第一作者趙峰男,博士生,1987年生
通信作者曹樹謙男,博士,教授,1964年生
干摩擦懸臂梁一階等效固有頻率研究
趙峰1,2,3,曹樹謙1,2,3,馮文周1,2,3(1.天津大學(xué)機(jī)械工程學(xué)院,天津300072;2. 天津市非線性動(dòng)力學(xué)與混沌控制重點(diǎn)實(shí)驗(yàn)室,天津300072;3. 內(nèi)燃機(jī)燃燒學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室,天津300072)
摘要:采用牛頓第二定律及拉格朗日方程,分別對(duì)干摩擦懸臂梁及等效模型建立振動(dòng)控制方程,獲得兩種模型的激勵(lì)力與頻率關(guān)系式,基于能量相等建立等效方程進(jìn)行一階等效固有頻率研究,獲得干摩擦懸臂梁等效固有頻率解析表達(dá)式。采用數(shù)值方法計(jì)算干摩擦懸臂梁模型一階固有頻率。結(jié)果表明,數(shù)值與解析結(jié)果一致性較好,即懸臂梁等效固有頻率隨干摩擦增大而減小。所得解析表達(dá)式能更直接獲得干摩擦力對(duì)懸臂梁固有頻率影響規(guī)律。
關(guān)鍵詞:干摩擦;懸臂梁;固有頻率;等效法
基金項(xiàng)目:天津市自然科學(xué)基金重點(diǎn)項(xiàng)目(11JCZDJC25400); 齊齊哈爾軌道交通裝備有限責(zé)任公司項(xiàng)目(2011GFW-0663)
收稿日期:2014-03-12修改稿收到日期:2014-05-08
中圖分類號(hào):O322文獻(xiàn)標(biāo)志碼:A
First order equivalent natural frequency for a cantilever beam with dry friction
ZHAOFeng1,2,3,CAOShu-qian1,2,3,FENGWen-zhou1,2,3(1. School of Mechanical Engineering, Tianjin University, Tianjin 300072, China;2.Tianjin Municipal Key Laboratory of Nonlinear Dynamics and Chaos Control, Tianjin 300072, China; 3.State Key Laboratory of Engines, Tianjin University, Tianjin 300072, China)
Abstract:Here, the first order natural frequency of a cantilever beam with dry friction was studied using an equivalent method. The motion equations of the beam and its equivalent model were established using Newton’s second law and Lagrange equation, respectively. Then, the relationships between excitation force and natural frequency of the two models were obtained. Base on the idea of inputting same energy, using the equivalent method, an analytical expression for the first order equivalent natural frequency of the cantilever beam with dry friction was derived. The numerical method for calculating the first order natural frequency of the beam was used to verify the effectiveness of the equivalent method. The results showed that the first order natural frequencies obtained with the numerical method and the analytical expression agree well under different dry frictions, the first order equivalent natural frequencies decrease with increase in dry friction; furthermore, the analytical expression for the first order equivalent natural frequency of the beam can directly reflect the effect law of dry friction on the first order natural frequency of the cantilever beam.
Key words:dry friction; cantilever beam; natural frequency; equivalent method
機(jī)械系統(tǒng)中干摩擦作為重要的阻尼資源,對(duì)系統(tǒng)振動(dòng)影響頗受關(guān)注[1],并廣泛用于航空發(fā)動(dòng)機(jī)轉(zhuǎn)子葉片、貨車轉(zhuǎn)向架搖枕側(cè)架及其它結(jié)構(gòu)[2]。在機(jī)械結(jié)構(gòu)中,干摩擦能快速有效抑制因外部擾動(dòng)致系統(tǒng)產(chǎn)生的動(dòng)力學(xué)響應(yīng)[3-4],而干摩擦因素對(duì)系統(tǒng)動(dòng)態(tài)固有特性影響關(guān)注較少。目前,非線性模態(tài)概念較難用于干摩擦結(jié)構(gòu)振動(dòng)固有特性研究[5-6];而數(shù)值方法不能給出簡(jiǎn)單直觀的解析式。因此基于等效思想,用解析方法探索庫(kù)侖干摩擦力對(duì)懸臂梁固有頻率影響規(guī)律[7-9]不失為可行的研究方法。
研究系統(tǒng)固有頻率等效方法一般包括微分方程法、能量法及靜變形法。本文采用微分方程法[7]及能量法[10-13]研究懸臂梁固有頻率受橫向干摩擦因素的影響規(guī)律。對(duì)此已有研究涉及,如基于單自由度質(zhì)量彈簧模型為等效對(duì)象,文獻(xiàn)[14-16]簡(jiǎn)略介紹求解非線性系統(tǒng)固有頻率等效思想;文獻(xiàn)[17-18]研究縱向干摩擦力對(duì)懸臂梁振動(dòng)特性影響,未涉及系統(tǒng)固有頻率解析表達(dá)式及干摩擦力對(duì)固有頻率影響規(guī)律研究。
本文采用牛頓第二定律及拉格郎日方程,分別建立干摩擦懸臂梁模型及懸臂梁等效模型運(yùn)動(dòng)方程,通過(guò)等效思想求得干摩擦懸臂梁固有頻率解析式;并采用數(shù)值方法對(duì)一階等效固有頻率解析式進(jìn)行數(shù)值驗(yàn)證。結(jié)果表明,數(shù)值解與解析解一致較好性,故用于研究干摩擦力對(duì)懸臂梁振動(dòng)固有特性影響規(guī)律。本文方法為干摩擦影響下機(jī)械結(jié)構(gòu)固有振動(dòng)特性研究提供可行的解析方法。
1模型運(yùn)動(dòng)方程
以自由端具有干摩擦阻尼的均質(zhì)懸臂梁為研究對(duì)象,見圖1。系統(tǒng)阻尼為干摩擦,摩擦接觸點(diǎn)在z2處,干摩擦阻尼由摩擦界面法向壓力FN產(chǎn)生。采用牛頓第二定律建立運(yùn)動(dòng)方程,并求解方程的力頻(諧波激勵(lì)力F與固有頻率)關(guān)系。
圖1 干摩擦懸臂梁 Fig.1 Model of cantilever beam with dry friction
據(jù)牛頓第二定律,運(yùn)動(dòng)方程可寫為
(1)
式中:m(x)為梁?jiǎn)挝婚L(zhǎng)度質(zhì)量;w(x,t)為梁橫向振動(dòng)位移;F(x,t)為梁自由端點(diǎn)激振力(作用于z1點(diǎn));FN為摩擦界面法向壓力;EI(x)為梁抗彎剛度;μ為摩擦界面庫(kù)侖摩擦系數(shù)。
對(duì)式(1)用一階伽遼金近似,設(shè)梁位移表達(dá)式為
w(x,t)=z(t)φ(x)
(2)
將式(2)代入式(1),進(jìn)行伽遼金過(guò)程產(chǎn)生等效單模態(tài)模型(設(shè)φL=φ(L)>0,懸臂梁自由端振型值)為
式中:mn,mnωn2,f(t)分別為模態(tài)質(zhì)量、模態(tài)剛度及力函數(shù)。
設(shè)模態(tài)幅值與模態(tài)力函數(shù)為
z(t)=Acos(ωt)
(4)
f(t)=fccos(ωt)+fssin(ωt)
(5)
對(duì)不連續(xù)的符號(hào)函數(shù)連續(xù)化處理,即對(duì)符號(hào)函數(shù)進(jìn)行傅里葉級(jí)數(shù)展開,并取一階項(xiàng)為
sgn(-Aωsin(ωt))≈-(4/π)sin(ωt)
(6)
將式(4)、(5)、(6)代入式(3),平衡一次諧波項(xiàng)系數(shù),整理得
(7)
式中:fc為激勵(lì)力余弦力幅值;fs為激勵(lì)力正弦力幅值。
式(7)為由干摩擦懸臂梁模型推導(dǎo)所得激勵(lì)力正、余弦幅值與系統(tǒng)固有頻率關(guān)系(激勵(lì)力與懸臂梁固有頻率關(guān)系,簡(jiǎn)稱力頻關(guān)系)。
2等效模型運(yùn)動(dòng)方程
據(jù)激勵(lì)能量相等原理建立等效模型,見圖2,等效模型物理、結(jié)構(gòu)參數(shù)同圖1。
圖2 等效懸臂梁 Fig.2 Equivalent model of cantilever beam with dry friction
考慮懸臂梁阻尼特性,采用拉格朗日第二類方程建立等效模型運(yùn)動(dòng)方程。懸臂梁系統(tǒng)動(dòng)能為
(8)
式中:ai為梁廣義坐標(biāo);Mi為梁廣義質(zhì)量。
懸臂梁模型勢(shì)能與系統(tǒng)耗散能為
(9)
(10)
式中:ωi為懸臂梁第i階固有頻率;ζi為懸臂梁第i階阻尼。
激勵(lì)力所做虛功為
(11)
式中:F為外部激勵(lì)力;xF為激勵(lì)力F作用位置。
拉格朗日函數(shù)為
L=T-V=
(12)
由此得拉格朗日運(yùn)動(dòng)方程為
(13)
式(13)中假設(shè)模態(tài)函數(shù)為
a(t)=Acos(ωt)
(14)
式中:A為幅值;ω為振動(dòng)頻率。
式(13)中假設(shè)模態(tài)激勵(lì)力函數(shù)為
F(t)=Fccos(ωt)+Fssin(ωt)
(15)
式中:Fc為余弦激勵(lì)力部分;Fs為正弦激勵(lì)力部分。
將式(14)、(15)代入式(13),平衡一階諧波項(xiàng)系數(shù)、化簡(jiǎn)整理,并為便于區(qū)分等效固有頻率與懸臂梁固有頻率,令方程中干摩擦作用后懸臂梁等效固有頻率Ωi=ωi,對(duì)等效模型運(yùn)用拉格朗日方程及諧波平衡法建立力頻關(guān)系式為
(16)
3固有頻率解析式
干摩擦力會(huì)對(duì)系統(tǒng)的振動(dòng)特性產(chǎn)生影響[19]。懸臂梁受干摩擦力后,其固有振動(dòng)特性變化,本文將用激勵(lì)能量等效方法進(jìn)行研究。令干摩擦懸臂梁正、余弦力fs、fc與無(wú)干摩擦懸臂梁正、余弦力Fs、Fc相等及n=i=1,可得干摩擦懸臂梁第一階等效固有頻率。消去激勵(lì)頻率ω,整理并化簡(jiǎn)得
(17)
式中:Ω1為干摩擦懸臂梁第一階等效固有頻率。
將式(17)進(jìn)一步簡(jiǎn)化,令M1=m1,摩擦力fd=μFN。等效表達(dá)式中,為保證無(wú)干摩擦條件下等效固有頻率解析值與線性固有頻率相等,令等效固有頻率線性項(xiàng)部分φi(xF)=1,得等效固有頻率簡(jiǎn)化表達(dá)式為
(18)
式中:ω1為懸臂梁第一階固有頻率。
4數(shù)值驗(yàn)證
圖1、圖2模型懸臂梁結(jié)構(gòu)參數(shù)見表1。
表1 懸臂梁結(jié)構(gòu)參數(shù)
對(duì)式(3)進(jìn)行數(shù)值計(jì)算,驗(yàn)證一階等效固有頻率解析式的正確性。在不同干摩擦力下用快速傅里葉變換,獲得系統(tǒng)響應(yīng)頻域曲線,計(jì)算曲線峰值即得各干摩擦力工況系統(tǒng)一階固有頻率數(shù)值解,并與解析值比較,以達(dá)驗(yàn)證解析式目的。令f(t)=0,模態(tài)階數(shù)n=1,則方程(3)為
(19)
式中:m1=3.12;ω1=8.38;φ1(L)=1.1322;μFN為干摩擦力幅值(表2)。
將每個(gè)干摩擦力幅值代入方程(19),計(jì)20個(gè)工況,對(duì)每種工況進(jìn)行數(shù)值計(jì)算,獲得不同干摩擦工況下一階固有頻率值。以位移1 mm、速度0 mm/s為初始條件,設(shè)置采樣頻率fs=100 Hz,采樣點(diǎn)N=1024。對(duì)響應(yīng)位移信號(hào)(或速度信號(hào))用快速傅里葉變換獲得頻域曲線,取曲線峰值即可得一階固有振動(dòng)頻率[20-21]。20種干摩擦力工況所得懸臂梁一階固有頻率見表2。
表2 不同干摩擦力工況下懸臂梁一階固有頻率
將表2中不同干摩擦工況一階固有頻率數(shù)值解(圖3離散點(diǎn))與解析式(18)的解析值(圖3實(shí)線)對(duì)比發(fā)現(xiàn),兩種方法所得結(jié)果吻合度較高,實(shí)線與離散點(diǎn)變化趨勢(shì)基本一致,即隨干摩擦力增大一階固有頻率降低。因此,數(shù)值計(jì)算方法驗(yàn)證了一階等效固有頻率解析表達(dá)式的正確性與有效性。由圖3看出,當(dāng)干摩擦力在0~1 N時(shí)兩種方法所得一階固有頻率偏差很小,且在此階段系統(tǒng)固有頻率受干摩擦力影響較??;干摩擦力在1~2.5 N之間時(shí)兩種方法所得一階固有頻率偏差較高,且干摩擦力對(duì)固有頻率影響較大。由數(shù)值解、解析解發(fā)現(xiàn),隨干摩擦力增大一階固有頻率呈整體下降趨勢(shì);數(shù)值結(jié)果呈非單調(diào)性,而解析結(jié)果隨干摩擦力增大單調(diào)遞減。此因解析過(guò)程中,通過(guò)一次傅里葉近似將庫(kù)侖干摩擦力模型光滑化。
圖3 解析一階等效固有頻率(實(shí)線) 與數(shù)值一階固有頻率(離散點(diǎn)) Fig.3 First-order equivalent natural frequency of analytic method (solid line) and numerical method (discrete points)
圖4 阻尼對(duì)等效一階固有頻率影響 (三種不同大小阻尼) Fig.4 Influence of damping on the first order equivalent natural frequency (three different damping)
式(18)中等效懸臂梁阻尼參數(shù)ζ1為給定,按已給阻尼參數(shù)所得解析結(jié)果與數(shù)值方法所得結(jié)果最佳逼近原則給定阻尼參數(shù)為0.011。整體上阻尼參數(shù)對(duì)解析值變化趨勢(shì)無(wú)影響,但對(duì)具體結(jié)果有影響,給定不同阻尼所得解析值也不同。阻尼增大或減小時(shí)對(duì)等效頻率影響見圖4。以阻尼為0.011的等效固有頻率曲線為基準(zhǔn),阻尼增大時(shí)等效固有頻率曲線向上偏移;阻尼減小時(shí)等效固有頻率曲線向下偏移。
5結(jié)論
(1)采用牛頓第二定律對(duì)干摩擦懸臂梁模型建立運(yùn)動(dòng)方程,運(yùn)用拉格郎日第二方程建立等效模型運(yùn)動(dòng)方程,基于激勵(lì)能量相等原理求得干摩擦懸臂梁第一階等效固有頻率解析解表達(dá)式并進(jìn)行數(shù)值驗(yàn)證。結(jié)果表明解析值與數(shù)值解一致性較好。解析式能直觀反映懸臂梁固有頻率受干摩擦力影響規(guī)律。
(2)法向壓力只產(chǎn)生干摩擦阻尼力,對(duì)梁的剛度無(wú)影響。結(jié)構(gòu)僅受干摩擦阻尼力影響,梁固有頻率亦僅受非線性阻尼影響。
(3)一階固有頻率解析值與數(shù)值解均表明,隨干摩擦力幅值增大懸臂梁固有頻率逐漸降低。因干摩擦力函數(shù)光滑化,解析值具有單調(diào)下降特點(diǎn);數(shù)值運(yùn)算中未對(duì)符號(hào)函數(shù)進(jìn)行處理,數(shù)值解具有非單調(diào)特性。干摩擦力幅值較小時(shí)對(duì)懸臂梁固有頻率基本無(wú)影響;干摩擦力較大時(shí)懸臂梁固有頻率下降幅度較大。此對(duì)干摩擦結(jié)構(gòu)設(shè)計(jì)具有指導(dǎo)意義。
參考文獻(xiàn)
[1]Den Hartog J P. Forced vibrations with combined viscous and coulomb damping[J]. Phil.Mag.S.7, 1930,59(9): 801-817.
[2]趙峰,曹樹謙,于躍斌,等. 干摩擦雙層梁的工作模態(tài)實(shí)驗(yàn)方法[J]. 振動(dòng)、測(cè)試與診斷, 2013, 33(6): 971-976.
ZHAO Feng, CAO Shu-qian, YU Yao-bin, et al. The experimental method study of operating modal analysis on a double beam model with dry friction[J]. Journal of Vibration, Measurement & Diagnosis, 2013, 33(6): 971-976.
[3]賈尚帥,丁千. 剎車系統(tǒng)的摩擦自激振動(dòng)和控制[J]. 工程力學(xué), 2012(3): 252-256.
JIA Shang-shuai, DING Qian. Friction-induced self-excited vibration and control of a brake system[J]. Engineering Mechanics, 2012(3): 252-256.
[4]丁千,陳予恕. 轉(zhuǎn)子碰摩運(yùn)動(dòng)的非穩(wěn)態(tài)分析[J]. 航空動(dòng)力學(xué)報(bào), 2000(2): 191-195.
DING Qian, CHEN Yu-shu. Non-stationary analysis of rotor/casing rubbing [J]. Journal of Aerospace Power, 2000(2): 191-195.
[5]陳予恕,吳志強(qiáng). 非線性模態(tài)理論的研究進(jìn)展[J]. 力學(xué)進(jìn)展, 1997, 27(3): 289-299.
CHEN Yu-shu, WU Zhi-qiang. Advances in study on theories of nonlinear normal modes [J]. Advances in Mechanics, 1997, 27(3): 289-299.
[6]Vakakis A F, Bergman L A, McFarland D M, et al. Current efforts towards a non-linear system identification methodology of broad applicability[J]. Proceedings of the Institution of Mechanical Engineers[C]. Journal of Mechanical Engineering Science, 2011: 1-19.
[7]Whiteman W E, Ferri A A. Displacement-dependent dry friction damping of a beam-like structure[J]. Journal of Sound and Vibration, 1996, 198(3): 313-329.
[8]嚴(yán)天宏,鄭鋼鐵,黃文虎. 由摩擦阻尼鉸實(shí)現(xiàn)桁架結(jié)構(gòu)的被動(dòng)減振研究[J]. 航空學(xué)報(bào), 1999, 20(1): 17-21.
YAN Tian-hong, ZHENG Gang-tie, HUANG Wen-hu. Research on passive vibration control of truss structures by displacement-dependent dry frictional joints[J]. Acta Aeronauticaet Astronautica Sinica, 1999, 20(1): 17-21.
[9]Ren Y S, Qin H Z, Zhao Z L. Nonlinear vibration analysis of a beam with dry friction at the supports[J]. Mechanics Research Communications, 1999, 26(1): 83-89.
[10]Ferri A A, Dowell E H. Frequency domain solutions to multi-degree-of-freedom, dry friction damped systems[J]. Journal of Sound and Vibration, 1988, 124(2): 207-224.
[11]Dowell E H, Schwartz H B. Forced response of a cantilever beam with a dry friction damper attached, part 1: theory[J]. Journal of Sound and Vibration, 1983, 91(2): 255-267.
[12]Young J G, Kim Y H, Chang H G. An analysis of the behavior of a simply supported beam with a dry friction damper attached[J]. Applied Acoustics, 1998, 55(1): 31-41.
[13]郝淑英,陳予恕,張琪昌. 連接結(jié)構(gòu)松動(dòng)對(duì)系統(tǒng)非線性動(dòng)力學(xué)特性的影響[J]. 天津大學(xué)學(xué)報(bào), 2001, 34(4): 452-454.
HAO Shu-ying, CHEN Yu-shu, ZHANG Qi-chang. Effects of connect loosing and sliding on dynamic characteristics[J]. Journal of Tianjin University, 2001, 34(4): 452-454.
[14]Ferri A A, Whiteman W E. Free response of a system with negative viscous damping and displacement-dependent dry friction damping[J]. Journal of Sound and Vibration, 2007, 306: 400-418.
[15]Ostachowicz W M. A discrete linear beam model to investigate the nonliear effects of slip friction[J]. Computer and Structures, 1990, 36(4): 721-728.
[16]Poudou O J. Modeling and analysis of the dynamics of dry-friction-damped structural systems[D]. USA:University of Michigan, 2007.
[17]Dowell E H. The behavior of a linear, damped modal system with a non-linear spring-mass-dry friction damper system attached[J]. Journal of Sound and Vibration, 1983, 89(1): 65-84.
[18]Dowell E H. Damping in beams and plates due to slipping at the support boundaries[J]. Journal of Sound and Vibration, 1986, 105(2): 243-253.
[19]Kerschen G, Worden K, Vakakis A F, et al. Past, present and future of nonlinear system identification in structural dynamics[J]. Mechanical Systems and Signal Processing, 2006, 20(3): 505-592.
[20]丁虎, 張國(guó)策, 陳立群. 超臨界軸向運(yùn)動(dòng)梁橫向非線性振動(dòng)頻域分析[J]. 固體力學(xué)學(xué)報(bào), 2011, 32(4): 360-363.
DING Hu, ZHANG Guo-ce, CHEN Li-qun. Frequency domain analysis of supercritical nonlinear vibration of axially moving beams[J]. Chinese Journal of Solid Mechanics, 2011, 32(4): 360-363.
[21]佟德純. 設(shè)備故障診斷技術(shù)講座,第四講:機(jī)械設(shè)備振動(dòng)特征分析[J]. 振動(dòng)與沖擊, 1993, 12(2): 70-78.
TONG De-chun. Lectures of diagnostic techniques of Equipment failures, the fourth section: vibration characteristics analysis of mechanical equipments [J]. Journal of Vibration and Shock, 1993, 12(2): 70-78.