• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    PbO-PbI2復(fù)合物膜轉(zhuǎn)化的CH3NH3PbI3鈣鈦礦薄膜及其光電特性

    2015-12-29 11:19:00丁緒坤李效民高相東張樹德黃宇迪李浩然中國科學(xué)院上海硅酸鹽研究所高性能陶瓷和超微結(jié)構(gòu)國家重點(diǎn)實(shí)驗(yàn)室上海200050
    物理化學(xué)學(xué)報 2015年3期
    關(guān)鍵詞:鹵化物樹德鈣鈦礦

    丁緒坤 李效民 高相東 張樹德 黃宇迪 李浩然(中國科學(xué)院上海硅酸鹽研究所,高性能陶瓷和超微結(jié)構(gòu)國家重點(diǎn)實(shí)驗(yàn)室,上海200050)

    PbO-PbI2復(fù)合物膜轉(zhuǎn)化的CH3NH3PbI3鈣鈦礦薄膜及其光電特性

    丁緒坤 李效民*高相東 張樹德 黃宇迪 李浩然
    (中國科學(xué)院上海硅酸鹽研究所,高性能陶瓷和超微結(jié)構(gòu)國家重點(diǎn)實(shí)驗(yàn)室,上海200050)

    有機(jī)-無機(jī)鹵化物鈣鈦礦是一類優(yōu)異的光電材料.在過去四年內(nèi),基于有機(jī)-無機(jī)鹵化物鈣鈦礦的光電器件實(shí)現(xiàn)了超過15%的光電轉(zhuǎn)換效率.而有機(jī)-無機(jī)鹵化物鈣鈦礦材料的可控制備是保證其在光電器件中應(yīng)用的基礎(chǔ).本文采用新的沉積方法在玻璃襯底表面制備了一種典型的有機(jī)-無機(jī)鹵化物鈣鈦礦CH3NH3PbI3薄膜.其制備過程是:采用超聲輔助的連續(xù)離子吸附與反應(yīng)法在玻璃襯底表面沉積PbO-PbI2復(fù)合物膜,之后與CH3NH3I蒸汽在110°C環(huán)境下反應(yīng),將PbO-PbI2復(fù)合物膜轉(zhuǎn)化成CH3NH3PbI3鈣鈦礦薄膜.對CH3NH3PbI3薄膜的微觀結(jié)構(gòu),結(jié)晶性及其光電性能等進(jìn)行了表征.結(jié)果表明,CH3NH3PbI3薄膜呈晶態(tài),具有典型的鈣鈦礦晶體結(jié)構(gòu).薄膜表面形貌均勻,晶粒尺寸超過400 nm.在可見光范圍,CH3NH3PbI3薄膜透過率低于10%,能帶寬度為1.58 eV.電學(xué)性能研究表明CH3NH3PbI3薄膜表面電阻率高達(dá)1000 MΩ.高表面電阻率表明CH3NH3PbI3薄膜具有一定的介電性能,其介電常數(shù)(εr)在100 Hz時達(dá)到155.本研究提出了一種制備高質(zhì)量CH3NH3PbI3鈣鈦礦薄膜的新方法,所得CH3NH3PbI3薄膜可望在光、電及光電器件中得到應(yīng)用.

    CH3NH3PbI3;薄膜;鈣鈦礦;連續(xù)離子吸附與反應(yīng)法;氣相過程;光電材料

    ?Editorial office ofActa Physico-Chimica Sinica

    Key Words:CH3NH3PbI3;Thin film;Perovskite;Successive ionic layer adsorption and reaction; Vapor process;Photovoltaic material

    1 Introduction

    Organic-inorganic halide perovskites CH3NH3PbX3(X=Cl,Br, I)have recently attracted great attention due to their special physical and chemical properties.There are some organic-inorganic halide perovskites(CH3NH3PbI3,CH3NH3PbIxCl3-x,CH3NH3PbIxBr3-x) having been vastly investigated.Among them,CH3NH3PbI3is considered as an ideal absorber in photovoltaic devices due to its narrow band gap,1high absorption coefficient,2near-perfect crystallinity,and excellent electron and hole transport.3Although first implemented in dye-sensitized solar cells based on mesoporous structures,4-6CH3NH3PbI3has been gradually found to assume planar architecture solar cells.7-9Therefore significant efforts have been made to enhance controllability of CH3NH3PbI3thin film quality for constructing high performance planar structure devices.

    Several techniques,such as co-evaporation of two precursors,9,10solution-based spin-coating,11,12vapor-assisted solution process,13have been developed to prepare CH3NH3PbI3thin films.However, co-evaporation demands sophisticated equipment which hinders mass production and spin-coating often results in incomplete surface coverage.It is also difficult for vapor-assisted solution process to find suitable solvents which can dissolve PbI2at room temperature.13Hence,in views of low cost and non-solution spincoating process,there is an urge to develop a simple approach for fabricating CH3NH3PbI3thin films.

    Successive ionic layer adsorption and reaction(SILAR)technique for deposition of thin films is based on a heterogeneous reaction between adsorbed ions and solvated ions on the solidliquid interface.14With outstanding features of low-cost,the simplicity of procedure and high quality of obtaining films,SILAR technique has been widely applied to prepare kinds of semiconductor films,for instance PbS,15Cu2S,16CdS,17ZnO,18In2S3,19and the like,on various substrates.On the other hand,ultrasonic has been introduced to SILAR technique because of the nature of high energy field and cavitations20etc.Further researches show that ultrasonic-assisted SILAR technique reveals thin films with smoother and more compact surface morphology compared with the traditional SILAR method because the former can remove the loose particles effectively.21

    In this article,we fabricated CH3NH3PbI3thin films by reacting ultrasonic-assisted SILAR derived PbO-PbI2hybrid films with CH3NH3I vapor at high temperature of 110°C.The key step was that PbO-PbI2hybrid films were deposited on glass slide substrates by ultrasonic-assisted SILAR technique.CH3NH3PbI3thin films then were prepared via the in-situ reaction of the hybrid films with CH3NH3I vapor at 110°C,which led to the formation of uniform and compact CH3NH3PbI3thin films on substrates.The deposition mechanism of CH3NH3PbI3thin films was investigated by X-ray diffraction(XRD),scanning electron microscopy(SEM), and energy dispersive X-ray spectroscopy(EDS).Optical and electrical properties of thin films were also presented.

    2 Experimental

    2.1 Materials

    Chemicals used in this work including lead nitrate(PbNO3,≥99%),ethanolamine(C2H7NO,≥99%),sodium iodide(NaI,≥99%)were used without further purification.CH3NH3I was synthesized according to reported procedure.24 mL methylamine (CH3NH2,33%(w)in alcohol,Sigma)and 10 mL hydroiodic acid (HI,57%(w)in water,Aldrich)reacted in 250 mL round bottomed flask at 0°C for 2 h with stirring.The precipitate was recovered by evaporation on a rotary evaporator at 60°C for 1 h. The yellow raw product was washed with diethyl ether(C4H10O,≥99.5%)and repeated three times.After drying at 60°C in vacuum oven over 24 h,white solid CH3NH3I was obtained.

    2.2 Preparation of CH3NH3PbI3thin films

    The glass slides were chosen as substrates and cleaned by ultrasonic in deionized water,ethanol,and acetone sequentially for 15 min and dried under a nitrogen flow before used.

    In ultrasonic-assisted SILAR procedure,aqueous solutions of lead nitrate complex with ethanolamine(ETA)and sodium iodide were used as precursors.The concentrations of the solutions were 0.1 and 0.2 mol·L-1,respectively.In a representative cycle of ultrasonic-assisted SILAR procedure,substrates were immersed into lead ion(Pb2+)precursors,iodide ion(I-)precursors and rinsed by ultrasonic in pure alcohol in turn.The absorption and reaction time were both set as 30 s while 90 s was spent to sweep incompact grains away completely in rinsing process.After repeating deposition cycles 20 times,the as-deposited films were annealed at 350°C in tube furnace with nitrogen protecting for 2 h.After that,the PbO-PbI2hybrid thin films were prepared.

    The vapor process was chosen to fabricate CH3NH3PbI3thin films according to the reference.13Briefly speaking,the CH3NH3I powder was spread out around the substrates.Then the PbO-PbI2hybrid thin films were covered by a petridish and heated at 110°C for 6 h.This process was treated in vacuum drying oven.

    2.3 Characterization

    The crystal structure of thin films was determined using X-ray diffraction(Bruker D8Advance,3 kW)with Cu Kαirradiation(λ= 0.154 nm).The morphology and film thickness were characterized with Magellan 400 scanning electron microscope(SEM)and the composition of as-deposited thin films was analyzed by integrated EDS system.Optical transmittance spectra in the UV-Vis range (300-1000 nm)was measured using a Techcomp UV2310II PC double beam spectrophotometer.The surface resistivity and dielectric constant were tested by Keithley 4200 and Agilent E4980A,respectivly.Fordielectric constanttesting,the CH3NH3PbI3thin films were deposited on FTO glass(SnO2:Ftransparent conductive glass,sheet resistivity 15 Ω·□-1).Carrier concentration and carrier mobility of the CH3NH3PbI3films were measured using Hall effect measurement,which was performed by linking Keithley 4200 and 2400 to Quantum Design PPMS-9 system.

    3 Results and discussion

    3.1 Deposition and reaction mechanism of thin films

    Fig.1 is the standard schematic illustration of CH3NH3PbI3thin film fabrication.In ultrasonic-assisted SILAR procedure,lead ions are firstly adsorbed on glass substrates after immersion in lead nitrate complex with ETA solution.Then absorbed lead ions reacted with iodide ions in sodium iodide solution(equation(1)).At the same time,part of absorbed lead ions hydrolyzed(equation (2)).Therefore we suggested that the whole reaction resulted in not only PbI2but also amount of Pb(OH)2.It was unusual because cation hydrolyzing usually occupied a rather small part in entire reaction.In our work,the likely reasons for violent hydrolysis reaction are(i)the instability of complex lead nitrate,(ii)slight alkaline sodium iodide solution caused by dissolution of ETA. Accordingly,the chemical constituents of as-deposited thin films included PbI2and Pb(OH)2.To remove organics and improve the crystalline,the as-deposited films were heat treated at 350°C in nitrogen gas atmosphere.After annealing,Pb(OH)2thermally decomposed into PbO(equation(3)),but PbI2was reserved.The phenomena that film color became faint yellow from white demonstrated PbO-PbI2hybrid thin films formed.

    Fig.1 Schematic diagram of CH3NH3PbI3thin film formation

    Dipping the PbO-PbI2hybrid thin films into the solution of CH3NH3I in 2-propanol of 10 mg·mL-1did not change its color even after prolonging immersing time and raising CH3NH3I concentration.It suggested the reaction condition between PbO and CH3NH3I much stricter than that of between PbI2and CH3NH3I.So vapor process was chosen to fabricate CH3NH3PbI3thin films(equations(4),(5)).The vapor process is based on reaction between solid thin films and CH3NH3I gas.And the whole vapor process was carried out in relative high temperature of 110°C which provided kinetically favorable environment.After lasting 6 h reaction time,film′scolor became dark brown finally and no yellow remnant remained.

    The possible reaction equations involved in the whole process are listed below.

    3.2 Morphology and growth rate of thin films in ultrasonic-assisted SILAR process

    Fig.2 is the SEM images of as-deposited and PbO-PbI2hybrid thin films with and without application of ultrasonic rinsing.The number of deposited cycles is 20.The top-view images of asdeposited films with ultrasonic rinsing were depicted in Fig.2a.As indicated in which,as-deposited films were smooth and covered the substrates completely.Grains with size smaller than 20 nm made up the as-deposited films.Fig.2c shows that after heat treating,grains size of the PbO-PbI2hybrid thin films became slightly bigger and scattered voids among adjacent grains presented which caused by PbO grains growing up and Pb(OH)2decomposing,respectively.For the same reason,the cross section of PbO-PbI2hybrid films was full of pores which could be obviously observed via contrasting Fig.2(b,d).These pores acted as transport tunnel of CH3NH3I gas in vapor-process,therefore pores were beneficial for vapor reaction proceeding.

    In ultrasonic-assisted SILAR process,ultrasonic rinsing is of great importance for obtaining uniform films.Fig.2(e,f)shows the surface of PbO-PbI2hybrid thin films with and without application of ultrasonic rinsing.For PbO-PbI2hybrid thin films without ultrasonic rinsing,certain amount of large grains and film peeling off from substrates were observed clearly while smooth surface and full surface coverage were obtained after ultrasonic rinsing.In every SILAR cycle,lead nitrate complex ETA reacted with sodium iodide.And the precipitates,with different adsorptive attraction and particles size,attached on film surface.The function of ultrasonic rinsing is primarily to remove loose and large grains of film.So PbO-PbI2hybrid thin films obtained from ultrasonicassisted SILAR are more smooth and compact.

    Fig.3 shows the relationship between PbO-PbI2hybrid thin films thickness and the number of ultrasonic-assisted SILAR cycles.Alinear dependence on the number of cycles was observed which was consistent with traditional SILAR technique results.However,an amazing growth rate of average 13 nm per cycle was obtained which was significantly higher than traditional SILAR technique.22With this high growth rate,PbO-PbI2hybrid thin films with 656 nm thickness could be achieved only after 50 deposition cycles.The morphology characterization of different cycles is similar.

    Fig.2 Top-view SEM images of(a)as-deposited films,(b)cross section of(a),(c)PbO-PbI2hybrid films,(d)cross section of(c), (e)lower resolution image of(c),and(f)hybrid films without ultrasonic rinsing

    Fig.3 cross section SEM images of PbO-PbI2hybrid films with (a)10 cycles and(b)50 cycles

    3.3 Morphology characterization of CH3NH3PbI3thin films

    Fig.4a shows the top-view SEM images of CH3NH3PbI3thin films.It was clearly that the CH3NH3PbI3thin films had full surface coverage on the substrates.Detail surface morphology is shown in Fig.4b which is the high resolution of Fig.4a.The CH3NH3PbI3grain size is up to 400-500 nm which is one order of magnitude bigger than that of PbO-PbI2hybrid films.The relative high temperature of vapor process promotes rearrangement and growing up of small grain in PbO-PbI2hybrid films so that grain size of CH3NH3PbI3thin films increases up to sub-micrometers.The smooth surface of PbO-PbI2hybrid films resulted in relatively small roughness of CH3NH3PbI3films.All the characteristics of CH3NH3PbI3thin films suggested its promising application in photovoltaic devices.

    In vapor process,the reaction temperature has a giant effect on CH3NH3PbI3thin film quality.As shown in Fig.4d,the CH3NH3PbI3thin films fabricating at 150°C pelt off glass sub-strate so that a number of cracks between film and substrate appeared.However,impact cross section was achieved when the reaction temperature reduced to 110°C.The reaction rate between PbO-PbI2hybrid films and CH3NH3I vapor is crucial for fabricating high quality CH3NH3PbI3thin films.150°C temperature results in very fast reacting which produces large internal stress in CH3NH3PbI3thin films.So CH3NH3PbI3thin films peel off from substrates easily and the quality of CH3NH3PbI3thin films intensively deteriorates.

    Fig.4 (a)Top-view SEM images of CH3NH3PbI3thin films,(b)high resolution of(a),cross section SEM images of CH3NH3PbI3thin films at(c)110°C and(d)150°C

    The surface SEM images of CH3NH3PbI3thin films which prepared by different methods are shown in Fig.5.Details about CH3NH3PbI3perovskite film fabrication process including twostep solution method and vapor-assisted solution process could be found elsewhere.11,13By contrast,it is observed that the ultrasonicassisted SILAR derived CH3NH3PbI3thin films have uniform and compact morphology without any voids and cracks.However,the CH3NH3PbI3perovskite films fabricated by the other two processes are full of voids and cracks between perovskite grains.The two-step solution method and vapor-assisted solution process are all based on PbI2films prepared by solution spin-coating process. The solution spin-coating based PbI2films exhibit big grains of a few hundred nanometers and larger voids among grains.13Hence, after the perovskite films formation,voids and cracks do not vanish completely,even the perovskite grains growing up. Compared to the conventional PbI2films prepared by solution spin-coating process,the PbO-PbI2hybrid films are composed by much smaller grains with a few tens of nanometers and cracks between grains.During the transformation from PbO-PbI2hybrid films to perovskite films,the crystalline grains rearrange and the cracks disappear.

    Fig.5 Top-view SEM images of CH3NH3PbI3films fabricated by(a)two-step solution method,(b)vapor-assisted solution process,and (c)ultrasonic-assisted SILAR technique

    3.4 Composition and crystallinity of thin films

    Fig.6 shows XRD pattern and EDS mapping of thin films.XRD pattern revealed the amorphous structure of as-deposited films caused by low operation temperature in ultrasonic-assisted SILAR process.Further identification of chemical compositions in asdeposited films was conducted by EDS analysis.Due to relatively thinfilms′thickness,the elements in glass substrates were also detected.Hydrogen element was neglected because of the limited detection of EDS.Atom ration of Pb and I was determined to be about 8.6:1 and this ration heavily deviated from 1:2 in pure PbI2. The departure of atom ration demonstrated the main component in as-deposited films was Pb(OH)2.Carbon element may come from ETAwhich would be removed in annealing procedure.

    XRD pattern of PbO-PbI2hybrid films is shown in Fig.6(a).In XRD pattern,the diffraction peak of PbO could be clearly observed,but not for PbI2because of relative small amounts. Looking closely,there was a tiny signature peak at 12.69°corresponding to the(001)diffraction peak for PbI2.The presence of weak peak indicated PbI2phases in hybrid films.In XRD pattern of CH3NH3PbI3thin films,a series of main diffraction peaks at 14.16°,28.49°,and 31.85°which were assigned to(110),(220), (310)of the CH3NH3PbI3perovskite crystal respectively suggested formation of CH3NH3PbI3perovskite.The disappearance of PbO and PbI2characteristic peaks implied that CH3NH3PbI3perovskite films were high purity.Hence,the CH3NH3PbI3perovskite films fabricated by our method are high crystallinity and have few impurities.

    3.5 Optical properties of thin films

    Fig.7(a)shows the transmittance spectra in the wavelength range of 300 to 1000 nm of as-prepared films,PbO-PbI2hybrid films,and CH3NH3PbI3thin films.As contrast,optical property of glass slides without any films was included.The as-deposited films performed high transparency in the visible region and transmittance decreased slightly after annealing.However,for theCH3NH3PbI3thin films,high absorbance could be observed.In visible wavelength,CH3NH3PbI3thin films showed low transmittance below 10%.So the CH3NH3PbI3thin films were dark brown by naked eye.

    Fig.6 (a)XRD patterns of films,(b)EDS of as-deposited films

    The band gap of CH3NH3PbI3thin film was estimated by studying the relationship between adsorption coefficient(α)and photo energy(hv)as

    Fig.7 (a)Transmittance spectra of thin films and glass slide substrate and(b)plot of(αhν)2-hν for CH3NH3PbI3films

    In which,k is constant;the exponent m equals 1/2 for direct band gap materials and 2 for indirect gap materials.The absorption coefficient α was calculated after subtracting absorbance of glass substrate and neglecting reflectance at normal incidence.Fig.7(b) shows the plot of(αhν)2-hν for CH3NH3PbI3thin films.By elongating the linear part of the plot,the intercept of photo energy was determined as the band gap.For CH3NH3PbI3thin films,the band gap is 1.58 eV,which is well comparable with the band gap (1.51 eV)reported in previous article.23

    3.6 Electrical properties of thin films

    Fig.8 (a)Surface resistivity and(b)dielectric constant of CH3NH3PbI3perovskite films as a function of frequency

    Fig.8(a)shows current-voltage(I-V)dependence of CH3NH3PbI3thin films.A remarkable behavior which can be easily spotted from I-V curve is the strongly non-Ohmic characteristics.Being repeatedly displayed at different applied voltages,the non-Ohmic properties are suggested to be attributed to ferroelectric response in CH3NH3PbI3.24The calculated surface resistivity value forprepared CH3NH3PbI3thin films by ignoring the nonlinear parts of the plot is about 1000 MΩ at room temperature.Interestingly, the surface resistivity value varies slightly with the applied voltage.A higher applied voltage generates a higher surface resistivity.Generally speaking,CH3NH3PbI3shows poor electrical conductivity.The conductivity type of CH3NH3PbI3thin films determined by Hall effect measurement is a p-type semiconductor with carrier concentration in the order of 1015cm-3.The carrier mobility is 5.8 cm2·V-1·s-1.The poor electrical conductivity could be related with low hole concentration.

    The characteristic behavior of the frequency dependent of the dielectric constant of CH3NH3PbI3is also been detected as shown in Fig.8(b).The dielectric constant of CH3NH3PbI3thin films decreases from a low frequency value of about εr(100 Hz)=155 to the high frequency value in the order of tens.The high dielectric constant in low frequency implies that CH3NH3PbI3could be a candidate in energy devices.25

    4 Conclusions

    In summary,CH3NH3PbI3thin films were fabricated on glass substrates by reacting ultrasonic-assisted SILAR derived PbO-PbI2hybrid films with CH3NH3Ivapor at high temperature of 110°C. SEM,XRD,EDS,UV-Vis spectroscopy,surface resistivity,and dielectric constant test were performed to characterize the prepared CH3NH3PbI3thin films.The results showed that CH3NH3PbI3thin films derived from our approach exhibited full surface coverage,uniform structure with grain size up to 400 nm.The suitable band gap of 1.58 eV and electrical properties of high dielectric constant suggest that CH3NH3PbI3thin films prepared by our technique could be used in photovoltaic or other photoelectrical devices.Our method offers a relatively low-cost and convenient way to synthesize CH3NH3PbI3thin films with high quality for large-scale application.

    (1)Noh,J.H.;Jeon,N.J.;Choi,Y.C.;Nazeeruddin,M.K.; Gr?tzel,M.;Seok,S.I.J.Mater.Chem.A2013,1,11842.doi: 10.1039/c3ta12681a

    (2)Im,J.H.;Lee,C.R.;Lee,J.W.;Park,S.W.;Park,N.G. Nanoscale2011,3,4088.doi:10.1039/c1nr10867k

    (3)Xing,G.C.;Mathews,N.;Sun,S.Y.;Lim,S.S.;Lam,Y.M.; Gr?tzel,M.;Mhaisalkar,S.;Sum,T.C.Science2013,342, 344.doi:10.1126/science.1243167

    (4)Burschka,J.;Pellet,N.;Moon,S.J.;Humphry-Baker,R.;Gao, P.;Nazeeruddin,M.K.;Gr?tzel,M.Nature2013,499,316. doi:10.1038/nature12340

    (5)Etgar,L.;Gao,P.;Xue,Z.S.;Peng,Q.;Chandiran,A.K.;Liu, B.;Nazeeruddin,M.K.;Gr?tzel,M.J.Am.Chem.Soc.2012,134,17396.doi:10.1021/ja307789s

    (6)Kim,H.S.;Lee,J.W.;Yantara,N.;Boix,P.P.;Kulkarni,S.A.; Mhaisalkar,S.;Gr?tzel,M.;Park,N.G.Nano Lett.2013,13, 2412.doi:10.1021/nl400286w

    (7)Chen,Q.;Zhou,H.P.;Song,T.B.;Luo,S.;Hong,Z.;Duan,H. S.;Dou,L.T.;Liu,Y.S.;Yang,Y.Nano Lett.2014,14,4158. doi:10.1021/nl501838y

    (8)Jeng,J.Y.;Chen,K.C.;Chiang,T.Y.;Lin,P.Y.;Tsai,T.D.; Chang,Y.C.;Guo,T.F.;Chen,P.;Wen,T.C.;Hsu,Y.J.Adv. Mater.2014,26,4107.doi:10.1002/adma.v26.24

    (9)Liu,M.Z.;Johnston,M.B.;Snaith,H.J.Nature2013,501, 395.doi:10.1038/nature12509

    (10)Kim,H.S.;Lee,C.R.;Im,J.H.;Lee,K.B.;Moehl,T.; Marchioro,A.;Moon,S.J.;Humphry-Baker,R.;Yum,J.H.; Moser,J.E.;Gr?tzel,M.;Park,N.G.Sci.Rep.2012,2,591.

    (11)Yella,A.;Heiniger,L.P.;Gao,P.;Nazeeruddin,M.K.;Gr?tzel, M.Nano Lett.2014,14,2591.doi:10.1021/nl500399m

    (12)Mei,A.Y.;Li,X.;Liu,L.F.;Ku,Z.L.;Liu,T.F.;Rong,Y.G.; Xu,M.;Hu,M.;Chen,J.Z.;Yang,Y.;Gr?tzel,M.;Han,H.W. Science2014,345,295.doi:10.1126/science.1254763

    (13)Chen,Q.;Zhou,H.P.;Hong,Z.;Luo,S.;Duan,H.S.;Wang,H. H.;Liu,Y.S.;Li,G.;Yang,Y.J.Am.Chem.Soc.2014,136, 622.doi:10.1021/ja411509g

    (14)Kanniainen,T.;Lindroos,S.;Ihanus,J.;Leskela,M.J.Mater. Chem.1996,6,161.doi:10.1039/jm9960600161

    (15)Kanniainen,T.;Lindroos,S.;Resch,R.;Leskela,M.; Friedbacher,G.;Grasserbauer,M.Mater.Res.Bull.2000,35, 1045.doi:10.1016/S0025-5408(00)00298-1

    (16)Zhuge,F.W.;Li,X.M.;Gao,X.D.;Gan,X.Y;Zhou,F.L. Mater.Lett.2009,63,652.doi:10.1016/j.matlet.2008.12.010

    (17)Zhang,Q.B.;Feng,Z.F.;Han,N.N.;Lin,L.L.;Zhou,J.Z.; Lin,Z.H.Acta Phys.-Chim.Sin.2010,26,2927.[張橋保,馮曾芳,韓楠楠,林玲玲,周劍章,林仲華.物理化學(xué)學(xué)報,2010,26,2927.]doi:10.3866/PKU.WHXB20101113

    (18)Jambure,S.B.;Patil,S.J.;Deshpande,A.R.;Lokhande,C.D. Mater.Res.Bull.2014,49,420.doi:10.1016/j. materresbull.2013.09.007

    (19)Sall,T.;Raidou,A.;Elfarrass,S.;Hartiti,B.;Mari,B.;Qachaou, A.;Fahoume,M.Opt.Quantum Electron2014,46,247.doi: 10.1007/s11082-013-9786-x

    (20)Gao,X.D.;Li,X.M.;Yu,W.D.Thin Solid Films2004,468, 43.doi:10.1016/j.tsf.2004.04.005

    (21)Shei,S.C.;Chang,S.J.;Lee,P.Y.J.Electrochem.Soc.2011,158,208.

    (22)Su,Z.H.;Yan,C.;Sun,K.W.;Han,Z.L.;Liu,F.Y.;Liu,J.; Lai,Y.Q.;Li,J.;Liu,Y.X.Appl.Surf.Sci.2012,258, 7678.doi:10.1016/j.apsusc.2012.04.120

    (23)Noh,J.H.;Im,S.H.;Heo,J.H.;Mandal,T.N.;Seok,S.I. Nano Lett.2013,13,1764.

    (24)Stoumpos,C.C.;Malliakas,C.D.;Kanatzidis,M.G.Inorg. Chem.2013,52,9019.doi:10.1021/ic401215x

    (25)Juarez-Perez,E.J.;Sanchez,R.S.;Badia,L.;Garcia-Belmonte, G.;Kang,Y.S.;Mora-Sero,I.;Bisquert,J.J.Phys.Chem.Lett.2014,5,2390.doi:10.1021/jz5011169

    Optical and Electrical Properties of CH3NH3PbI3Perovskite Thin Films Transformed from PbO-PbI2Hybrid Films

    DING Xu-Kun LI Xiao-Min*GAO Xiang-Dong ZHANG Shu-De HUANG Yu-Di LI Hao-Ran
    (State Key Laboratory of High Performance Ceramics and Superfine Microstructures,Shanghai Institute of Ceramics, Chinese Academy of Sciences,Shanghai 200050,P.R.China)

    Organic-inorganic halide perovskites have been shown to be outstanding photovoltaic materials, achieving remarkably high power conversion efficiency(15%)of sunlight to electricity within the past 4 years. The controllable synthesis of organic-inorganic halide perovskites is fundamental to their applications in photovoltaic devices.Here we explore a novel strategy to prepare a typical halide peroskite CH3NH3PbI3by transforming PbO-PbI2hybrid materials.CH3NH3PbI3thin films were deposited on glass substrates by reacting ultrasonic-assisted successive ionic layer adsorption and reaction(SILAR)-derived PbO-PbI2hybrid films with CH3NH3I vapor at 110°C.The microstructure and crystallinity of the films,together with the optical and electrical properties were characterized.Results show that CH3NH3PbI3thin films possess perovskite crystal structure and uniform surface morphology with grain size up to 400 nm.In the visible band,CH3NH3PbI3thin films showed low transmittance(below 10%),with a band gap of 1.58 eV.The surface resistivity of CH3NH3PbI3thin films was as high as 1000 MΩ,indicating the dielectric nature of obtained CH3NH3PbI3films,with a dielectric constant of εr(100 Hz)=155 on low frequency.The current work opens an effective route toward high quality organicinorganic halide perovskite films with good crystallinity and optical properties,which make them suitable for application in photovoltaic devices,and other optical and electrical applications.

    O649

    10.3866/PKU.WHXB201501201www.whxb.pku.edu.cn

    Received:November 13,2014;Revised:January 19,2015;Published on Web:January 20,2015.

    ?Corresponding author.Email:lixm@mail.sic.ac.cn;Tel:+86-21-52412554.

    The project was supported by the National Natural Science Foundation of China(50502038,10576036).

    國家自然科學(xué)基金(50502038,10576036)資助項目

    猜你喜歡
    鹵化物樹德鈣鈦礦
    內(nèi)蒙古地區(qū)甜菜臨界氮濃度稀釋模型的構(gòu)建及應(yīng)用
    樹德娃的太空之旅 學(xué)習(xí)設(shè)計
    硝酸銀沉淀法去除高鹽工業(yè)廢水中鹵化物對COD測定的干擾
    新興零維金屬鹵化物的光致發(fā)光與應(yīng)用研究進(jìn)展
    小小魚
    離子色譜法測定燃料電池汽車用燃料氫氣中的痕量鹵化物*
    當(dāng)鈣鈦礦八面體成為孤寡老人
    幾種新型鈣鈦礦太陽電池的概述
    鈣鈦礦型多晶薄膜太陽電池(4)
    太陽能(2015年4期)2015-02-28 17:08:19
    鈣鈦礦型多晶薄膜太陽電池(2)
    太陽能(2015年2期)2015-02-28 17:07:18
    伦理电影免费视频| 国产99白浆流出| 国产三级在线视频| videosex国产| 午夜精品久久久久久毛片777| 欧美中文综合在线视频| 女性被躁到高潮视频| 黑人巨大精品欧美一区二区蜜桃| 国产精品爽爽va在线观看网站 | 久久香蕉激情| 欧美久久黑人一区二区| av免费在线观看网站| 美女免费视频网站| 亚洲一码二码三码区别大吗| 美女扒开内裤让男人捅视频| 欧美在线黄色| 淫秽高清视频在线观看| av超薄肉色丝袜交足视频| 成年人黄色毛片网站| 男人操女人黄网站| 热99re8久久精品国产| 免费不卡黄色视频| 老司机福利观看| 国产aⅴ精品一区二区三区波| 91在线观看av| 色婷婷久久久亚洲欧美| 亚洲国产精品合色在线| 亚洲色图av天堂| 久久国产精品影院| 老汉色∧v一级毛片| 免费在线观看影片大全网站| 国产精品综合久久久久久久免费 | 一区福利在线观看| 久久天堂一区二区三区四区| 色精品久久人妻99蜜桃| av天堂久久9| 久热爱精品视频在线9| 一级a爱片免费观看的视频| 亚洲性夜色夜夜综合| 女警被强在线播放| 麻豆一二三区av精品| 在线观看66精品国产| 自线自在国产av| 日韩 欧美 亚洲 中文字幕| 人人妻人人澡欧美一区二区 | 亚洲男人天堂网一区| 性色av乱码一区二区三区2| 亚洲成av人片免费观看| 亚洲国产精品久久男人天堂| 国产成+人综合+亚洲专区| 亚洲中文字幕一区二区三区有码在线看 | 久久久久久久久免费视频了| 国产成+人综合+亚洲专区| 亚洲专区国产一区二区| 欧美日本亚洲视频在线播放| 亚洲成人国产一区在线观看| 黄频高清免费视频| 在线观看日韩欧美| 中文字幕最新亚洲高清| 搞女人的毛片| ponron亚洲| 国产欧美日韩一区二区三| 精品国产乱码久久久久久男人| 国产av又大| 亚洲国产精品久久男人天堂| 两性午夜刺激爽爽歪歪视频在线观看 | 久久久国产精品麻豆| av超薄肉色丝袜交足视频| 夜夜夜夜夜久久久久| 日本三级黄在线观看| 亚洲国产日韩欧美精品在线观看 | 精品第一国产精品| 黑人操中国人逼视频| 久久久久国产精品人妻aⅴ院| 亚洲精品国产区一区二| 亚洲精品中文字幕在线视频| 亚洲av成人不卡在线观看播放网| 男女做爰动态图高潮gif福利片 | 国产欧美日韩综合在线一区二区| 国产精品亚洲av一区麻豆| 正在播放国产对白刺激| 夜夜躁狠狠躁天天躁| 在线观看舔阴道视频| 欧美激情久久久久久爽电影 | 1024视频免费在线观看| 午夜福利视频1000在线观看 | 亚洲精品一区av在线观看| 亚洲激情在线av| 亚洲av日韩精品久久久久久密| 丝袜美腿诱惑在线| 国产精品久久久久久人妻精品电影| 嫁个100分男人电影在线观看| 精品国产一区二区久久| 狂野欧美激情性xxxx| 国内精品久久久久精免费| www日本在线高清视频| 在线观看www视频免费| 欧美日韩黄片免| 久久人人精品亚洲av| 一a级毛片在线观看| 视频区欧美日本亚洲| 99国产精品一区二区蜜桃av| 免费在线观看黄色视频的| 天堂影院成人在线观看| 欧美性长视频在线观看| 又紧又爽又黄一区二区| 亚洲国产高清在线一区二区三 | 超碰成人久久| 欧美亚洲日本最大视频资源| 天天躁狠狠躁夜夜躁狠狠躁| 午夜免费观看网址| 美女高潮到喷水免费观看| 啪啪无遮挡十八禁网站| 可以在线观看的亚洲视频| www.熟女人妻精品国产| 曰老女人黄片| av视频免费观看在线观看| 天堂动漫精品| 国产成人精品无人区| 免费在线观看亚洲国产| 亚洲av片天天在线观看| ponron亚洲| 精品乱码久久久久久99久播| 亚洲av第一区精品v没综合| 精品国产一区二区久久| 正在播放国产对白刺激| 亚洲专区国产一区二区| 国产精品久久久久久精品电影 | 俄罗斯特黄特色一大片| tocl精华| 精品国产乱子伦一区二区三区| 亚洲一区二区三区不卡视频| 少妇粗大呻吟视频| 日韩欧美三级三区| a级毛片在线看网站| 午夜精品久久久久久毛片777| 欧美成人免费av一区二区三区| 可以在线观看毛片的网站| 麻豆成人av在线观看| 韩国精品一区二区三区| 国产私拍福利视频在线观看| 中文字幕另类日韩欧美亚洲嫩草| 国产熟女午夜一区二区三区| 欧美国产日韩亚洲一区| 一本大道久久a久久精品| 欧美一区二区精品小视频在线| 国产一卡二卡三卡精品| 午夜福利在线观看吧| 成人18禁在线播放| 老熟妇仑乱视频hdxx| 91av网站免费观看| 欧美国产日韩亚洲一区| av天堂在线播放| 亚洲国产精品成人综合色| 国产精品一区二区在线不卡| 涩涩av久久男人的天堂| 欧美成狂野欧美在线观看| 国产亚洲精品综合一区在线观看 | 女人高潮潮喷娇喘18禁视频| 十八禁人妻一区二区| 亚洲精品av麻豆狂野| 波多野结衣av一区二区av| 久久天躁狠狠躁夜夜2o2o| 高潮久久久久久久久久久不卡| 国产三级在线视频| 波多野结衣一区麻豆| av电影中文网址| 国产精品久久久久久精品电影 | 久久久久久久久中文| 日韩精品免费视频一区二区三区| 一区在线观看完整版| 久久精品国产综合久久久| 国产主播在线观看一区二区| 99久久国产精品久久久| 亚洲欧美精品综合一区二区三区| 午夜福利免费观看在线| 中文字幕最新亚洲高清| 欧美av亚洲av综合av国产av| 一本久久中文字幕| 精品高清国产在线一区| 日韩欧美三级三区| 欧美另类亚洲清纯唯美| 日韩精品青青久久久久久| 亚洲av熟女| 一级毛片女人18水好多| 国产精品久久久人人做人人爽| 欧美日韩福利视频一区二区| 国产精品国产高清国产av| 欧美黑人欧美精品刺激| 可以免费在线观看a视频的电影网站| 女同久久另类99精品国产91| 精品免费久久久久久久清纯| 中文字幕av电影在线播放| 美女免费视频网站| x7x7x7水蜜桃| 国产精品1区2区在线观看.| 国产三级黄色录像| 国产高清videossex| 黑人巨大精品欧美一区二区蜜桃| 国产色视频综合| 久久精品国产综合久久久| 国产精品久久久久久精品电影 | 搡老熟女国产l中国老女人| 久久婷婷人人爽人人干人人爱 | 精品一品国产午夜福利视频| 女人精品久久久久毛片| 国产欧美日韩一区二区三区在线| www.www免费av| 精品久久久精品久久久| 国产一区二区在线av高清观看| 婷婷丁香在线五月| 悠悠久久av| 日韩av在线大香蕉| 国产亚洲精品一区二区www| 婷婷六月久久综合丁香| 在线av久久热| 18禁观看日本| 午夜精品在线福利| 亚洲欧美精品综合一区二区三区| 男女之事视频高清在线观看| 成人精品一区二区免费| 久久精品国产清高在天天线| 美女扒开内裤让男人捅视频| 午夜影院日韩av| 成人手机av| 欧美 亚洲 国产 日韩一| 亚洲精品美女久久av网站| 一卡2卡三卡四卡精品乱码亚洲| 久久久久久人人人人人| 18禁裸乳无遮挡免费网站照片 | 日韩中文字幕欧美一区二区| 黄频高清免费视频| 黑人操中国人逼视频| 免费av毛片视频| 两人在一起打扑克的视频| 中文亚洲av片在线观看爽| 国内毛片毛片毛片毛片毛片| 黄色毛片三级朝国网站| 深夜精品福利| 在线播放国产精品三级| 巨乳人妻的诱惑在线观看| 一区在线观看完整版| 亚洲av五月六月丁香网| 亚洲av第一区精品v没综合| 窝窝影院91人妻| 国产免费av片在线观看野外av| 操美女的视频在线观看| 免费在线观看影片大全网站| 精品免费久久久久久久清纯| 色尼玛亚洲综合影院| 老司机靠b影院| 免费看美女性在线毛片视频| 国产片内射在线| 日本免费一区二区三区高清不卡 | 欧美激情久久久久久爽电影 | 国产aⅴ精品一区二区三区波| 伊人久久大香线蕉亚洲五| 一夜夜www| 国产一卡二卡三卡精品| 嫁个100分男人电影在线观看| 色播在线永久视频| 男女下面进入的视频免费午夜 | 亚洲狠狠婷婷综合久久图片| 十分钟在线观看高清视频www| 免费在线观看视频国产中文字幕亚洲| 波多野结衣av一区二区av| 免费女性裸体啪啪无遮挡网站| 狂野欧美激情性xxxx| 777久久人妻少妇嫩草av网站| 宅男免费午夜| a在线观看视频网站| 日韩大尺度精品在线看网址 | 操美女的视频在线观看| www日本在线高清视频| 日韩欧美一区视频在线观看| 亚洲国产精品成人综合色| 国产日韩一区二区三区精品不卡| 免费在线观看影片大全网站| 黄色视频,在线免费观看| 91大片在线观看| 丁香欧美五月| 午夜老司机福利片| 老熟妇仑乱视频hdxx| 十八禁人妻一区二区| 久久久久国产精品人妻aⅴ院| or卡值多少钱| 色综合婷婷激情| 亚洲精品美女久久久久99蜜臀| 免费久久久久久久精品成人欧美视频| 亚洲第一av免费看| 老司机午夜福利在线观看视频| 伊人久久大香线蕉亚洲五| 国产色视频综合| 亚洲欧美精品综合一区二区三区| 久久亚洲真实| 激情在线观看视频在线高清| av视频在线观看入口| 91九色精品人成在线观看| 黄色视频不卡| 可以在线观看毛片的网站| 99热只有精品国产| 最新美女视频免费是黄的| 久久亚洲精品不卡| √禁漫天堂资源中文www| 国产精品久久久av美女十八| 国产成人欧美在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲一区高清亚洲精品| 久久人人精品亚洲av| 国产麻豆成人av免费视频| 国产午夜福利久久久久久| 中国美女看黄片| 激情在线观看视频在线高清| 亚洲黑人精品在线| 色老头精品视频在线观看| 欧美激情高清一区二区三区| 国产精品亚洲美女久久久| 精品久久久久久久毛片微露脸| 久久青草综合色| 91麻豆精品激情在线观看国产| 熟女少妇亚洲综合色aaa.| 亚洲美女黄片视频| 久久精品国产99精品国产亚洲性色 | av视频免费观看在线观看| 精品午夜福利视频在线观看一区| 美女午夜性视频免费| 亚洲成国产人片在线观看| 97碰自拍视频| 99久久国产精品久久久| 久久久久亚洲av毛片大全| 如日韩欧美国产精品一区二区三区| 少妇 在线观看| 欧美在线一区亚洲| 国产精品98久久久久久宅男小说| 国产精品久久视频播放| 女同久久另类99精品国产91| 嫁个100分男人电影在线观看| 久热爱精品视频在线9| 大型av网站在线播放| 中文字幕精品免费在线观看视频| 18禁美女被吸乳视频| 国产伦一二天堂av在线观看| 搡老妇女老女人老熟妇| 无限看片的www在线观看| 久久中文字幕人妻熟女| 亚洲专区字幕在线| 亚洲av第一区精品v没综合| 一本大道久久a久久精品| 大陆偷拍与自拍| 亚洲午夜理论影院| 国产精品精品国产色婷婷| 午夜日韩欧美国产| 俄罗斯特黄特色一大片| 欧美 亚洲 国产 日韩一| 日韩欧美免费精品| 亚洲最大成人中文| 电影成人av| 国产精品1区2区在线观看.| 老鸭窝网址在线观看| 免费无遮挡裸体视频| 狠狠狠狠99中文字幕| 亚洲自偷自拍图片 自拍| 91av网站免费观看| 欧美日韩瑟瑟在线播放| 免费搜索国产男女视频| 精品少妇一区二区三区视频日本电影| 禁无遮挡网站| 老司机靠b影院| 亚洲一卡2卡3卡4卡5卡精品中文| 99久久久亚洲精品蜜臀av| 久久午夜亚洲精品久久| 午夜视频精品福利| 极品人妻少妇av视频| 97碰自拍视频| 欧美中文日本在线观看视频| 午夜影院日韩av| 国产精品亚洲av一区麻豆| 欧美日本亚洲视频在线播放| 91麻豆av在线| 精品人妻在线不人妻| 成人18禁在线播放| 88av欧美| 精品久久久久久久人妻蜜臀av | 看免费av毛片| 国产三级黄色录像| 国产熟女xx| 久久精品人人爽人人爽视色| 国产亚洲精品综合一区在线观看 | 国产精品香港三级国产av潘金莲| av福利片在线| 又紧又爽又黄一区二区| 亚洲欧美日韩高清在线视频| 欧美一区二区精品小视频在线| 久久久久久久久久久久大奶| 午夜日韩欧美国产| 1024香蕉在线观看| 成年女人毛片免费观看观看9| 一进一出抽搐gif免费好疼| 1024视频免费在线观看| 日韩国内少妇激情av| 国产精品日韩av在线免费观看 | 国产蜜桃级精品一区二区三区| 亚洲成a人片在线一区二区| 日本黄色视频三级网站网址| 日本a在线网址| 中文字幕高清在线视频| 老汉色av国产亚洲站长工具| 欧美大码av| 一级a爱片免费观看的视频| 在线av久久热| 久久亚洲精品不卡| 亚洲在线自拍视频| 91成年电影在线观看| 一本综合久久免费| 老鸭窝网址在线观看| 国产视频一区二区在线看| 久久九九热精品免费| 久久久久久人人人人人| 国产亚洲欧美98| 欧美av亚洲av综合av国产av| 色尼玛亚洲综合影院| 免费在线观看完整版高清| 韩国精品一区二区三区| 亚洲成国产人片在线观看| av在线播放免费不卡| 伦理电影免费视频| 日韩三级视频一区二区三区| 精品久久久精品久久久| 母亲3免费完整高清在线观看| 精品不卡国产一区二区三区| 99香蕉大伊视频| 伊人久久大香线蕉亚洲五| 久久久久久亚洲精品国产蜜桃av| 午夜a级毛片| 久久影院123| 在线天堂中文资源库| 精品国产国语对白av| 亚洲七黄色美女视频| 一级a爱视频在线免费观看| 黄片大片在线免费观看| 亚洲专区中文字幕在线| 老司机午夜福利在线观看视频| 久久亚洲精品不卡| 一区二区三区国产精品乱码| 亚洲精品美女久久久久99蜜臀| 精品高清国产在线一区| 亚洲精品中文字幕一二三四区| 一二三四在线观看免费中文在| 国产色视频综合| www.自偷自拍.com| 亚洲avbb在线观看| 亚洲熟妇中文字幕五十中出| 好看av亚洲va欧美ⅴa在| 欧美成人性av电影在线观看| 亚洲熟女毛片儿| 欧美日韩一级在线毛片| 丁香欧美五月| xxx96com| 国产av精品麻豆| 9热在线视频观看99| 18禁裸乳无遮挡免费网站照片 | 国产一区在线观看成人免费| 国产人伦9x9x在线观看| av有码第一页| 欧美激情久久久久久爽电影 | 亚洲少妇的诱惑av| svipshipincom国产片| 十八禁网站免费在线| 在线观看舔阴道视频| av网站免费在线观看视频| 在线观看www视频免费| 国产精品秋霞免费鲁丝片| 国产xxxxx性猛交| 最新美女视频免费是黄的| 琪琪午夜伦伦电影理论片6080| 超碰成人久久| 禁无遮挡网站| 涩涩av久久男人的天堂| 正在播放国产对白刺激| 成人亚洲精品一区在线观看| 激情在线观看视频在线高清| 一区在线观看完整版| 色在线成人网| 久久国产精品人妻蜜桃| 国产一区二区三区在线臀色熟女| 777久久人妻少妇嫩草av网站| 好男人在线观看高清免费视频 | 久久人妻熟女aⅴ| 亚洲五月色婷婷综合| 国产精品美女特级片免费视频播放器 | 禁无遮挡网站| 涩涩av久久男人的天堂| 日韩欧美国产在线观看| or卡值多少钱| 久久国产精品影院| 人人妻人人澡人人看| 国产一区在线观看成人免费| 国产成人av激情在线播放| 黄色视频,在线免费观看| 亚洲精品一卡2卡三卡4卡5卡| 麻豆国产av国片精品| 亚洲国产精品999在线| 成人18禁高潮啪啪吃奶动态图| 一个人免费在线观看的高清视频| 九色亚洲精品在线播放| 无人区码免费观看不卡| 久热这里只有精品99| 免费一级毛片在线播放高清视频 | 欧美亚洲日本最大视频资源| 国产熟女午夜一区二区三区| 亚洲成人久久性| 色哟哟哟哟哟哟| 国产成人精品无人区| 亚洲自偷自拍图片 自拍| 叶爱在线成人免费视频播放| 99久久99久久久精品蜜桃| 精品久久久久久久毛片微露脸| 看黄色毛片网站| 国产午夜精品久久久久久| 亚洲在线自拍视频| 中文字幕人妻丝袜一区二区| 国产成人av激情在线播放| 99热只有精品国产| 淫妇啪啪啪对白视频| 男女床上黄色一级片免费看| 久久人人爽av亚洲精品天堂| 亚洲av美国av| 我的亚洲天堂| 91精品三级在线观看| 精品国产乱子伦一区二区三区| www.999成人在线观看| 国内精品久久久久精免费| 亚洲av成人av| 怎么达到女性高潮| 变态另类丝袜制服| 久久 成人 亚洲| 国产精品九九99| 欧美大码av| 色综合站精品国产| 侵犯人妻中文字幕一二三四区| 操出白浆在线播放| 少妇被粗大的猛进出69影院| 中文字幕高清在线视频| 亚洲精品久久国产高清桃花| 人人妻,人人澡人人爽秒播| 欧美大码av| 精品国产乱码久久久久久男人| 精品国产亚洲在线| 久久精品国产99精品国产亚洲性色 | 亚洲伊人色综图| 级片在线观看| 日韩欧美免费精品| 丝袜在线中文字幕| 熟女少妇亚洲综合色aaa.| 琪琪午夜伦伦电影理论片6080| 国产乱人伦免费视频| 久久这里只有精品19| 亚洲视频免费观看视频| 国产伦一二天堂av在线观看| 精品欧美国产一区二区三| 一级a爱片免费观看的视频| 亚洲色图综合在线观看| 久久亚洲真实| av中文乱码字幕在线| 久久久久久久久免费视频了| 满18在线观看网站| 自线自在国产av| 国产精品一区二区在线不卡| 久久人妻熟女aⅴ| 国产高清视频在线播放一区| 久久伊人香网站| 叶爱在线成人免费视频播放| 老汉色∧v一级毛片| 亚洲精品国产一区二区精华液| 久久久久久大精品| 久久精品91蜜桃| 久久久久国产一级毛片高清牌| 天堂√8在线中文| 少妇熟女aⅴ在线视频| 国产欧美日韩一区二区精品| 久久精品aⅴ一区二区三区四区| 9191精品国产免费久久| 亚洲成av人片免费观看| 午夜a级毛片| 在线观看舔阴道视频| 亚洲色图 男人天堂 中文字幕| 久久国产乱子伦精品免费另类| 国产精品电影一区二区三区| 国产精品 国内视频| 涩涩av久久男人的天堂| 久久青草综合色| 中国美女看黄片| 天天躁狠狠躁夜夜躁狠狠躁| 黄色毛片三级朝国网站| 亚洲人成电影观看| 精品国产一区二区三区四区第35| 国产成人精品久久二区二区免费| 禁无遮挡网站| 在线观看免费视频网站a站| 9191精品国产免费久久| 好男人在线观看高清免费视频 | 又大又爽又粗| 日本欧美视频一区| 久久国产亚洲av麻豆专区| 午夜免费激情av| 在线观看一区二区三区| 91在线观看av| 别揉我奶头~嗯~啊~动态视频| 久久婷婷人人爽人人干人人爱 | 桃红色精品国产亚洲av| 亚洲国产看品久久| 在线观看舔阴道视频| 亚洲一卡2卡3卡4卡5卡精品中文| 精品国产美女av久久久久小说| 欧美 亚洲 国产 日韩一|