• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Burgers-Korteweg-de Vries復(fù)合方程的格子Boltzmann方法模擬

    2015-12-31 21:46:09段雅麗陳先進(jìn)孔令華中國科學(xué)技術(shù)大學(xué)數(shù)學(xué)科學(xué)學(xué)院安徽合肥3006江西師范大學(xué)數(shù)學(xué)與信息科學(xué)學(xué)院江西南昌3300
    計(jì)算物理 2015年6期
    關(guān)鍵詞:江西師范大學(xué)雅麗信息科學(xué)

    段雅麗, 陳先進(jìn), 孔令華(.中國科學(xué)技術(shù)大學(xué)數(shù)學(xué)科學(xué)學(xué)院,安徽合肥 3006;.江西師范大學(xué)數(shù)學(xué)與信息科學(xué)學(xué)院,江西南昌 3300)

    Burgers-Korteweg-de Vries復(fù)合方程的格子Boltzmann方法模擬

    段雅麗1, 陳先進(jìn)1, 孔令華2
    (1.中國科學(xué)技術(shù)大學(xué)數(shù)學(xué)科學(xué)學(xué)院,安徽合肥 230026;2.江西師范大學(xué)數(shù)學(xué)與信息科學(xué)學(xué)院,江西南昌 330022)

    針對(duì)Burgers-Korteweg-de Vries(cBKdV)復(fù)合方程提出一種格子Boltzmann模型.通過恰當(dāng)?shù)靥幚砩㈨?xiàng)uxxx并運(yùn)用Chapman-Enskog展開從格子Boltzmann方程推導(dǎo)出宏觀方程,從而得到聯(lián)系微觀量與宏觀量的局部平衡分布函數(shù).對(duì)不同微分方程進(jìn)行數(shù)值實(shí)驗(yàn),數(shù)值解與解析解非常吻合,相比于其它數(shù)值結(jié)果,該格子Boltzmann模型的數(shù)值結(jié)果更精確,說明該數(shù)值模型的高效性.

    格子Boltzmann模型;Burgers-KdV復(fù)合方程;Chapman-Enskog展開

    0 Introduction

    In the simulation of radiation hydrodynamic Lagrange problems,diffusion problem often appears as a crucial subproblem.It is important to study discrete schemes with high accuracy for these problems,especially for those with large deformation.

    In recent years,to avoid difficulties in mesh generation for complex problems,meshless methods have received intensive attention,and some of them have been applied to solve diffusion problems.Shen et al[1].solved the Poisson equation as an example of application to awell-designed algorithm for selecting neighboring points.Reference[2]constructed minimal positive stencils in meshfree finite difference methods for the Poisson equation by a linear minimization approach.Reference[3]presented adaptive meshless discretization for the Poisson equation based on radial basisfunctionmethods(RBFs).Reference[4]extended a numerically stable RBF-QR formulation of RBF approximation in the aspects of computing differentiation matrices and stencil weights,in which the Poisson equation was solved as an example of numerical implement.Reference[5]gave a generalized finite difference discretization to the Poisson equation with piecewise constant diffusion conductivity,which was based on an MLSapproach.Thismethod used a constrain condition for flux rather than governing equation at interface to derive a discrete scheme.More recently,Ref.[6] proposed a space-time diffuse approximation method,in which a weight function was introduced to remove some spurious oscillations in computation for problems with high temporally discontinuous heat sources.

    In the present paper,we consider diffusion problems with nonlinear and/or discontinuous conductivity by a finite directional difference method(FDDM).The FDDM is a meshlessmethoddefined on scattered point distributions,which is first proposed in Ref.[1]as a finite pointmethod (FPM)based on directional differences,and renamed as FDDM to distinguish from FPM proposed in Ref.[7].The FPM[7]is based on a weighted least square interpolation of point data and point collocation for evaluating approximation integrals,while the FDDM can be viewed as a generalization of classical finite differencemethod defined on uniform point distribution,which ismore difficult to perform due to disorders of scattered point distributions.In Refs.[1,8],explicit numerical formulae for approximations to directional differentialswere derived with expected accuracy by using information of proper scattered points.Above all,by virtue of explicit expressions,solvability conditions of numerical derivativeswere rigorously given,which gave a general guiding principle for selecting neighboring points avoiding singularity in computing derivatives.

    In the FDDM regime,the present paper develops an approach to solving diffusion problemswith nonlinear conductivities,which has advantages as follows:It leads tominimal stencils,coefficients of the resulted scheme are given explicitly avoiding solving matrix equations,and well-designed method for selecting neighboring points guarantees that the issue of singularity never emerges.Reference[9]also investigated this problem.However,the present paper deals with the diffusion operator and the nonlinear term more rigorously than Ref.[9].

    Furthermore,when the diffusion conductivity is discontinuous,we propose a scheme for discretizingmultimedia interface condition by the FDDM method.To discretize flux on interface, Ref.[5]employsmore neighbors of the master point,while we employ only five neighbors of the master point on each side of the interface,resulting flux with second-order accuracy.This idea is also explored to discretize energy flux of diffusion equation on unstructured meshes(for details see Ref.[10]).

    The rest of this paper is arranged as follows:Section 1 presents some preliminaries.Section 2 formulates numerical differentials on scattered point distributions.Section 3 constructsmethodology for solving nonlinear diffusion problems and discontinuous problems,and gives several numerical validations.Finally,concluding remarks aremade in Section 4.

    1 Prelim inaries

    To simplify presentation,we first introduce denotations and definitions as defined in Ref.[1].Let us denote

    ·i the index of point(xi,yi)and“O”a specific point(x0,y0);

    ·ljthe j-th direction vector from point O and ejthe corresponding unit vector;·Δlithe distance between point“O”and i;

    ·ui=u(xi,yi)the function value of u(x,y)at point i;and

    ·Δui=ui-u0the difference of function u(x,y).

    We also have

    ·〈ij〉∶=〈ijO〉,i.e.,k is a special point as“O”in the expression〈i jk〉.

    Here,there is a little changemade from Ref.[1]in that the denotation(·,·)is changed into〈·,·〉0, because(·,·)is just a special case of〈·,·〉.

    In this paper,since a large amount of operations for indices denoting direction vectors are required,we introduce an operation for indices defined as in Ref.[1]:

    Definition 1 (Algorithm○k)Given i,j,k(k≥3)positive integers,an addition of i and j with period of k is defined by

    where s is a nonnegative integer satisfying inequality sk<i+j≤(s+1)k.The operation○k can be also expressed by

    where(i+j-1)(mod k)represents the remainder of(i+j-1)modulo k.

    Remark 1.1 The operation○k is defined only for indices i,j,…,which is irrelevant to the numbering and ordering of the directions denoted by these indices(See Fig.1).

    Fig.1 Illustration for k directions

    Since the FDDM is based on directional differences,we need relations between directional derivatives,which will significantly help numerical discretization in the FDDM regime.

    Firstwe state relevant resultswith constant coefficients.

    Lemma 1 (see Ref.[1])Given three unit vectors e1,e2,e3at point(x,y),for a smooth function u(x,y)on domainΩ?R2,it follows that

    Lemma 2 (see Ref.[1])Given four unit vectors ei(i=1,2,3,4)at point(x,y),for secondorder directional derivatives of a smooth function u(x,y)on the domainΩ?R2,it follows that

    To handle practical problems,more general results are mandatory.By simple deduction,wederive relations between directional derivatives with variable coefficients as follows.

    Theorem 1 Given four arbitrary unit vectors ei(i=1,2,3,4),for smooth functions u(x,y)and κ(x,y)on domainΩ?R2,it follows that

    2 Numerical differentials and solvability

    Before constructing a discrete scheme for PDEs,we first deal with the basic issue,i.e.,the approximations to directional derivatives.

    Suppose that for a given point O and its five neighboring points(xi,yi)(i=1,…,5)whose indices i=1,…,5 are numbered freely(see Fig.2),the differencesΔui(i=1,…,5)of the smooth function u(x,y)are available.

    Fig.2 Point O and its five neighbors

    Let us denote by

    We also have

    and

    where

    With detailed analysis on the five-point formulae presented in Ref.[1],we formulatenumerical approximations for the first-order and second-order directional derivatives of the smooth function u(x,y)at point O in thematrix forms

    where

    E is a unitmatrix,and

    We call

    as the solvability condition.

    According to the result of Ref.[1],we note that Eq.(8)is second-order accurate as to the approximation to the first-order derivatives,and Eq.(9) is first-order accurate as to the approximation to the second-order derivatives.

    We also notice that whether solvability condition(11)is satisfied or not is a key issue.Reference[1]dealtwith this issue,and presented an algorithm of selecting neighboring points for solving diffusion problems,which will be employed in the present paper.

    From the above formulation we can learn that for the second-order directional derivatives,only information of themaster point and its five neighbors were used.One knows that five neighboring points are of the least number for approximating the second-order directional derivatives as consider the consistency.This is important to construct schemeswithminimal stencils.

    3 Discretization methodology

    In this section,we restrict our attention to constructing the discretization methodology for numerically solving diffusion equations,which have the form

    with initial condition

    and boundary condition

    whereΩis an open bounded domain with smooth boundary?Ω,T is the final time,κis the nonlinear diffusion coefficient and maybe discontinuous,and f,g1and g2are given functions.

    Hereafter,we always impose discretization toΩand?Ωby scattered point distribution,and denote the resulted discrete point set byΩhand?Ωh,respectively,and=Ωh∪?Ωh.

    It is obvious that discretization of the diffusion operator?·(κ(x,y,u)?u)is a key issue.The first step to employ FDDM is to express the diffusion operator by directional differentials.

    3.1 Expression of?·(κ?u)by directional differentials

    In this section and Section 3.2,we consider the case thatκis a smooth function.

    Given e1,e2,e3,three nonparallel unit vectors from point O(see Fig.3),and eI,eJ,unitvectors in x,y axis directions,respectively,then by means of Eq.(5),?·(κ?u)can be expressed by

    Fig.3 Three nonparallel unit vectors

    which can be simplified into

    3.2 Discretization of?·(κ?u)

    Fig.4 Point O and its five neighbors

    We suppose that every point inΩhhas five steady distribution neighbors satisfying solvability condition(11).

    Given a point O(x0,y0)and its five neighbors(xi,yi)(i=1, …,5)(see Fig.4),denote“i′”as themiddle pointof the segment,κ0=κ(x0,y0,u0),κi=κ(xi,yi,ui),=(κ0+κi)/2, andκi′=κ(ui′),i=1,2,…,5.It is obvious that

    Motivated by the technique in constructing numerical formula (9)for the second-order directional differentials,we have

    To simplify presentation,we denote by

    Moreover,noticing that“i′”is themiddle point of,togetherwith Eq.(16)we have

    By Eq.(17),it consequently follows that

    Therefore,by Eq.(15),we have

    Remark 3.1 (1)Note that scheme(21)reduces to a classical finite difference on uniform point distribution.

    (2)It is obvious that Eq.(21)yields stencils ofminimal size.

    3.3 Scheme for discretizing multimedia interface condition

    In this section,we construct discrete schemes for discontinuous diffusion problems.

    For simplicity,we consider the case of two subdomains,Ω1andΩ2,separated by an interface Γ,and suppose thatκis discontinuous throughΓwith respect to spatial variables x and y,but is continuous with respect to u.Denote the inward and outward unit normal vectors ofΓby n-and n+, and the associated conductivities byκ-andκ+,respectively.

    Aswe have derived the scheme proposed in Section 3.2 for the case thatκis continuous,now we need only to focus on constructing discrete scheme for the interface condition.We first place appropriate points onΓ.For any given point O belonging toΓand corresponding functional values u0,the procedure of ourmethod can be outlined as follows:

    1)Choose five neighbors of O on each side ofΓ,respectively,and denote them by1,2,3,4, 5 corresponding to n+side,1′,2′,3′,4′,5′corresponding to n-side(see Fig.5,the selected neighbors are marked bold,and other points are indicated by white circles),and their function values ui(i=1,…,5;1′,…,5′).In this step,we choose the nearest five points satisfying the solvability condition on each side.

    Fig.5 Illustration of selecting neighboring points for a point on interface

    The detailed procedure is as follows.

    By the relation between the first-order directional derivatives(3),we have

    Here,Δl+is an auxiliary quantity,which will be eliminated in the following deduction,M+is defined following Eq.(10),and a1j,a2j(j=1,2,…,5)are as given in Eq.(18).Therefore,wehave

    Likewise,we have

    Here,Δl-is also an auxiliary quantity similar toΔl+,and M-,a′1jand a′2j(j=1,2,…,5)are similar to M+,a1jand a2j(j=1,2,…,5).

    LetΔl+=Δl-,and denote by

    Applying Eqs.(24)and(25)to the continuous condition of energy flux Eq.(22),and eliminating Δl+andΔl-,we have

    which results in the discrete scheme for the interface condition as follows:

    To summarize,for a point belonging toΩ1(orΩ2),select its five neighbors from those belonging toΩ1∪Γ(orΩ2∪Γ),and then discretize the control equation(12)by the scheme(21);For a point belonging toΓ,the above scheme constructed for the interface condition is employed.After the discretization,we derive a large sparse system of algebraic equations,which can be solved by various iterativemethods.

    3.4 Numerical Results

    This section presents several numerical examples with different computational domains and different point distributions to investigate the accuracy and efficiency of the proposed approach.

    In the subsequent computation,the resulted nonlinear systems are solved by a classical Picard iterative process.And the linear systems are solved by a biconjugate gradient stabilized algorithm.

    To investigate convergence results of the proposed method,we define discrete norm errors as

    The convergence rate is

    where h1and h2are average distances corresponding to N1and N2,respectively.

    Exam p le 1 Consider the problem

    Fig.6 Point distribution on computational domain

    where f(x,y)=2(ey-x-ex-y),Ωis a semi-circle with two semi-circles cut out as shown in Fig.6.

    Note that discretizingΩby a good-quality mesh is a complex work as consider the corners (see e.g.the left bottom ofΩ),meanwhile distributing scattered points on it is rather easy.We employ this example to investigate the proposed method on an irregular computational domain. Corresponding numerical results are presented in Table 1.

    From Table 1, we can see that the approximation to the solution is almost secondorder accurate,and to the first-order directional derivatives of the solution is higher than first-order accurate.This indicates that the proposed method workswell on irregular computational domain.

    Table 1 Errors of u and its first-order derivatives

    Exam ple 2 Solve an nonlinear boundary problem

    whereκ(u)=u,and f(x,y),g(x,y)are given by the exact solution u(x,y)=2+cos(πx)+sin(πy).Ωis a unit square,which is discretized by three types of scattered points as shown in Fig.7.

    In this example,the tolerance of nonlinear iterative is‖Us+1-Us‖≤10-8,where Usand Us+1represent the numerical solution of two neighboring iterative steps,respectively.

    Corresponding numerical results are presented in Table 2.From this table,we see that approximations to the solution in the-norm and the-norm are almost second-order accuracy, except that the convergence rate in the-norm on Z-type point distribution is slightly low,which is also satisfactory as taking account of the highly anisotropic point distribution in this case.

    Fig.7 Three types of point distributions in square domain,left:uniform;middle:random;right:Z-type

    Table 2 Convergence results for nonlinear diffusion problem on three types of point distributions

    Fig.8 Random point distribution

    Exam ple 3 Solve a parabolic problem

    where T=10-3,and f(x,y,t),g1(x,y)and g2(x,y,t)are given by the exact solution u(x,y,t)=e-π2 t(2+cos(πx)+sin(πy)).Ωis a unit square,which is discretized as shown in Fig.8.

    Objective of this example is to compare FDDM with the classical least squaremethod(LSQ).The time step is chosen asΔt=10-5,and utis discretized by a backward difference formula.In LSQ,neighboring points are the nearest ones,the numbers of which are selected as 10,20,and 40,respectively.The numerical results are graphically depicted in Fig.9.

    One can observe the following:

    · Both methods have almost the same convergence rate.Errors of the LSQ are higher than those of the FDDM.

    ·For LSQ,the accuracy does not increase with increasing numbers of neighboring points.

    By this test problem,FDDM is also compared with LSQmethod in terms of computational cost.For a sequence of point distributions,Fig.10 shows CPU times for setting up and solving the systemmatrices.One can observe that the LSQ method has lower computational efficiency due to more neighboring points resulting in large discrete stencils,while the FDDM greatly benefits from the sparsity of its stencils when the number of unknowns increases.

    Fig.9 LSQ vs.FDDM,left:error,right:error

    Fig.10 Computational cost for setting up and solving system matrices:LSQ vs.FDDM

    Example 4 Solve a discontinuous coefficient problem(originally coming from Ref.[11])in the form

    whereΩ=[0,1]×[0,1],the conductivityκis discontinuous and given by

    and f,g are directly deduced from the exact solution

    Fig.11 Random point distribution

    It is obvious that this solution and its normal component of flux are continuous at x=0.5.

    The point distribution is almost the same as that in Example 3,but at x=0.5 uniformly distributed points are placed to coincide with the multimedia interface(shown in Fig.11).

    Here,we takeκ=10-3,10-6,and the corresponding results are shown in Fig.12 and Tables 3,4.

    Figure 12 displays results on the interface for the caseκ =10-3,which indicates that the numerical solutions and energy fluxes are very close to the exact values;Table 3gives corresponding convergent results,where NIis the total number of interface points.It is obvious that both numerical solutions and energy fluxes on the interface are second-order accurate.Results for the caseκ=10-6are similar to the above case,hence they are not displayed here.Table4 shows us that the solutions to the discontinuous coefficient problem with different coefficients are almost second-order accurate,which verifies good performance of the proposed method.

    Fig.12 Results on interface asκ=10-3,and N=289,NI=15,left:solutions:right:energy flux

    Table 3 Convergence results of solutions and energy fluxes on interface of discontinuous coefficient problem asκ=10-3

    Table 4 Convergence results for discontinuous coefficient problem

    4 Conclusions

    We present an approach for numerically solving nonlinear diffusion equations in the FDDM regime.Taking advantage of a proper method for selecting steady neighboring point set in the procedure,the approach leads tominimal stencils,avoiding singularity in computing process.

    Moreover,when the diffusion conductivity is discontinuous,discrete points are placed on the interface,and a scheme based on five-point formulae of the FDDM is proposed for discretizingmultimedia interface condition.In consequence,approximation to energy fluxes on interface is second-order accurate.

    Finally,the approaches are demonstrated to have good accuracy and efficiency by numerical exampleswith different computational domains and different point distributions.

    [1] Shen L J,Lv G X,Shen Z J.A finite pointmethod based on directional differences[J].SIAM JNumer Anal, 2009,47(3):2224-2242.

    [2] Seibold B.Minimal positive stencils inmeshfree finite differencemethods for the Poisson equation[J].Comput Methods Appl Mech Eng,2008,198(3-4):592-601.

    [3] Davydov O,Oanh D T.Adaptivemeshless centres and RBF stencils for Poisson equation[J].JComput Phys, 2011,230(2):287-304.

    [4] Larsson E,Lehto E,Heryudono A,Fornberg B.Stable computation of differentiation matrices and scattered node stencils based on Gaussian radial basis functions[J].SIAM JSci Comput,2013,35(4):2096-2119.

    [5] Iliev O,Tiwari S.A generalized(meshfree)finite differnce discretization for elliptic interface problems, numericalmethods and applications[C]∥Hutchison D.Lecture Notes in Computer Science.German:Springer, 2003:488-497.

    [6] Sophya T,Silva A D,Kribèchea A.A space-time meshlessmethod that removes numerical oscillations when solving PDEswith high discontinuities[J].Numerical Heat Transfer,Part B,2012,62(1):50-70.

    [7] O?ate E,Idelsohn S,ZienkiewiczOC,Taylor R L.A finite pointmethod in computingmechanicsapplication to convective transport and fluid flow[J].Internat JNumer Methods Engrg,1996,39:3839-3866.

    [8] Lv GX,Shen L J,Shen Z J.Study on finite pointmethod[J].Chinese Journal of Computational Physics,2008, 25(5):505-524.

    [9] Lv G X,Shen L J.A finite pointmethod based on directional derivatives for diffusion equation[C]∥Cemal A.World Academy of Science Engineering and Technology.Singapore:International Scientific Research and Experimental Development,2011:211-216.

    [10] Lv G X,Shen L J,Shen Z J.Numerical methods for energy flux of temperature diffusion equation on unstructured meshes[J].Int JNumer Meth Biomed Engng,2010,26(5):646-665.

    [11] Shashkov M,Steinberg S.Solving diffusion equationswith rough coefficients in rough grids[J].JComput Phys, 1996,129:383-405.

    A Finite Directional Difference M eshless M ethod for Diffusion Equations

    LV Guixia, SUN Shunkai
    (Laboratory ofComputational Physics,Institute of Applied Physics and Computational Mathematics,P.O.Box 8009-26,Beijing 100088,China)

    1001-246X(2015)06-0649-13

    An approach for numerically solving nonlinear diffusion equations on 2D scattered point distributions is developed with finite directional difference method.The approach yields stencils of minimal size using five neighboring points.And coefficients of discretization have explicitexpressions.A scheme employing five-point formulae is proposed to discretizemultimedia interface condition for discontinuous problems in which approximation to flux on interface is second-order accurate.The discretizationmethods show good performance in numerical exampleswith different computational domains and different point distributions.

    meshless;finite directional differencemethod;nonlinear diffusion equations;multimedia interface;minimal stencil

    O241.82 Document code:A

    Received date:2014-12-17;Revised date:2015-02-05

    Foundation items:Supported by National Natural Science Foundation of China(11371066,11372050)and Foundation of Laboratory of Computational Physics

    Biography:Lv Guixia(1972-),female,Dr.,professor,engaged in numerical solution of partial differential equations,E-mail:lvguixia@126.com

    猜你喜歡
    江西師范大學(xué)雅麗信息科學(xué)
    勞動(dòng)贊歌
    Temperature-Dependent Growth of Ordered ZnO Nanorod Arrays
    Hydrothermal Synthesis of Ordered ZnO Nanorod Arrays by Nanosphere Lithography Method
    山西大同大學(xué)量子信息科學(xué)研究所簡(jiǎn)介
    SPECTRAL PROPERTIES OF DISCRETE STURM-LIOUVILLE PROBLEMS WITH TWO SQUARED EIGENPARAMETER-DEPENDENT BOUNDARY CONDITIONS*
    三元重要不等式的推廣及應(yīng)用
    光電信息科學(xué)與工程專業(yè)模塊化課程設(shè)計(jì)探究
    基于文獻(xiàn)類型矯正影響因子在信息科學(xué)與圖書館學(xué)期刊中的實(shí)證分析
    對(duì)旅游專業(yè)外語的理想教學(xué)模式的思考——以江西師范大學(xué)為例
    Younger and Older learners’Advantages on Language Acquisition in Different Learning Settings
    91精品国产国语对白视频| 国产一区二区三区综合在线观看 | 亚洲中文av在线| 2022亚洲国产成人精品| 夫妻午夜视频| 久久久久国产精品人妻一区二区| 精品亚洲成国产av| 不卡视频在线观看欧美| 亚洲色图 男人天堂 中文字幕 | 亚洲欧洲精品一区二区精品久久久 | 少妇猛男粗大的猛烈进出视频| 桃花免费在线播放| 亚洲色图 男人天堂 中文字幕 | 99热这里只有精品一区| 黑人猛操日本美女一级片| 国产免费福利视频在线观看| 男女免费视频国产| 亚洲人成网站在线播| 成人影院久久| 欧美xxⅹ黑人| 国产成人精品一,二区| 大片免费播放器 马上看| 男女边摸边吃奶| 欧美一级a爱片免费观看看| 麻豆精品久久久久久蜜桃| 美女cb高潮喷水在线观看| 亚洲精品国产av成人精品| 内地一区二区视频在线| 免费大片黄手机在线观看| 免费大片黄手机在线观看| 性色av一级| 中文天堂在线官网| 我的老师免费观看完整版| 久久99一区二区三区| 国产av精品麻豆| 三级国产精品欧美在线观看| 欧美人与性动交α欧美精品济南到 | 高清毛片免费看| 免费看av在线观看网站| 国产欧美日韩一区二区三区在线 | 亚洲精品第二区| 日日撸夜夜添| 国产精品人妻久久久久久| 最近2019中文字幕mv第一页| 人妻系列 视频| 内地一区二区视频在线| 免费少妇av软件| 亚洲,欧美,日韩| 黑丝袜美女国产一区| 纵有疾风起免费观看全集完整版| 麻豆乱淫一区二区| 国产精品人妻久久久影院| 人体艺术视频欧美日本| 极品少妇高潮喷水抽搐| 天天影视国产精品| 熟妇人妻不卡中文字幕| 少妇 在线观看| 韩国av在线不卡| 国产视频内射| 久久久久网色| 国产高清有码在线观看视频| 肉色欧美久久久久久久蜜桃| 香蕉精品网在线| 亚洲成人手机| 爱豆传媒免费全集在线观看| 成人亚洲欧美一区二区av| 嘟嘟电影网在线观看| 爱豆传媒免费全集在线观看| 亚洲精品aⅴ在线观看| 日韩熟女老妇一区二区性免费视频| 亚洲欧美成人精品一区二区| 欧美日韩一区二区视频在线观看视频在线| 久久人人爽人人爽人人片va| 色婷婷久久久亚洲欧美| 成人午夜精彩视频在线观看| 超色免费av| 国产精品欧美亚洲77777| 亚洲精品日本国产第一区| 日日啪夜夜爽| 欧美精品一区二区大全| 免费大片18禁| 国产深夜福利视频在线观看| 边亲边吃奶的免费视频| 在线观看美女被高潮喷水网站| 嘟嘟电影网在线观看| 女人久久www免费人成看片| 一区二区av电影网| 老司机亚洲免费影院| 男人添女人高潮全过程视频| 视频在线观看一区二区三区| 在线观看国产h片| 婷婷色av中文字幕| 国产欧美亚洲国产| 亚洲国产欧美在线一区| 性色av一级| 久久久久国产网址| 亚洲av.av天堂| 亚洲综合精品二区| 久久国产精品男人的天堂亚洲 | 麻豆成人av视频| 观看av在线不卡| 卡戴珊不雅视频在线播放| 亚洲少妇的诱惑av| 视频在线观看一区二区三区| 国产综合精华液| 丝袜在线中文字幕| 亚洲欧美精品自产自拍| 亚洲av电影在线观看一区二区三区| 天堂俺去俺来也www色官网| 久久久久久久久久成人| 99久久中文字幕三级久久日本| 我要看黄色一级片免费的| 美女中出高潮动态图| 精品人妻偷拍中文字幕| 久久97久久精品| 国产乱人偷精品视频| 波野结衣二区三区在线| a级毛片免费高清观看在线播放| 久久人人爽人人片av| 91精品一卡2卡3卡4卡| 欧美日韩在线观看h| 亚洲,一卡二卡三卡| 中文字幕制服av| 国产精品一区二区在线观看99| 亚洲av男天堂| 国产69精品久久久久777片| 亚洲国产日韩一区二区| 日韩中文字幕视频在线看片| 水蜜桃什么品种好| 国产免费现黄频在线看| 99久久中文字幕三级久久日本| 下体分泌物呈黄色| 亚洲国产日韩一区二区| 大码成人一级视频| 51国产日韩欧美| 欧美老熟妇乱子伦牲交| 免费不卡的大黄色大毛片视频在线观看| 久久国内精品自在自线图片| 蜜桃在线观看..| 日本与韩国留学比较| 久久青草综合色| 内地一区二区视频在线| 日韩人妻高清精品专区| 校园人妻丝袜中文字幕| 精品99又大又爽又粗少妇毛片| 欧美最新免费一区二区三区| 免费av中文字幕在线| 国产69精品久久久久777片| 国产欧美亚洲国产| 2018国产大陆天天弄谢| 水蜜桃什么品种好| 国产精品麻豆人妻色哟哟久久| av在线老鸭窝| 97在线人人人人妻| 2021少妇久久久久久久久久久| 日韩一区二区三区影片| 久久久久久久精品精品| 观看av在线不卡| 91久久精品电影网| 精品久久久噜噜| 久久精品国产亚洲网站| 少妇猛男粗大的猛烈进出视频| 亚洲怡红院男人天堂| 久久久午夜欧美精品| 久久久久久久久大av| 亚洲欧洲日产国产| 国产黄片视频在线免费观看| 亚洲成人手机| 建设人人有责人人尽责人人享有的| 亚洲丝袜综合中文字幕| 日本午夜av视频| 少妇猛男粗大的猛烈进出视频| 又黄又爽又刺激的免费视频.| 精品人妻偷拍中文字幕| 久久青草综合色| 久久久国产欧美日韩av| 免费人妻精品一区二区三区视频| 久久午夜福利片| 男女无遮挡免费网站观看| 一级,二级,三级黄色视频| 国产成人av激情在线播放 | av播播在线观看一区| 国产成人免费无遮挡视频| 新久久久久国产一级毛片| 国产成人精品无人区| 久久久久人妻精品一区果冻| 欧美日韩亚洲高清精品| av.在线天堂| 亚洲av电影在线观看一区二区三区| 亚洲精品国产av蜜桃| 国产精品久久久久久久电影| 久久久久久久精品精品| 大又大粗又爽又黄少妇毛片口| 亚洲精品久久久久久婷婷小说| 午夜福利视频精品| 午夜免费观看性视频| 街头女战士在线观看网站| 日日摸夜夜添夜夜爱| av在线老鸭窝| 亚洲色图 男人天堂 中文字幕 | 99热全是精品| 久久久欧美国产精品| 免费观看在线日韩| av有码第一页| 建设人人有责人人尽责人人享有的| 国产精品麻豆人妻色哟哟久久| 亚洲人成网站在线播| 一个人免费看片子| 久久久久国产精品人妻一区二区| 精品国产国语对白av| 伦理电影免费视频| 美女国产视频在线观看| 只有这里有精品99| 少妇高潮的动态图| 蜜桃在线观看..| 午夜福利,免费看| 亚洲国产精品一区二区三区在线| 最新中文字幕久久久久| 男女国产视频网站| 亚洲av免费高清在线观看| 亚洲精品国产av蜜桃| 国产伦理片在线播放av一区| 黑人高潮一二区| 国产乱来视频区| 精品亚洲成a人片在线观看| 高清黄色对白视频在线免费看| 久久97久久精品| 亚洲精品久久成人aⅴ小说 | 人妻少妇偷人精品九色| .国产精品久久| 久久久精品94久久精品| 伊人久久国产一区二区| 国产精品偷伦视频观看了| av电影中文网址| 亚洲无线观看免费| 午夜激情久久久久久久| av黄色大香蕉| 亚洲熟女精品中文字幕| 婷婷色综合www| a级片在线免费高清观看视频| 九九久久精品国产亚洲av麻豆| 国产片特级美女逼逼视频| 九草在线视频观看| 国产精品一区二区在线不卡| 一级爰片在线观看| 最黄视频免费看| 日韩亚洲欧美综合| 国产精品一区二区在线观看99| 久久影院123| 亚洲国产成人一精品久久久| 久久久亚洲精品成人影院| 日日摸夜夜添夜夜爱| 免费人成在线观看视频色| 免费观看a级毛片全部| 成年人午夜在线观看视频| 久久精品人人爽人人爽视色| 又大又黄又爽视频免费| 日韩强制内射视频| 国精品久久久久久国模美| 黑人猛操日本美女一级片| 亚洲欧洲日产国产| 最近最新中文字幕免费大全7| 视频区图区小说| 久久99精品国语久久久| 大香蕉久久成人网| 国产精品一国产av| 91国产中文字幕| 免费高清在线观看视频在线观看| 2022亚洲国产成人精品| 久久99精品国语久久久| 国产成人免费观看mmmm| 好男人视频免费观看在线| 日韩欧美一区视频在线观看| 亚洲国产欧美在线一区| 十八禁高潮呻吟视频| 国产黄频视频在线观看| 97精品久久久久久久久久精品| 欧美最新免费一区二区三区| 日日爽夜夜爽网站| 亚洲在久久综合| √禁漫天堂资源中文www| 丝瓜视频免费看黄片| 蜜臀久久99精品久久宅男| 婷婷色综合www| 亚洲在久久综合| 国产精品免费大片| 日日啪夜夜爽| av福利片在线| 妹子高潮喷水视频| 久久99蜜桃精品久久| 一本一本综合久久| 夫妻性生交免费视频一级片| 国产av国产精品国产| 国产不卡av网站在线观看| 女人精品久久久久毛片| 熟妇人妻不卡中文字幕| 精品久久久久久久久亚洲| 精品一区二区三区视频在线| 老司机影院毛片| 一级二级三级毛片免费看| 美女中出高潮动态图| 我的女老师完整版在线观看| 免费黄网站久久成人精品| 男女啪啪激烈高潮av片| 亚洲欧美清纯卡通| 免费av不卡在线播放| 黄色怎么调成土黄色| 久久精品熟女亚洲av麻豆精品| 精品久久久久久电影网| 成年av动漫网址| 只有这里有精品99| 日韩一区二区三区影片| 亚洲精品乱码久久久久久按摩| 大香蕉97超碰在线| 成人亚洲欧美一区二区av| 观看美女的网站| 一区二区日韩欧美中文字幕 | www.色视频.com| 午夜激情av网站| 精品一品国产午夜福利视频| 全区人妻精品视频| 亚洲av国产av综合av卡| 国产黄色免费在线视频| 观看av在线不卡| 视频区图区小说| 欧美精品一区二区免费开放| 日韩人妻高清精品专区| 色网站视频免费| 国产精品一区二区在线观看99| 午夜免费男女啪啪视频观看| a级片在线免费高清观看视频| 久久精品熟女亚洲av麻豆精品| 80岁老熟妇乱子伦牲交| 99国产综合亚洲精品| 日韩精品有码人妻一区| 大片免费播放器 马上看| 精品视频人人做人人爽| 久久99一区二区三区| 国产男女内射视频| 亚洲欧美日韩另类电影网站| 欧美最新免费一区二区三区| 免费观看性生交大片5| 国产成人午夜福利电影在线观看| 成人影院久久| 国产成人午夜福利电影在线观看| xxx大片免费视频| 久久久久久久亚洲中文字幕| 免费不卡的大黄色大毛片视频在线观看| 亚洲av不卡在线观看| 蜜臀久久99精品久久宅男| 亚洲欧美一区二区三区国产| 男的添女的下面高潮视频| 美女cb高潮喷水在线观看| 国产av码专区亚洲av| 亚洲精品av麻豆狂野| 久久av网站| 久久综合国产亚洲精品| 在线精品无人区一区二区三| 免费大片18禁| 亚洲性久久影院| 男女国产视频网站| 久久av网站| 制服人妻中文乱码| av视频免费观看在线观看| 国产成人精品婷婷| 日韩视频在线欧美| 精品久久国产蜜桃| 亚洲丝袜综合中文字幕| 黑人高潮一二区| 丝袜喷水一区| av免费在线看不卡| 高清在线视频一区二区三区| 久久久久久伊人网av| 久久精品国产亚洲网站| 成年人免费黄色播放视频| 美女主播在线视频| 国产精品人妻久久久影院| 51国产日韩欧美| 国产av码专区亚洲av| 成人18禁高潮啪啪吃奶动态图 | 午夜视频国产福利| 国产成人精品久久久久久| 综合色丁香网| 丁香六月天网| 日本与韩国留学比较| 王馨瑶露胸无遮挡在线观看| 中国美白少妇内射xxxbb| 男人操女人黄网站| av国产久精品久网站免费入址| av专区在线播放| 国产精品无大码| 午夜91福利影院| 人妻系列 视频| 在线看a的网站| a级毛片免费高清观看在线播放| 亚洲精品456在线播放app| 久久鲁丝午夜福利片| av又黄又爽大尺度在线免费看| a 毛片基地| 久久久国产精品麻豆| 男女边吃奶边做爰视频| 最近2019中文字幕mv第一页| 夫妻性生交免费视频一级片| 青春草亚洲视频在线观看| 亚洲图色成人| freevideosex欧美| 精品少妇内射三级| 午夜福利视频在线观看免费| 男人操女人黄网站| av不卡在线播放| 国产精品不卡视频一区二区| 极品人妻少妇av视频| 最近手机中文字幕大全| 欧美激情 高清一区二区三区| 一区二区av电影网| 丝袜脚勾引网站| 少妇高潮的动态图| 欧美国产精品一级二级三级| av在线app专区| 我的老师免费观看完整版| 国产精品女同一区二区软件| 久久狼人影院| 日韩制服骚丝袜av| 欧美3d第一页| 中文字幕人妻丝袜制服| 丰满乱子伦码专区| 乱人伦中国视频| 亚洲一区二区三区欧美精品| 高清不卡的av网站| 国产色爽女视频免费观看| 国产精品秋霞免费鲁丝片| 狂野欧美白嫩少妇大欣赏| 免费观看在线日韩| xxxhd国产人妻xxx| 精品一品国产午夜福利视频| 日韩中字成人| 中文字幕免费在线视频6| 国产男女超爽视频在线观看| 日产精品乱码卡一卡2卡三| 王馨瑶露胸无遮挡在线观看| 亚洲国产成人一精品久久久| 中文天堂在线官网| 欧美 亚洲 国产 日韩一| 夜夜看夜夜爽夜夜摸| 男男h啪啪无遮挡| 成人免费观看视频高清| 狂野欧美激情性xxxx在线观看| 国产在线一区二区三区精| 最黄视频免费看| 18禁动态无遮挡网站| 成人黄色视频免费在线看| 韩国高清视频一区二区三区| 精品久久久久久久久亚洲| 女的被弄到高潮叫床怎么办| 国产一区二区三区av在线| 飞空精品影院首页| 国产黄色免费在线视频| 欧美丝袜亚洲另类| 久久精品国产自在天天线| 内地一区二区视频在线| 中国三级夫妇交换| 青春草视频在线免费观看| 国产国拍精品亚洲av在线观看| 国产av一区二区精品久久| 精品一区在线观看国产| 国产在线视频一区二区| 午夜福利视频精品| 成人亚洲欧美一区二区av| 欧美日韩国产mv在线观看视频| 高清午夜精品一区二区三区| 黄色视频在线播放观看不卡| 一个人看视频在线观看www免费| 国产熟女欧美一区二区| 精品人妻在线不人妻| 色94色欧美一区二区| 满18在线观看网站| 亚洲av男天堂| 午夜免费鲁丝| 人妻少妇偷人精品九色| 18禁动态无遮挡网站| 亚洲三级黄色毛片| 看免费成人av毛片| 欧美精品人与动牲交sv欧美| 大码成人一级视频| 在现免费观看毛片| 男人添女人高潮全过程视频| 亚洲久久久国产精品| 精品久久久噜噜| 日本黄大片高清| 在线观看三级黄色| 少妇熟女欧美另类| 不卡视频在线观看欧美| 日本av免费视频播放| 热re99久久精品国产66热6| 亚洲天堂av无毛| 18禁观看日本| 黑人高潮一二区| 人妻 亚洲 视频| 欧美性感艳星| 黄色配什么色好看| 性色avwww在线观看| 亚洲av日韩在线播放| 97精品久久久久久久久久精品| 国产午夜精品久久久久久一区二区三区| 国产一级毛片在线| 亚洲综合色惰| 日韩电影二区| 9色porny在线观看| 久久女婷五月综合色啪小说| 一本一本综合久久| 亚洲精品自拍成人| 欧美3d第一页| 亚洲国产av新网站| 国产成人精品一,二区| 久久久精品94久久精品| 人人妻人人爽人人添夜夜欢视频| 久久 成人 亚洲| 免费观看av网站的网址| 狂野欧美白嫩少妇大欣赏| 国产黄频视频在线观看| 国产爽快片一区二区三区| 美女国产视频在线观看| 久久这里有精品视频免费| xxxhd国产人妻xxx| 全区人妻精品视频| 少妇 在线观看| 国产欧美日韩综合在线一区二区| 精品人妻一区二区三区麻豆| 精品一区在线观看国产| 波野结衣二区三区在线| 久久久久精品性色| 成人黄色视频免费在线看| 丁香六月天网| 亚洲国产精品一区三区| 看十八女毛片水多多多| 2021少妇久久久久久久久久久| 久久99精品国语久久久| 亚洲图色成人| √禁漫天堂资源中文www| 久久鲁丝午夜福利片| 一本大道久久a久久精品| 日产精品乱码卡一卡2卡三| 国产乱人偷精品视频| 欧美国产精品一级二级三级| 亚洲成色77777| 久久久久精品性色| 国产一区二区在线观看日韩| 大又大粗又爽又黄少妇毛片口| 天堂8中文在线网| 99视频精品全部免费 在线| 亚洲精品第二区| 日韩伦理黄色片| 男女无遮挡免费网站观看| 久久综合国产亚洲精品| 十八禁高潮呻吟视频| 天天操日日干夜夜撸| 久久女婷五月综合色啪小说| 九草在线视频观看| 男女啪啪激烈高潮av片| 亚洲av男天堂| 99久国产av精品国产电影| 午夜影院在线不卡| 国产精品一国产av| 性色avwww在线观看| 国产毛片在线视频| 国产一区亚洲一区在线观看| 午夜精品国产一区二区电影| 国产黄色免费在线视频| 99久久精品国产国产毛片| 亚洲精品美女久久av网站| 亚洲欧洲精品一区二区精品久久久 | 亚洲精品日韩av片在线观看| 亚洲欧美一区二区三区国产| 精品国产一区二区三区久久久樱花| 日韩强制内射视频| .国产精品久久| 99热6这里只有精品| 亚洲av成人精品一二三区| 少妇被粗大的猛进出69影院 | 国产精品一区www在线观看| 精品国产乱码久久久久久小说| 午夜视频国产福利| 美女福利国产在线| 国产永久视频网站| 精品亚洲乱码少妇综合久久| 男女高潮啪啪啪动态图| 女性生殖器流出的白浆| 曰老女人黄片| 日韩伦理黄色片| 80岁老熟妇乱子伦牲交| 日日爽夜夜爽网站| 我的老师免费观看完整版| 蜜桃国产av成人99| 黑人高潮一二区| 亚洲国产日韩一区二区| a级毛片黄视频| 日本色播在线视频| 久久久久久久亚洲中文字幕| 一级二级三级毛片免费看| 九九在线视频观看精品| 性色av一级| 亚洲国产欧美在线一区| 久久鲁丝午夜福利片| 精品一区二区三区视频在线| 午夜av观看不卡| 成人综合一区亚洲| 91精品国产国语对白视频| 交换朋友夫妻互换小说| 免费黄网站久久成人精品| 多毛熟女@视频| 色94色欧美一区二区| a级毛色黄片| 99久久中文字幕三级久久日本| 赤兔流量卡办理| 国产精品久久久久久av不卡|