試中多分量信號(hào)特征提取方法的研究[D]. 重慶:重慶大學(xué),2008:82-100.
[2]李輝,鄭海起,楊紹普. 齒輪箱起動(dòng)過程故障診斷[J]. 振動(dòng)、測(cè)試與診斷,2009,29(2):167-170.
LI Hui, ZHENG Hai-qi, YANG Shao-pu. Gear fault diagnosis using order tracking and teager energy operator during startup[J].Journal of Vibration, Measurement & Diagnosis, 2009,29(2):167-170.
[3]鞠萍華,秦樹人,趙玲. 基于LMD的能量算子解調(diào)方法及其在故障特征信號(hào)提取中的應(yīng)用[J].振動(dòng)與沖擊,2011, 30(2):1-4.
JU Ping-hua, QIN Shu-ren, ZHAO Ling. Energy operator demodulating approach based on LMD and its application in extracting characteristics of a fault signal[J]. Journal of Vibration and Shock, 2011,30(2):1-4.
[4]程軍圣,楊怡,楊宇. 基于LMD的能量算子解調(diào)機(jī)械故障診斷方法[J].振動(dòng)、測(cè)試與診斷,2012,32(6):915-919.
CHENG Jun-sheng, YANG Yi, YANG Yu. Mechanical fault diagnosis of energy operator demodulating approach based on LMD[J]. Journal of Vibration,Measurement &Diagnosis, 2012,32(6):915-919.
[5]樊新海,何嘉武,王戰(zhàn)軍,等. 基于Teager能量算子的解調(diào)方法[J]. 裝甲兵工程學(xué)院學(xué)報(bào),2009,23(4):61-63.
FAN Xin-hai, HE Jia-wu, WANG Zhan-jun, et al. Demodulation approach based on teager energy operator [J].Journal of Academy Armored Force Engineering, 2009,23(4):61-63.
[6]Cheng J, Yu D, Yang Y.The application of energy operator demodulation approach based on EMD in machinery fault diagnose[J].Mechanical Systems and Signal Processing,2007,21(2):668-677.
[7]Bassiuny A M, Li X.Flute breakage detection during end milling using Hilbert-Huang transform and smoothed nonlinear energy operator[J].International Journal of Machine Tools and Manufacture,2007,47(6):1011-1020.
[8]王天金,馮志鵬,郝如江,等. 基于Teager能量算子的滾動(dòng)軸承故障診斷研究[J]. 振動(dòng)與沖擊,2012,31(2):1-5.
WANG Tian-jin, FENG Zhi-peng, HAO Ru-jiang, et al. Fault diagnosis of rolling element bearings based on Teager energy operator[J]. Journal of Vibration and Shock, 2012, 31(2):1-5.
[9]康海英,祁彥潔,王虹,等.利用倒階次譜和經(jīng)驗(yàn)?zāi)B(tài)分解的軸承故障診斷[J].振動(dòng)、測(cè)試與診斷,2009,29(1):60-65.
KANG Hai-ying, QI Yan-jie, WANG Hong, et al. Fault diagnosis of rolling bearing based on order cepstrum analysis and empirical mode decomposition[J]. Journal of Vibration,Measurement &Diagnosis, 2009,29(1):60-65.
[10]Potamianos A,Maragos P.A comparison of the energy operator and Hilbert transformapproaches for signal and speech demodulation[J].Signal Processing,1994,37(1):95-120.
[11]肖云魁.汽車故障診斷學(xué)[M].北京:北京理工大學(xué)出版社,2006:252-253.