• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Burgers-Korteweg-de Vries復(fù)合方程的格子Boltzmann方法模擬

    2015-12-31 21:46:09段雅麗陳先進(jìn)孔令華中國科學(xué)技術(shù)大學(xué)數(shù)學(xué)科學(xué)學(xué)院安徽合肥3006江西師范大學(xué)數(shù)學(xué)與信息科學(xué)學(xué)院江西南昌3300
    計(jì)算物理 2015年6期
    關(guān)鍵詞:江西師范大學(xué)雅麗信息科學(xué)

    段雅麗, 陳先進(jìn), 孔令華(.中國科學(xué)技術(shù)大學(xué)數(shù)學(xué)科學(xué)學(xué)院,安徽合肥 3006;.江西師范大學(xué)數(shù)學(xué)與信息科學(xué)學(xué)院,江西南昌 3300)

    Burgers-Korteweg-de Vries復(fù)合方程的格子Boltzmann方法模擬

    段雅麗1, 陳先進(jìn)1, 孔令華2
    (1.中國科學(xué)技術(shù)大學(xué)數(shù)學(xué)科學(xué)學(xué)院,安徽合肥 230026;2.江西師范大學(xué)數(shù)學(xué)與信息科學(xué)學(xué)院,江西南昌 330022)

    針對(duì)Burgers-Korteweg-de Vries(cBKdV)復(fù)合方程提出一種格子Boltzmann模型.通過恰當(dāng)?shù)靥幚砩㈨?xiàng)uxxx并運(yùn)用Chapman-Enskog展開從格子Boltzmann方程推導(dǎo)出宏觀方程,從而得到聯(lián)系微觀量與宏觀量的局部平衡分布函數(shù).對(duì)不同微分方程進(jìn)行數(shù)值實(shí)驗(yàn),數(shù)值解與解析解非常吻合,相比于其它數(shù)值結(jié)果,該格子Boltzmann模型的數(shù)值結(jié)果更精確,說明該數(shù)值模型的高效性.

    格子Boltzmann模型;Burgers-KdV復(fù)合方程;Chapman-Enskog展開

    0 Introduction

    In the simulation of radiation hydrodynamic Lagrange problems,diffusion problem often appears as a crucial subproblem.It is important to study discrete schemes with high accuracy for these problems,especially for those with large deformation.

    In recent years,to avoid difficulties in mesh generation for complex problems,meshless methods have received intensive attention,and some of them have been applied to solve diffusion problems.Shen et al[1].solved the Poisson equation as an example of application to awell-designed algorithm for selecting neighboring points.Reference[2]constructed minimal positive stencils in meshfree finite difference methods for the Poisson equation by a linear minimization approach.Reference[3]presented adaptive meshless discretization for the Poisson equation based on radial basisfunctionmethods(RBFs).Reference[4]extended a numerically stable RBF-QR formulation of RBF approximation in the aspects of computing differentiation matrices and stencil weights,in which the Poisson equation was solved as an example of numerical implement.Reference[5]gave a generalized finite difference discretization to the Poisson equation with piecewise constant diffusion conductivity,which was based on an MLSapproach.Thismethod used a constrain condition for flux rather than governing equation at interface to derive a discrete scheme.More recently,Ref.[6] proposed a space-time diffuse approximation method,in which a weight function was introduced to remove some spurious oscillations in computation for problems with high temporally discontinuous heat sources.

    In the present paper,we consider diffusion problems with nonlinear and/or discontinuous conductivity by a finite directional difference method(FDDM).The FDDM is a meshlessmethoddefined on scattered point distributions,which is first proposed in Ref.[1]as a finite pointmethod (FPM)based on directional differences,and renamed as FDDM to distinguish from FPM proposed in Ref.[7].The FPM[7]is based on a weighted least square interpolation of point data and point collocation for evaluating approximation integrals,while the FDDM can be viewed as a generalization of classical finite differencemethod defined on uniform point distribution,which ismore difficult to perform due to disorders of scattered point distributions.In Refs.[1,8],explicit numerical formulae for approximations to directional differentialswere derived with expected accuracy by using information of proper scattered points.Above all,by virtue of explicit expressions,solvability conditions of numerical derivativeswere rigorously given,which gave a general guiding principle for selecting neighboring points avoiding singularity in computing derivatives.

    In the FDDM regime,the present paper develops an approach to solving diffusion problemswith nonlinear conductivities,which has advantages as follows:It leads tominimal stencils,coefficients of the resulted scheme are given explicitly avoiding solving matrix equations,and well-designed method for selecting neighboring points guarantees that the issue of singularity never emerges.Reference[9]also investigated this problem.However,the present paper deals with the diffusion operator and the nonlinear term more rigorously than Ref.[9].

    Furthermore,when the diffusion conductivity is discontinuous,we propose a scheme for discretizingmultimedia interface condition by the FDDM method.To discretize flux on interface, Ref.[5]employsmore neighbors of the master point,while we employ only five neighbors of the master point on each side of the interface,resulting flux with second-order accuracy.This idea is also explored to discretize energy flux of diffusion equation on unstructured meshes(for details see Ref.[10]).

    The rest of this paper is arranged as follows:Section 1 presents some preliminaries.Section 2 formulates numerical differentials on scattered point distributions.Section 3 constructsmethodology for solving nonlinear diffusion problems and discontinuous problems,and gives several numerical validations.Finally,concluding remarks aremade in Section 4.

    1 Prelim inaries

    To simplify presentation,we first introduce denotations and definitions as defined in Ref.[1].Let us denote

    ·i the index of point(xi,yi)and“O”a specific point(x0,y0);

    ·ljthe j-th direction vector from point O and ejthe corresponding unit vector;·Δlithe distance between point“O”and i;

    ·ui=u(xi,yi)the function value of u(x,y)at point i;and

    ·Δui=ui-u0the difference of function u(x,y).

    We also have

    ·〈ij〉∶=〈ijO〉,i.e.,k is a special point as“O”in the expression〈i jk〉.

    Here,there is a little changemade from Ref.[1]in that the denotation(·,·)is changed into〈·,·〉0, because(·,·)is just a special case of〈·,·〉.

    In this paper,since a large amount of operations for indices denoting direction vectors are required,we introduce an operation for indices defined as in Ref.[1]:

    Definition 1 (Algorithm○k)Given i,j,k(k≥3)positive integers,an addition of i and j with period of k is defined by

    where s is a nonnegative integer satisfying inequality sk<i+j≤(s+1)k.The operation○k can be also expressed by

    where(i+j-1)(mod k)represents the remainder of(i+j-1)modulo k.

    Remark 1.1 The operation○k is defined only for indices i,j,…,which is irrelevant to the numbering and ordering of the directions denoted by these indices(See Fig.1).

    Fig.1 Illustration for k directions

    Since the FDDM is based on directional differences,we need relations between directional derivatives,which will significantly help numerical discretization in the FDDM regime.

    Firstwe state relevant resultswith constant coefficients.

    Lemma 1 (see Ref.[1])Given three unit vectors e1,e2,e3at point(x,y),for a smooth function u(x,y)on domainΩ?R2,it follows that

    Lemma 2 (see Ref.[1])Given four unit vectors ei(i=1,2,3,4)at point(x,y),for secondorder directional derivatives of a smooth function u(x,y)on the domainΩ?R2,it follows that

    To handle practical problems,more general results are mandatory.By simple deduction,wederive relations between directional derivatives with variable coefficients as follows.

    Theorem 1 Given four arbitrary unit vectors ei(i=1,2,3,4),for smooth functions u(x,y)and κ(x,y)on domainΩ?R2,it follows that

    2 Numerical differentials and solvability

    Before constructing a discrete scheme for PDEs,we first deal with the basic issue,i.e.,the approximations to directional derivatives.

    Suppose that for a given point O and its five neighboring points(xi,yi)(i=1,…,5)whose indices i=1,…,5 are numbered freely(see Fig.2),the differencesΔui(i=1,…,5)of the smooth function u(x,y)are available.

    Fig.2 Point O and its five neighbors

    Let us denote by

    We also have

    and

    where

    With detailed analysis on the five-point formulae presented in Ref.[1],we formulatenumerical approximations for the first-order and second-order directional derivatives of the smooth function u(x,y)at point O in thematrix forms

    where

    E is a unitmatrix,and

    We call

    as the solvability condition.

    According to the result of Ref.[1],we note that Eq.(8)is second-order accurate as to the approximation to the first-order derivatives,and Eq.(9) is first-order accurate as to the approximation to the second-order derivatives.

    We also notice that whether solvability condition(11)is satisfied or not is a key issue.Reference[1]dealtwith this issue,and presented an algorithm of selecting neighboring points for solving diffusion problems,which will be employed in the present paper.

    From the above formulation we can learn that for the second-order directional derivatives,only information of themaster point and its five neighbors were used.One knows that five neighboring points are of the least number for approximating the second-order directional derivatives as consider the consistency.This is important to construct schemeswithminimal stencils.

    3 Discretization methodology

    In this section,we restrict our attention to constructing the discretization methodology for numerically solving diffusion equations,which have the form

    with initial condition

    and boundary condition

    whereΩis an open bounded domain with smooth boundary?Ω,T is the final time,κis the nonlinear diffusion coefficient and maybe discontinuous,and f,g1and g2are given functions.

    Hereafter,we always impose discretization toΩand?Ωby scattered point distribution,and denote the resulted discrete point set byΩhand?Ωh,respectively,and=Ωh∪?Ωh.

    It is obvious that discretization of the diffusion operator?·(κ(x,y,u)?u)is a key issue.The first step to employ FDDM is to express the diffusion operator by directional differentials.

    3.1 Expression of?·(κ?u)by directional differentials

    In this section and Section 3.2,we consider the case thatκis a smooth function.

    Given e1,e2,e3,three nonparallel unit vectors from point O(see Fig.3),and eI,eJ,unitvectors in x,y axis directions,respectively,then by means of Eq.(5),?·(κ?u)can be expressed by

    Fig.3 Three nonparallel unit vectors

    which can be simplified into

    3.2 Discretization of?·(κ?u)

    Fig.4 Point O and its five neighbors

    We suppose that every point inΩhhas five steady distribution neighbors satisfying solvability condition(11).

    Given a point O(x0,y0)and its five neighbors(xi,yi)(i=1, …,5)(see Fig.4),denote“i′”as themiddle pointof the segment,κ0=κ(x0,y0,u0),κi=κ(xi,yi,ui),=(κ0+κi)/2, andκi′=κ(ui′),i=1,2,…,5.It is obvious that

    Motivated by the technique in constructing numerical formula (9)for the second-order directional differentials,we have

    To simplify presentation,we denote by

    Moreover,noticing that“i′”is themiddle point of,togetherwith Eq.(16)we have

    By Eq.(17),it consequently follows that

    Therefore,by Eq.(15),we have

    Remark 3.1 (1)Note that scheme(21)reduces to a classical finite difference on uniform point distribution.

    (2)It is obvious that Eq.(21)yields stencils ofminimal size.

    3.3 Scheme for discretizing multimedia interface condition

    In this section,we construct discrete schemes for discontinuous diffusion problems.

    For simplicity,we consider the case of two subdomains,Ω1andΩ2,separated by an interface Γ,and suppose thatκis discontinuous throughΓwith respect to spatial variables x and y,but is continuous with respect to u.Denote the inward and outward unit normal vectors ofΓby n-and n+, and the associated conductivities byκ-andκ+,respectively.

    Aswe have derived the scheme proposed in Section 3.2 for the case thatκis continuous,now we need only to focus on constructing discrete scheme for the interface condition.We first place appropriate points onΓ.For any given point O belonging toΓand corresponding functional values u0,the procedure of ourmethod can be outlined as follows:

    1)Choose five neighbors of O on each side ofΓ,respectively,and denote them by1,2,3,4, 5 corresponding to n+side,1′,2′,3′,4′,5′corresponding to n-side(see Fig.5,the selected neighbors are marked bold,and other points are indicated by white circles),and their function values ui(i=1,…,5;1′,…,5′).In this step,we choose the nearest five points satisfying the solvability condition on each side.

    Fig.5 Illustration of selecting neighboring points for a point on interface

    The detailed procedure is as follows.

    By the relation between the first-order directional derivatives(3),we have

    Here,Δl+is an auxiliary quantity,which will be eliminated in the following deduction,M+is defined following Eq.(10),and a1j,a2j(j=1,2,…,5)are as given in Eq.(18).Therefore,wehave

    Likewise,we have

    Here,Δl-is also an auxiliary quantity similar toΔl+,and M-,a′1jand a′2j(j=1,2,…,5)are similar to M+,a1jand a2j(j=1,2,…,5).

    LetΔl+=Δl-,and denote by

    Applying Eqs.(24)and(25)to the continuous condition of energy flux Eq.(22),and eliminating Δl+andΔl-,we have

    which results in the discrete scheme for the interface condition as follows:

    To summarize,for a point belonging toΩ1(orΩ2),select its five neighbors from those belonging toΩ1∪Γ(orΩ2∪Γ),and then discretize the control equation(12)by the scheme(21);For a point belonging toΓ,the above scheme constructed for the interface condition is employed.After the discretization,we derive a large sparse system of algebraic equations,which can be solved by various iterativemethods.

    3.4 Numerical Results

    This section presents several numerical examples with different computational domains and different point distributions to investigate the accuracy and efficiency of the proposed approach.

    In the subsequent computation,the resulted nonlinear systems are solved by a classical Picard iterative process.And the linear systems are solved by a biconjugate gradient stabilized algorithm.

    To investigate convergence results of the proposed method,we define discrete norm errors as

    The convergence rate is

    where h1and h2are average distances corresponding to N1and N2,respectively.

    Exam p le 1 Consider the problem

    Fig.6 Point distribution on computational domain

    where f(x,y)=2(ey-x-ex-y),Ωis a semi-circle with two semi-circles cut out as shown in Fig.6.

    Note that discretizingΩby a good-quality mesh is a complex work as consider the corners (see e.g.the left bottom ofΩ),meanwhile distributing scattered points on it is rather easy.We employ this example to investigate the proposed method on an irregular computational domain. Corresponding numerical results are presented in Table 1.

    From Table 1, we can see that the approximation to the solution is almost secondorder accurate,and to the first-order directional derivatives of the solution is higher than first-order accurate.This indicates that the proposed method workswell on irregular computational domain.

    Table 1 Errors of u and its first-order derivatives

    Exam ple 2 Solve an nonlinear boundary problem

    whereκ(u)=u,and f(x,y),g(x,y)are given by the exact solution u(x,y)=2+cos(πx)+sin(πy).Ωis a unit square,which is discretized by three types of scattered points as shown in Fig.7.

    In this example,the tolerance of nonlinear iterative is‖Us+1-Us‖≤10-8,where Usand Us+1represent the numerical solution of two neighboring iterative steps,respectively.

    Corresponding numerical results are presented in Table 2.From this table,we see that approximations to the solution in the-norm and the-norm are almost second-order accuracy, except that the convergence rate in the-norm on Z-type point distribution is slightly low,which is also satisfactory as taking account of the highly anisotropic point distribution in this case.

    Fig.7 Three types of point distributions in square domain,left:uniform;middle:random;right:Z-type

    Table 2 Convergence results for nonlinear diffusion problem on three types of point distributions

    Fig.8 Random point distribution

    Exam ple 3 Solve a parabolic problem

    where T=10-3,and f(x,y,t),g1(x,y)and g2(x,y,t)are given by the exact solution u(x,y,t)=e-π2 t(2+cos(πx)+sin(πy)).Ωis a unit square,which is discretized as shown in Fig.8.

    Objective of this example is to compare FDDM with the classical least squaremethod(LSQ).The time step is chosen asΔt=10-5,and utis discretized by a backward difference formula.In LSQ,neighboring points are the nearest ones,the numbers of which are selected as 10,20,and 40,respectively.The numerical results are graphically depicted in Fig.9.

    One can observe the following:

    · Both methods have almost the same convergence rate.Errors of the LSQ are higher than those of the FDDM.

    ·For LSQ,the accuracy does not increase with increasing numbers of neighboring points.

    By this test problem,FDDM is also compared with LSQmethod in terms of computational cost.For a sequence of point distributions,Fig.10 shows CPU times for setting up and solving the systemmatrices.One can observe that the LSQ method has lower computational efficiency due to more neighboring points resulting in large discrete stencils,while the FDDM greatly benefits from the sparsity of its stencils when the number of unknowns increases.

    Fig.9 LSQ vs.FDDM,left:error,right:error

    Fig.10 Computational cost for setting up and solving system matrices:LSQ vs.FDDM

    Example 4 Solve a discontinuous coefficient problem(originally coming from Ref.[11])in the form

    whereΩ=[0,1]×[0,1],the conductivityκis discontinuous and given by

    and f,g are directly deduced from the exact solution

    Fig.11 Random point distribution

    It is obvious that this solution and its normal component of flux are continuous at x=0.5.

    The point distribution is almost the same as that in Example 3,but at x=0.5 uniformly distributed points are placed to coincide with the multimedia interface(shown in Fig.11).

    Here,we takeκ=10-3,10-6,and the corresponding results are shown in Fig.12 and Tables 3,4.

    Figure 12 displays results on the interface for the caseκ =10-3,which indicates that the numerical solutions and energy fluxes are very close to the exact values;Table 3gives corresponding convergent results,where NIis the total number of interface points.It is obvious that both numerical solutions and energy fluxes on the interface are second-order accurate.Results for the caseκ=10-6are similar to the above case,hence they are not displayed here.Table4 shows us that the solutions to the discontinuous coefficient problem with different coefficients are almost second-order accurate,which verifies good performance of the proposed method.

    Fig.12 Results on interface asκ=10-3,and N=289,NI=15,left:solutions:right:energy flux

    Table 3 Convergence results of solutions and energy fluxes on interface of discontinuous coefficient problem asκ=10-3

    Table 4 Convergence results for discontinuous coefficient problem

    4 Conclusions

    We present an approach for numerically solving nonlinear diffusion equations in the FDDM regime.Taking advantage of a proper method for selecting steady neighboring point set in the procedure,the approach leads tominimal stencils,avoiding singularity in computing process.

    Moreover,when the diffusion conductivity is discontinuous,discrete points are placed on the interface,and a scheme based on five-point formulae of the FDDM is proposed for discretizingmultimedia interface condition.In consequence,approximation to energy fluxes on interface is second-order accurate.

    Finally,the approaches are demonstrated to have good accuracy and efficiency by numerical exampleswith different computational domains and different point distributions.

    [1] Shen L J,Lv G X,Shen Z J.A finite pointmethod based on directional differences[J].SIAM JNumer Anal, 2009,47(3):2224-2242.

    [2] Seibold B.Minimal positive stencils inmeshfree finite differencemethods for the Poisson equation[J].Comput Methods Appl Mech Eng,2008,198(3-4):592-601.

    [3] Davydov O,Oanh D T.Adaptivemeshless centres and RBF stencils for Poisson equation[J].JComput Phys, 2011,230(2):287-304.

    [4] Larsson E,Lehto E,Heryudono A,Fornberg B.Stable computation of differentiation matrices and scattered node stencils based on Gaussian radial basis functions[J].SIAM JSci Comput,2013,35(4):2096-2119.

    [5] Iliev O,Tiwari S.A generalized(meshfree)finite differnce discretization for elliptic interface problems, numericalmethods and applications[C]∥Hutchison D.Lecture Notes in Computer Science.German:Springer, 2003:488-497.

    [6] Sophya T,Silva A D,Kribèchea A.A space-time meshlessmethod that removes numerical oscillations when solving PDEswith high discontinuities[J].Numerical Heat Transfer,Part B,2012,62(1):50-70.

    [7] O?ate E,Idelsohn S,ZienkiewiczOC,Taylor R L.A finite pointmethod in computingmechanicsapplication to convective transport and fluid flow[J].Internat JNumer Methods Engrg,1996,39:3839-3866.

    [8] Lv GX,Shen L J,Shen Z J.Study on finite pointmethod[J].Chinese Journal of Computational Physics,2008, 25(5):505-524.

    [9] Lv G X,Shen L J.A finite pointmethod based on directional derivatives for diffusion equation[C]∥Cemal A.World Academy of Science Engineering and Technology.Singapore:International Scientific Research and Experimental Development,2011:211-216.

    [10] Lv G X,Shen L J,Shen Z J.Numerical methods for energy flux of temperature diffusion equation on unstructured meshes[J].Int JNumer Meth Biomed Engng,2010,26(5):646-665.

    [11] Shashkov M,Steinberg S.Solving diffusion equationswith rough coefficients in rough grids[J].JComput Phys, 1996,129:383-405.

    A Finite Directional Difference M eshless M ethod for Diffusion Equations

    LV Guixia, SUN Shunkai
    (Laboratory ofComputational Physics,Institute of Applied Physics and Computational Mathematics,P.O.Box 8009-26,Beijing 100088,China)

    1001-246X(2015)06-0649-13

    An approach for numerically solving nonlinear diffusion equations on 2D scattered point distributions is developed with finite directional difference method.The approach yields stencils of minimal size using five neighboring points.And coefficients of discretization have explicitexpressions.A scheme employing five-point formulae is proposed to discretizemultimedia interface condition for discontinuous problems in which approximation to flux on interface is second-order accurate.The discretizationmethods show good performance in numerical exampleswith different computational domains and different point distributions.

    meshless;finite directional differencemethod;nonlinear diffusion equations;multimedia interface;minimal stencil

    O241.82 Document code:A

    Received date:2014-12-17;Revised date:2015-02-05

    Foundation items:Supported by National Natural Science Foundation of China(11371066,11372050)and Foundation of Laboratory of Computational Physics

    Biography:Lv Guixia(1972-),female,Dr.,professor,engaged in numerical solution of partial differential equations,E-mail:lvguixia@126.com

    猜你喜歡
    江西師范大學(xué)雅麗信息科學(xué)
    勞動(dòng)贊歌
    Temperature-Dependent Growth of Ordered ZnO Nanorod Arrays
    Hydrothermal Synthesis of Ordered ZnO Nanorod Arrays by Nanosphere Lithography Method
    山西大同大學(xué)量子信息科學(xué)研究所簡(jiǎn)介
    SPECTRAL PROPERTIES OF DISCRETE STURM-LIOUVILLE PROBLEMS WITH TWO SQUARED EIGENPARAMETER-DEPENDENT BOUNDARY CONDITIONS*
    三元重要不等式的推廣及應(yīng)用
    光電信息科學(xué)與工程專業(yè)模塊化課程設(shè)計(jì)探究
    基于文獻(xiàn)類型矯正影響因子在信息科學(xué)與圖書館學(xué)期刊中的實(shí)證分析
    對(duì)旅游專業(yè)外語的理想教學(xué)模式的思考——以江西師范大學(xué)為例
    Younger and Older learners’Advantages on Language Acquisition in Different Learning Settings
    精品不卡国产一区二区三区| 一级黄色大片毛片| 亚洲中文字幕日韩| 一区福利在线观看| 亚洲av一区综合| 一进一出抽搐动态| 中文字幕久久专区| 伦理电影大哥的女人| 一区二区三区高清视频在线| 国产高清视频在线观看网站| 舔av片在线| 免费大片18禁| 99久久无色码亚洲精品果冻| 一区二区三区四区激情视频 | 我要搜黄色片| 嫩草影院新地址| 免费观看的影片在线观看| 少妇人妻精品综合一区二区 | 亚洲成人中文字幕在线播放| .国产精品久久| 久久香蕉精品热| 亚洲第一区二区三区不卡| 日韩欧美 国产精品| av在线观看视频网站免费| 精品久久国产蜜桃| 在线免费观看不下载黄p国产 | 午夜福利高清视频| 综合色av麻豆| 桃色一区二区三区在线观看| 欧美高清成人免费视频www| 老熟妇仑乱视频hdxx| 亚洲自偷自拍三级| 久久久国产成人免费| 日本一本二区三区精品| 国产免费一级a男人的天堂| 国产黄片美女视频| 久久国产乱子伦精品免费另类| 国产成人福利小说| 国内精品久久久久久久电影| 亚洲一区二区三区不卡视频| 亚洲成人中文字幕在线播放| 性插视频无遮挡在线免费观看| 欧美极品一区二区三区四区| 亚洲精品一卡2卡三卡4卡5卡| 久久精品久久久久久噜噜老黄 | 欧美丝袜亚洲另类 | 成人国产一区最新在线观看| 黄色视频,在线免费观看| 一级黄片播放器| 国产伦精品一区二区三区四那| 全区人妻精品视频| 哪里可以看免费的av片| 老司机午夜十八禁免费视频| 天天一区二区日本电影三级| 国产高清激情床上av| 91久久精品国产一区二区成人| 首页视频小说图片口味搜索| 麻豆国产av国片精品| 人妻制服诱惑在线中文字幕| 欧美色欧美亚洲另类二区| 亚洲人与动物交配视频| 99riav亚洲国产免费| 我要看日韩黄色一级片| www.999成人在线观看| 嫩草影院精品99| 啪啪无遮挡十八禁网站| 97热精品久久久久久| 日韩有码中文字幕| 欧美极品一区二区三区四区| 99热这里只有精品一区| 国产探花在线观看一区二区| 欧美最黄视频在线播放免费| 欧美色欧美亚洲另类二区| 女人被狂操c到高潮| 日韩欧美在线二视频| 精品一区二区三区av网在线观看| 中文字幕免费在线视频6| 日韩 亚洲 欧美在线| 99久久精品国产亚洲精品| 美女高潮的动态| 99久久成人亚洲精品观看| 可以在线观看毛片的网站| 日韩国内少妇激情av| 又紧又爽又黄一区二区| 他把我摸到了高潮在线观看| av女优亚洲男人天堂| 亚洲av成人精品一区久久| 99国产精品一区二区三区| 国产亚洲精品综合一区在线观看| 日本三级黄在线观看| 无人区码免费观看不卡| 中亚洲国语对白在线视频| 男女视频在线观看网站免费| 亚洲成av人片免费观看| 在线看三级毛片| 观看免费一级毛片| 亚洲av二区三区四区| 色噜噜av男人的天堂激情| 午夜福利在线观看吧| 国产在视频线在精品| 亚洲国产高清在线一区二区三| 久久人人爽人人爽人人片va | 真实男女啪啪啪动态图| 精品国产亚洲在线| 91午夜精品亚洲一区二区三区 | 搡老熟女国产l中国老女人| 久久久久精品国产欧美久久久| 精品人妻熟女av久视频| 亚洲avbb在线观看| 中文字幕人妻熟人妻熟丝袜美| 欧美另类亚洲清纯唯美| 1024手机看黄色片| 日韩高清综合在线| 一本一本综合久久| 亚洲成av人片免费观看| 久久九九热精品免费| 女人被狂操c到高潮| 别揉我奶头~嗯~啊~动态视频| 又爽又黄无遮挡网站| 在线免费观看不下载黄p国产 | 免费观看人在逋| 国产精品自产拍在线观看55亚洲| 我要搜黄色片| 日韩欧美免费精品| 日韩欧美精品免费久久 | 亚洲国产日韩欧美精品在线观看| 亚洲在线观看片| 天堂网av新在线| 日日摸夜夜添夜夜添小说| 国产高清三级在线| 精品人妻一区二区三区麻豆 | 国产一级毛片七仙女欲春2| 丁香欧美五月| 90打野战视频偷拍视频| 久久性视频一级片| 亚洲精品粉嫩美女一区| 亚洲av不卡在线观看| 欧美日韩综合久久久久久 | 国产成年人精品一区二区| 成人性生交大片免费视频hd| 欧美绝顶高潮抽搐喷水| 亚洲18禁久久av| 在线免费观看不下载黄p国产 | 日本 av在线| 给我免费播放毛片高清在线观看| 国产成+人综合+亚洲专区| 男女做爰动态图高潮gif福利片| 禁无遮挡网站| 午夜日韩欧美国产| 中文字幕人成人乱码亚洲影| 久久久国产成人免费| 亚洲无线观看免费| 丰满人妻一区二区三区视频av| 国产美女午夜福利| 成年版毛片免费区| 露出奶头的视频| 色综合欧美亚洲国产小说| 九九在线视频观看精品| 深爱激情五月婷婷| 国产精品永久免费网站| 免费在线观看影片大全网站| 亚洲国产精品成人综合色| 久久人妻av系列| 中文字幕av成人在线电影| 日本a在线网址| 国产又黄又爽又无遮挡在线| 国产午夜精品久久久久久一区二区三区 | 国产成人a区在线观看| 久久欧美精品欧美久久欧美| 黄色女人牲交| 中文字幕熟女人妻在线| 亚洲av电影在线进入| 男女之事视频高清在线观看| av视频在线观看入口| 欧美乱妇无乱码| 别揉我奶头 嗯啊视频| 成人永久免费在线观看视频| 国产精品免费一区二区三区在线| 国产亚洲欧美98| 一个人看的www免费观看视频| 五月玫瑰六月丁香| 一卡2卡三卡四卡精品乱码亚洲| 成年女人看的毛片在线观看| 有码 亚洲区| 国产精品久久久久久人妻精品电影| 日本a在线网址| 91在线精品国自产拍蜜月| 亚洲欧美日韩卡通动漫| 国产高清有码在线观看视频| x7x7x7水蜜桃| 亚洲第一欧美日韩一区二区三区| 免费av观看视频| eeuss影院久久| 99riav亚洲国产免费| 在线播放无遮挡| 日本 av在线| 简卡轻食公司| 99视频精品全部免费 在线| a级毛片免费高清观看在线播放| 人妻久久中文字幕网| 不卡一级毛片| 亚洲国产精品成人综合色| 99精品在免费线老司机午夜| 久久精品国产亚洲av香蕉五月| 精品人妻熟女av久视频| 国产视频一区二区在线看| 国产精品自产拍在线观看55亚洲| 淫妇啪啪啪对白视频| av天堂在线播放| 免费搜索国产男女视频| 99精品在免费线老司机午夜| 国产三级在线视频| АⅤ资源中文在线天堂| 黄色视频,在线免费观看| 搡老妇女老女人老熟妇| 久9热在线精品视频| 又爽又黄a免费视频| 欧美日韩瑟瑟在线播放| 人妻夜夜爽99麻豆av| 91麻豆精品激情在线观看国产| 在线观看美女被高潮喷水网站 | 午夜久久久久精精品| av天堂中文字幕网| 国产欧美日韩一区二区三| 久久天躁狠狠躁夜夜2o2o| 天堂影院成人在线观看| 最近在线观看免费完整版| 国产久久久一区二区三区| 欧美日韩瑟瑟在线播放| 日韩欧美国产一区二区入口| 变态另类丝袜制服| 久久精品91蜜桃| 激情在线观看视频在线高清| 91久久精品电影网| 黄片小视频在线播放| 亚洲黑人精品在线| 国产69精品久久久久777片| 国产精品电影一区二区三区| 小说图片视频综合网站| 九九久久精品国产亚洲av麻豆| 琪琪午夜伦伦电影理论片6080| 久久久国产成人免费| 亚洲av不卡在线观看| 亚洲一区二区三区不卡视频| 成人国产一区最新在线观看| 五月玫瑰六月丁香| 欧美性猛交╳xxx乱大交人| 午夜免费激情av| bbb黄色大片| 亚洲av中文字字幕乱码综合| 免费人成在线观看视频色| 免费无遮挡裸体视频| 91av网一区二区| 狠狠狠狠99中文字幕| 欧美极品一区二区三区四区| 伦理电影大哥的女人| 丰满的人妻完整版| 午夜精品在线福利| 国产白丝娇喘喷水9色精品| 久久精品综合一区二区三区| 99热这里只有是精品50| 国产蜜桃级精品一区二区三区| 欧美色欧美亚洲另类二区| 亚洲精品亚洲一区二区| 午夜免费激情av| 在线十欧美十亚洲十日本专区| 国产一区二区在线av高清观看| 黄色丝袜av网址大全| 精品人妻视频免费看| 一本一本综合久久| 国产精品人妻久久久久久| 嫩草影视91久久| 男女下面进入的视频免费午夜| 色哟哟·www| 欧美日韩福利视频一区二区| 婷婷丁香在线五月| 99久久九九国产精品国产免费| 国产午夜精品久久久久久一区二区三区 | 亚洲乱码一区二区免费版| 搡老妇女老女人老熟妇| 国产精品永久免费网站| 亚洲专区中文字幕在线| 男插女下体视频免费在线播放| 免费看光身美女| 淫秽高清视频在线观看| 成人鲁丝片一二三区免费| 欧美激情久久久久久爽电影| 亚洲乱码一区二区免费版| 国产91精品成人一区二区三区| 欧美成人性av电影在线观看| 久久九九热精品免费| 怎么达到女性高潮| 看十八女毛片水多多多| eeuss影院久久| 成人午夜高清在线视频| 精品久久久久久久久久久久久| 大型黄色视频在线免费观看| 国产人妻一区二区三区在| 全区人妻精品视频| 嫁个100分男人电影在线观看| 黄色一级大片看看| 成人午夜高清在线视频| 国内精品一区二区在线观看| 亚洲av第一区精品v没综合| 亚洲中文日韩欧美视频| 90打野战视频偷拍视频| 色综合婷婷激情| 十八禁网站免费在线| 欧美另类亚洲清纯唯美| 三级国产精品欧美在线观看| 男人舔女人下体高潮全视频| 国产爱豆传媒在线观看| 美女黄网站色视频| 1024手机看黄色片| 成人永久免费在线观看视频| av欧美777| 熟女人妻精品中文字幕| 中文字幕久久专区| 看十八女毛片水多多多| 国产91精品成人一区二区三区| 亚洲国产色片| 级片在线观看| av天堂中文字幕网| 我要搜黄色片| 国产精品亚洲美女久久久| a级毛片a级免费在线| 日韩大尺度精品在线看网址| 亚洲18禁久久av| 亚洲久久久久久中文字幕| 动漫黄色视频在线观看| 久久亚洲真实| 看十八女毛片水多多多| 一个人免费在线观看的高清视频| 中文在线观看免费www的网站| 搡女人真爽免费视频火全软件 | 精品午夜福利在线看| 中文在线观看免费www的网站| 搡女人真爽免费视频火全软件 | 一个人观看的视频www高清免费观看| 国产伦在线观看视频一区| 亚洲狠狠婷婷综合久久图片| 亚洲国产日韩欧美精品在线观看| 免费看美女性在线毛片视频| 特级一级黄色大片| 51午夜福利影视在线观看| 韩国av一区二区三区四区| 国产精品日韩av在线免费观看| 啦啦啦韩国在线观看视频| 深夜精品福利| 国产色爽女视频免费观看| 宅男免费午夜| av在线老鸭窝| 一二三四社区在线视频社区8| 久久久久久久亚洲中文字幕 | 9191精品国产免费久久| 乱人视频在线观看| 老司机深夜福利视频在线观看| 制服丝袜大香蕉在线| 国产成+人综合+亚洲专区| 深爱激情五月婷婷| 久久精品国产亚洲av涩爱 | 成人三级黄色视频| 少妇的逼好多水| 国产日本99.免费观看| 国产探花极品一区二区| 欧美一区二区亚洲| 欧美精品啪啪一区二区三区| 99久久无色码亚洲精品果冻| 女同久久另类99精品国产91| 亚洲成av人片免费观看| 老熟妇仑乱视频hdxx| 久99久视频精品免费| 国语自产精品视频在线第100页| 精品午夜福利在线看| 在线免费观看不下载黄p国产 | 亚洲在线自拍视频| 欧美日韩黄片免| 国产精品日韩av在线免费观看| 人妻久久中文字幕网| 91久久精品电影网| 男女视频在线观看网站免费| 99久久99久久久精品蜜桃| 久久精品国产清高在天天线| 99热这里只有是精品在线观看 | 久久久国产成人精品二区| av在线观看视频网站免费| 97超级碰碰碰精品色视频在线观看| 自拍偷自拍亚洲精品老妇| 欧美3d第一页| 中文字幕人成人乱码亚洲影| 黄色丝袜av网址大全| 国产91精品成人一区二区三区| 又黄又爽又刺激的免费视频.| 亚洲自偷自拍三级| 麻豆一二三区av精品| or卡值多少钱| 天天一区二区日本电影三级| 国产精品久久视频播放| 国产午夜福利久久久久久| 久久九九热精品免费| 1000部很黄的大片| 非洲黑人性xxxx精品又粗又长| 国产av在哪里看| 成年免费大片在线观看| www日本黄色视频网| 色av中文字幕| 色吧在线观看| 丁香六月欧美| 超碰av人人做人人爽久久| 国产精品乱码一区二三区的特点| 久久天躁狠狠躁夜夜2o2o| 熟女电影av网| 成人av在线播放网站| 亚洲专区中文字幕在线| 国产精品亚洲av一区麻豆| 久久国产乱子免费精品| 亚洲第一电影网av| 国产成年人精品一区二区| 可以在线观看毛片的网站| 综合色av麻豆| 国产真实伦视频高清在线观看 | 一个人看视频在线观看www免费| 亚洲欧美日韩卡通动漫| 国产精品亚洲一级av第二区| av女优亚洲男人天堂| 神马国产精品三级电影在线观看| 亚洲第一欧美日韩一区二区三区| 日韩欧美一区二区三区在线观看| 啦啦啦观看免费观看视频高清| 亚洲精品粉嫩美女一区| 国产伦在线观看视频一区| 久久6这里有精品| .国产精品久久| 国产亚洲精品久久久com| 日韩欧美 国产精品| 免费在线观看亚洲国产| 国产一区二区在线观看日韩| 久久国产精品人妻蜜桃| 色综合站精品国产| 欧美成人a在线观看| 亚洲精品一卡2卡三卡4卡5卡| 99riav亚洲国产免费| 悠悠久久av| 久久久久性生活片| 国内揄拍国产精品人妻在线| 亚洲av成人精品一区久久| 久久久久久久午夜电影| 国产免费男女视频| 在线观看午夜福利视频| 12—13女人毛片做爰片一| 一级黄片播放器| 五月伊人婷婷丁香| 中文字幕人妻熟人妻熟丝袜美| АⅤ资源中文在线天堂| 一本综合久久免费| 男女视频在线观看网站免费| .国产精品久久| 一个人观看的视频www高清免费观看| 搡老熟女国产l中国老女人| 亚洲18禁久久av| 精品久久久久久成人av| 97碰自拍视频| 亚洲最大成人手机在线| 一个人看的www免费观看视频| 乱人视频在线观看| 波多野结衣巨乳人妻| 少妇的逼好多水| 淫妇啪啪啪对白视频| 久久中文看片网| av黄色大香蕉| 日韩欧美一区二区三区在线观看| 老司机福利观看| 国产私拍福利视频在线观看| 亚洲av中文字字幕乱码综合| 欧美zozozo另类| 亚洲国产高清在线一区二区三| 欧美xxxx性猛交bbbb| 久久国产乱子免费精品| 观看免费一级毛片| 最近视频中文字幕2019在线8| 国产毛片a区久久久久| 国产亚洲精品久久久com| 久久久久亚洲av毛片大全| 婷婷丁香在线五月| 日本精品一区二区三区蜜桃| 在线观看舔阴道视频| 欧美成人a在线观看| 悠悠久久av| 久久久国产成人精品二区| 久久久久久久久大av| a级一级毛片免费在线观看| 69人妻影院| 成年女人看的毛片在线观看| 97超级碰碰碰精品色视频在线观看| 久久精品夜夜夜夜夜久久蜜豆| 怎么达到女性高潮| 亚洲av第一区精品v没综合| 亚洲中文字幕日韩| 色视频www国产| 免费av毛片视频| 国产在线男女| 日本 欧美在线| ponron亚洲| 色综合欧美亚洲国产小说| 亚洲自偷自拍三级| 国产免费男女视频| 久久九九热精品免费| 欧美日本亚洲视频在线播放| 在线播放国产精品三级| 国产三级黄色录像| 成人国产综合亚洲| 亚洲人成电影免费在线| 欧美在线黄色| 国产精品电影一区二区三区| 久久久久久久精品吃奶| 老熟妇仑乱视频hdxx| 老司机福利观看| 亚洲av成人av| 757午夜福利合集在线观看| 国产精品嫩草影院av在线观看 | 亚洲综合色惰| 9191精品国产免费久久| 亚洲精品久久国产高清桃花| 午夜福利在线在线| 高清在线国产一区| 舔av片在线| 国产视频一区二区在线看| 免费在线观看亚洲国产| 久久精品国产清高在天天线| 韩国av一区二区三区四区| 18禁裸乳无遮挡免费网站照片| 午夜福利在线在线| 国产综合懂色| 我要搜黄色片| 亚洲一区二区三区色噜噜| 亚洲精品456在线播放app | 久久久国产成人免费| 亚洲精品成人久久久久久| 人妻丰满熟妇av一区二区三区| 嫩草影院新地址| 国产免费一级a男人的天堂| 欧美成人免费av一区二区三区| 久久精品影院6| 久久久久国产精品人妻aⅴ院| 亚洲国产色片| 国产主播在线观看一区二区| 午夜免费男女啪啪视频观看 | 亚洲欧美日韩卡通动漫| 12—13女人毛片做爰片一| 亚洲avbb在线观看| 亚洲无线在线观看| 国产精品亚洲一级av第二区| 美女高潮的动态| 精品午夜福利在线看| 成人高潮视频无遮挡免费网站| 长腿黑丝高跟| 欧美最新免费一区二区三区 | 在线播放无遮挡| 欧美在线一区亚洲| 波野结衣二区三区在线| 国产日本99.免费观看| 国产精品,欧美在线| 亚洲国产日韩欧美精品在线观看| 高清毛片免费观看视频网站| 国产野战对白在线观看| 亚洲欧美日韩高清在线视频| 狠狠狠狠99中文字幕| 久久久久久九九精品二区国产| 欧美另类亚洲清纯唯美| 久久久久久大精品| 亚洲中文字幕日韩| 国产v大片淫在线免费观看| 床上黄色一级片| 黄色日韩在线| 夜夜夜夜夜久久久久| 99热只有精品国产| 国产探花极品一区二区| 成人性生交大片免费视频hd| 黄色女人牲交| 亚洲一区二区三区不卡视频| 最近在线观看免费完整版| avwww免费| 亚洲午夜理论影院| 亚洲最大成人手机在线| 少妇丰满av| 免费av观看视频| 国产亚洲av嫩草精品影院| 少妇被粗大猛烈的视频| 免费一级毛片在线播放高清视频| 久久天躁狠狠躁夜夜2o2o| 久久人人精品亚洲av| 国产探花在线观看一区二区| 中亚洲国语对白在线视频| 亚洲乱码一区二区免费版| 中文字幕久久专区| 精品久久久久久久末码| av在线观看视频网站免费| 国产色婷婷99| 嫩草影院新地址| 久久精品人妻少妇| 精品人妻一区二区三区麻豆 | 精品一区二区三区人妻视频| 成人性生交大片免费视频hd| 村上凉子中文字幕在线| 亚洲av电影不卡..在线观看| 丰满的人妻完整版| 日韩大尺度精品在线看网址| 欧美日韩中文字幕国产精品一区二区三区| netflix在线观看网站| 亚洲七黄色美女视频| 一个人看的www免费观看视频| 毛片女人毛片| 国产精品久久久久久亚洲av鲁大| 国产精品久久久久久久久免 | 欧美乱妇无乱码|