• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Conceptualizing the complexity of ferroptosis to treat triplenegative breast cancer: theory-to-practice

    2023-03-16 08:19:48HangZhangFanYangYiXiaoYiZhouJiangZhiMingShao
    Cancer Biology & Medicine 2023年2期

    Hang Zhang*, Fan Yang*, Yi Xiao, Yi-Zhou Jiang, Zhi-Ming Shao

    Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center;Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China

    Ferroptosis, a type of regulated cell death named one decade ago, is a unique type driven by lipid peroxidation in an i ron-dependent manner.Ferroptosis differs radically from apoptosis and other regulated forms of cell death in both morphology and molecular underpinning.Ferroptosis can be triggered by a variety of physiologic conditions and pathologic stresses.There has been growing interest in ferroptosis in recent years, and research on ferroptosis is productive.The existing evidence has shown that ferroptosis is closely related to cancer initiation, progression, and suppression.Thus, ferroptosis has shown promising potential in cancer therapies.Inducing ferroptosis in tumors and the combination of ferroptosis inducers with other therapies may overcome drug resistance during cancer treatment.Because of the intricate network regulating ferroptosis-related pathways, drugs targeting ferroptosis are diverse and complicated.Thus, deciphering the complexity of ferroptosis and precisely targeting ferroptosis are needed.

    Heterogeneity of ferroptosis-related pathways among tumors

    Ferroptosis is executed by membrane oxidative damage with increased lipid peroxidation.Peroxidation of polyunsaturated fatty acids (PUFAs) is essential for triggering ferroptosis.Multiple metabolic pathways evolve during the process of ferroptosis.Ferroptosis-promoting pathways include the lipid, iron, and mitochondrial metabolism pathways (Figure 1).PUFA peroxidation can occur through a series of enzyme catalysis in the lipid metabolism pathway.Acyl-CoA (coenzyme) synthetase long-chain family member 4 (ACSL4)catalyzes the ligation of PUFAs with CoA and generates CoAPUFAs.CoA-PUFAs are esterified by lysophosphatidylcholine acyltransferase 3 (LPCAT3) to form phospholipids containing polyunsaturated fatty acids (PE-PUFAs).PE-PUFAs are mainly catalyzed by autoxidation and are prone to peroxidization by lipoxygenase (ALOX) or cytochrome P450 oxidoreductase (POR) into lipid hydroperoxides.The generation of lipid hydroperoxides promotes ferroptosis initiation.Iron metabolism has multiple processes, including iron absorption, storage, utilization, and efflux.Indeed, cells maintain a relatively labile iron poolviathese processes; however, cancer cells have dysregulated iron metabolism and an increased labile iron pool.Iron increases ALOX activity.The free ferrous iron in the labile iron pool also participates in the Fenton reaction to generate free radicals and mediate lipid peroxidation.Mitochondrial metabolism is another pathway that promotes ferroptosis.Mitochondria, as the site of multiple metabolic pathways in the cell, are the main source of cellular reactive oxygen species (ROS).The electrons leaked from the electron transport chain (ETC) complexes can be used to generate hydrogen peroxide (H2O2).H2O2reacts with ferrous iron to generate hydroxyl radicals (OH?), which leads to lipid peroxidation1.In addition, anaplerotic reactions that replenish the tricarboxylic acid (TCA) cycle, such as glutaminolysis,promote ferroptosis by increasing fatty acid biosynthesis and electron leakage1.

    Cells have developed ways to defend against ferroptosis,including the glutathione (GSH), ubiquinol (CoQH2), and tetrahydrobiopterin (BH4) metabolism pathways (Figure 1).Cancer cells obtain cystine through System Xc-, which is embedded in the cell membrane, during GSH metabolism.Then, cystine is reduced to cysteine and catalyzed by glutamic acid-cysteine ligase (GCL) and glutathione synthase (GSS) to synthesize GSH.Glutathione peroxidase 4 (GPX4), a regulator of ferroptosis, uses GSH as a cofactor to catalyze lipid peroxide reduction and prevent ferroptosis.The FSP1 (ferroptosis suppressor protein 1)-CoQH2axis is another pathway that prevents ferroptosis.FSP1 is recruited to the plasma membrane,acts as an oxidoreductase, and reduces ubiquinone (known as CoQ) to CoQH2, which traps lipid peroxyl radicals and inhibits lipid peroxidation.The BH4-DHFR (dihydrofolate reductase) axis is a GPX4-independent mechanism for ferroptosis regulation.BH4 is an antioxidant capable of trapping lipid peroxide-free radicals.BH4 undergoes redox cycling through DHFR to protect lipid membranes from autoxidation.BH4 synthesis is a critical pathway involved in GPX4 inhibition.

    Figure 1 Overview of the regulatory network of ferroptosis.Schematic description of regulated pathways in ferroptosis, including three promoting mechanisms and three defense mechanisms.Inhibitors of ferroptosis-related pathways are included.ATP citrate lyase (ACL); acetyl-CoA(ACACA); fatty acid synthase (FASN); fatty acid desaturase (FADS); polyunsaturated fatty acid (PUFA); acyl-CoA synthetase long-chain family member 4 (ACSL4); lysophosphatidylcholine acyltransferase 3 (LPCAT3); phospholipids containing polyunsaturated fatty acids (PE-PUFAs); lipoxygenase (ALOX); reactive oxygen species (ROS); lipid hydroperoxides (LOOH); hydroxyl radical (OH?); tricarboxylic acid (TCA); oxidative phosphorylation (OXPHOS); hydrogen peroxide (H2O2); adenosine monophosphate-activated protein kinase (AMPK); acetyl-CoA carboxylase (ACC); oxidized phosphatidylethanolamine (OxPE); glutathione (GSH); glutathione synthase (GSS); glutamic acid-cysteine ligase (GCL); cystine (cys); glutathione disulfide (GSSG); glutathione-disulfide reductase (GSR); lipid alcohol (LOH); ubiquinol (CoQH2); ubiquinone (CoQ); 3-hydroxy-3-methylglutarylcoenzyme A (HMG-CoA); ferroptosis suppressor protein 1 (FSP1); GTP cyclohydrolase 1 (GCH1); tetrahydrobiopterin (BH4); dihydrobiopterin (BH2);dihydrofolate reductase (DHFR); deuterated polyunsaturated fatty acid (D-PUFA); monounsaturated fatty acid (MUFA).

    Energy-related metabolism also has a role in regulating ferroptosis.Several cellular energy metabolism pathways including glycolysis, pentose phosphate pathway (PPP) and TCA cycle are closely associated with oxidized phosphatidylethanolamine (OxPE) biosynthesis and the generation of reducing substances.Mitochondria, as the energy powerhouse in cells, coordinate various metabolic processes and have a key role in ferroptosis.Mitochondria generate ROS to execute ferroptosisviacanonical metabolic processes,including the TCA cycle and mitochondrial ETC1.Tumor cells have a higher glycolytic rate and greater suppression of oxidative phosphorylation (OXPHOS) activity than non-tumor cells2.Therefore, alleviating ROS stress can prevent ferroptosis in tumor cells.Due to excessive consumption of adenosine triphosphate (ATP) in tumor cells, the cellular energy sensor adenosine monophosphate-activated protein kinase (AMPK) is activated2.AMPK inhibits the ability of the acetyl-CoA carboxylases, ACC1/ACC2, to maintain the nicotinamide adenine dinucleotide phosphate hydrogen(NADPH) level.ACC inhibition results in suppression of PUFA synthesis, thus leading to ferroptosis resistance.The PPP is a method by which glucose is oxidatively decomposed.Cancer cells exhibit enhanced PPP activity.PPP utilizes glucose 6-phosphate (G6P) and generates ribose 5-phosphate,erythrose 4-phosphate, and NADPH.NADPH donates electrons for the reduction of glutathione disulfide (GSSG) to GSH, which supports the regeneration of thioredoxin (Trx)and cooperates with FSP1 to reduce CoQ to CoQH2, thus preventing cells from undergoing ferroptosis.In addition,ferroptosis is genetically regulated.As the most common mutated genes in tumors, p53 and RAS (KRAS, NRAS and HRAS) are associated with ferroptosis.p53 inhibits cystine uptakeviatranscriptional suppression of the cystine/glutamate antiporter solute carrier family member 11 (SLC7A11)and sensitizes cells to ferroptosis3.On the other hand, p53 inhibits erastin-triggered ferroptosis by suppressing dipeptidyl peptidase-4 (DPP-4) activity4.As ferroptosis was originally found in cells expressing the mutant RAS oncogene,there is also a correlation between the RAS oncogene and ferroptosis.However, the intrinsic mechanism is complicated and still needs further exploration.

    Because of the complex regulatory network in ferroptosis and the high heterogeneity of tumors, sensitivity to ferroptosis varies greatly between different subtypes of tumors.Thus,depicting the ferroptosis landscape in tumors can help us better understand diseases and develop novel targeted therapy strategies.

    Remodeling of the tumor microenvironment after triggering ferroptosis

    Ferroptosis is immunogenicin vitroandin vivo5.The immune system has a substantial role in exerting antitumor immunity;however, tumor cells have developed multiple ways to escape immune surveillance, including reducing immunogenicity and forming immunosuppressive networks, rendering tumor immunotherapy clinically inefficient6.Therefore, inducing ferroptosis in tumor cells stimulates the immune system and enhances the efficacy of immunotherapy.Immunogenic cell death (ICD) is a type of regulated cell death (RCD) in which damage-associated molecular patterns (DAMPs) are released to promote antitumor immunity.ATP and high mobility group box 1 (HMGB1), as DAMPs, are released by early ferroptotic cancer cells and serve as immunogenic signals to stimulate antigen-presenting cells (APCs)5.Ferroptotic cells, like ICD,release ‘find me’ signals to recruit APCs and other immune cells to the ferroptotic microenvironment.Arachidonic acid oxidation products released by ferroptotic cells activate antitumor immunity; however, oxidized lipids are also associated with inhibition of antitumor immune responses.The accumulation of oxygenated neutral lipids and PUFAs in dendritic cells (DCs) results in defective cross-presentation and poor CD8+T-cell stimulation7.In addition to lipid signaling, ferroptotic cancer cells release HMGB1 in an autophagy-dependent manner.HMGB1 belongs to the DAMP family and binds to Toll-like receptor 4 (TLR4) and advanced glycosylation end product-specific receptor (AGER) to modulate the immune response.HMGB1 accelerates the phagocytic cargo ability in DCs and promotes antigen presentation to T cells8.Although ferroptotic tumor cells stimulate antitumor immune capability, some substances released by ferroptotic tumor cells also suppress immunity.Release of 8-hydroxyguanosine (8-OHG)by ferroptotic cells leads to macrophage infiltration and promotes pancreatic ductal adenocarcinoma (PDAC) tumorigenesis in mice9.Prostaglandin E2 (PGE2) released by ferroptotic cells suppresses the antitumor function of immune cells and causes tumor immune escape, leading to disease progression10.

    In addition to tumor cells, the tumor microenvironment is a very large system with various kinds of immune cells that are affected by ferroptosis.CD8+T cells, as critical antitumor immune cells, exhibit high susceptibility to GPX4 inhibitor-induced ferroptosis due to the massive lipid peroxides11.Studies have shown that CD8+T cells exhibit greater sensitivity to GPX4 inhibitors than tumor cells and ACSL4 gene deletion protects CD8+T cells from ferroptosis11.Regulatory T cells (Tregs) have a role in suppressing antitumor immunity.Unlike CD8+T cells, Tregs carry low amounts of lipid peroxide and exhibit hyposensitivity to ferroptosis11.This finding may be because GPX4 in Tregs prevents them from undergoing lipid peroxidation and ferroptosis.Specific deletion of GPX4 in Tregs results in lipid peroxide accumulation and ferroptosis of Tregs, suppresses tumor growth, and enhances antitumor immunity12.Tumor-associated macrophages (TAMs) are classified as M1 (pro-inflammatory) and M2 (anti-inflammatory) phenotypes.Although the expression of several known anti-ferroptotic pathways is comparable between M1 and M2 macrophages, M1 macrophages exhibit resistance to ferroptosis inducers.Higher levels of inducible NO synthase (iNOS or NOS2) and NO? are detected in M1 macrophages than M2 macrophages13.Myeloid-derived suppressor cells (MDSCs) are a group of immature myeloid cells with strong anti-T-cell activity that suppress antitumor immunity and promote tumor progression.MDSCs overexpress neutral ceramidase N-acylsphingosine amidohydrolase(Asah2), which catalyzes sphingolipid metabolism to resist ferroptosis14.Minimal arachidonic acid-phosphatidylethanolamine (AA-PEox) is measurable in tumor monocytic MDSCs(M-MDSCs), indicating low ferroptosis activity.In contrast,pathologically-activated neutrophils (PMNs), termed myeloid-derived suppressor cells (PMN-MDSCs), have high sensitivity to ferroptosis with downregulation of GPX4 and AA-PEox accumulation.The release of oxygenated lipids and PGE2 by ferroptotic PMN-MDSCs suppresses the activity of T cells10.Natural killer (NK) cells are essential for antitumor immunity.A recent study showed that tumor-associated NK cells are enriched in lipid peroxidation-, oxidative damageand ferroptosis-related pathways, which impair tumor-associated NK cell cytotoxicity15.DCs initiate T-cell-mediated immune responses.The increased level of lipids disrupts the antigen processing function of tumor-associated DCs7.Thus,ferroptosis is heterogeneous in different tumor microenvironment cells.Inducing ferroptosis inhibits the activity of antitumor immune cells by increasing cell death.Moreover, ferroptosis kills immunosuppressive cells.Therefore, ferroptosis induction of immunosuppressive cells achieves an antitumor effect.

    Because ferroptosis is immunogenic, inducing ferroptosis is a potential approach for promoting cancer immunotherapy.Various studies have explored targeting ferroptosis in combination with immunotherapy.BEBT-908 is a dual-targeting phosphoinositide 3-kinase (PI3K) and histone deacetylase (HDAC) inhibitor that induces immunogenic ferroptosis in cancer cells.Combining BEBT-908 with anti-PD1 therapy potently inhibits tumor cell growth and proliferation16.The tyrosine-protein kinase receptor (TYRO3) inhibitor, LDC1267, and the GPX4 inhibitor, RSL3, improve the efficacy of immune checkpoint inhibitor (ICI) therapy17.Beyond traditional ferroptosis inducers, nanoplatforms have been applied to design ferroptosis nanoparticle inducers for specific drug delivery.The combination of nanoparticles encapsulating RSL-3 with anti-PD 1 therapy significantly inhibits the growth of 4T1 breast cancer and melanoma cells.Thus, the combination strategies of ferroptosis inducers with immunotherapy are diverse, and tumors with different ferroptosis-related features should be treated with different ferroptosis-related therapies.In our most recent study, we demonstrated that luminal androgen receptor (LAR) tumors are particularly sensitive to the GPX4 inhibitor, RSL-3.An inflammatory phenotype occurs after ferroptosis induction,which provides the possibility of combining ferroptosis with immunotherapy18.

    Precisely targeting ferroptosis for therapy through a holistic tailored approach

    As previously illustrated, ferroptosis has diverse regulatory pathways, complicated networks, and multiple targeting options.As a result, different tumors might utilize different mechanisms to regulate ferroptosis activity.Therefore, it is important to analyze ferroptosis from a holistic approach in the beginning and select individualized drugs to target ferroptosis; however, current research on ferroptosis lacks a holistic view.Several studies involving lung cancer19, hepatocellular carcinoma (HCC)20, and pancreatic cancer21have only focused on a single gene and detailed mechanisms, and did not consider that ferroptosis inducers act on tumor cells and have an impact on the immune microenvironment.Therefore, the value of ferroptosis inducers for clinical application is limited.

    From a clinical perspective, it is important to systematically analyze ferroptosis-related features in tumors.Identifying suitable drug candidates can provide new strategies for cancer treatment.Triple-negative breast cancer (TNBC) is a biologically and clinically heterogeneous disease.It is important to identify which subtype of TNBC is sensitive to ferroptosis and which drug targeting ferroptosis is most suitable.

    In our recent study we integrated pathway analysis of transcriptomic data and key metabolite analysis of metabolomic data, and utilized TNBC cell lines and samples for validation to reveal ferroptosis heterogeneity in TNBC.Our multiomic analysis has never been performed.We discovered that TNBCs have heterogeneous phenotypes in ferroptosis-related pathways and metabolites.We focused on LAR TNBCs, which are enriched in ferroptosis-related pathways, and concluded that GSH metabolism is critical for suppressing ferroptosis in LAR tumors.We selected TS/A, a mouse LAR tumor cell line, to establish an orthotopic model.Using the GPX4 inhibitor, RSL3, we observed pronounced ferroptosis in LAR tumor cells.In clinical translation, using a GPX4 inhibitor enhanced anti-PD 1 therapy efficacy in mice, and the combination of RSL3 and anti-PD 1 therapy reached a synthesized effect.We performed immunohistochemistry (IHC) staining and flow cytometric analysis afterin vivoexperiments.Specifically,we observed direct changes in the tumor microenvironment after using a ferroptosis inducer in this tumor subtype with the recruitment of CD3e+, CD4+, CD8+, and CD86+cells, and a reduced number of CD206+cells.When combined with immune checkpoint blockade (ICB) therapy, the cytotoxicity of CD8+ T cells is improved.Thus, a ferroptosis inducer can be optimal therapy using GPX4 inhibitors with ICB in LAR tumors18.In conclusion, our previous study systematically analyzed the ferroptosis characteristics of TNBC from a holistic view and validated the ferroptosis-sensitive subtype in TNBC.The combination therapy we proposed has high clinical translation value.Furthermore, our approach can provide new ideas for other ferroptosis-related studies.In terms of method innovation, previous research has mainly focused on a single gene and detailed mechanisms, lacking a holistic view of the ferroptosis features in tumors.In our study we performed a multiomic analysis to reveal and validate heterogeneous TNBC ferroptosis phenotypes in ferroptosis-related pathways and metabolites.With respect to clinical applications, some studies have summarized and reviewed ferroptosis-related drugs that can improve immunotherapy efficacy;however, tumors with different ferroptosis-related features are suitable for different ferroptosis-related therapeutic strategies.We first used GPX4 inhibitors to induce tumor immunogenicity and showed that LAR tumors are hypersensitive to GPX4 inhibitors.Moreover, at the conceptual level, although previous studies have indicated a close link between androgen receptor (AR) and GPX4, none of the studies elaborated a clear regulatory mechanism of AR on GPX4.In our study we further investigated the mechanism underlying AR on GPX4 and used the mechanism to further explain the ferroptosis characteristics of LAR tumors.Nonetheless, our study had some limitations.The treatment strategy we proposed is only applicable to LAR subtype patients, which represents a small number of breast cancer patients22.In future corollary studies, we will investigate the ferroptosis characteristics of other breast cancer molecular types and provide possible treatment strategies to benefit more patients.In addition, our study did not identify biomarkers of ferroptosis treatment, which also warrants investigation.

    Conclusions

    Collectively, ferroptosis, as one of the RCD types with various regulated pathways, provides us with a novel approach in cancer treatment.The immunogenic features of ferroptosis provide the potential for combining ferroptosis inducers with immunotherapy treatments; however, due to the heterogenicity and impact on the immune microenvironment, it is important to study ferroptosis from a holistic view in future research.Our previous study demonstrated ferroptosis heterogeneity in TNBC, validated a ferroptosis-sensitive TNBC subtype,and proposed a strategy combining ferroptosis inducers with anti-PD-1 therapy that showed innovative potential in clinical application, thus providing a model for other ferroptosis-related studies.

    Grant support

    This work was supported by grants from the National Natural Science Foundation of China (Grant Nos.91959207 and 92159301).

    Conflict of interest statement

    No potential conflicts of interest are disclosed.

    日本vs欧美在线观看视频 | 精品亚洲乱码少妇综合久久| 亚洲三级黄色毛片| 国产高清不卡午夜福利| 国内揄拍国产精品人妻在线| 狂野欧美激情性xxxx在线观看| 久久久久网色| 久久久久久久亚洲中文字幕| 中文字幕人妻丝袜制服| 中文精品一卡2卡3卡4更新| 免费观看性生交大片5| 韩国高清视频一区二区三区| 久久久久久久久久成人| 国产一区二区在线观看日韩| 在线观看免费高清a一片| 欧美精品亚洲一区二区| 免费黄频网站在线观看国产| 国产成人精品久久久久久| 99久久中文字幕三级久久日本| 天美传媒精品一区二区| 国产爽快片一区二区三区| 免费看光身美女| 国产精品福利在线免费观看| 久久青草综合色| 国产无遮挡羞羞视频在线观看| 人人妻人人看人人澡| 22中文网久久字幕| 欧美精品国产亚洲| 亚洲四区av| 精品亚洲成国产av| 国产免费一级a男人的天堂| 免费不卡的大黄色大毛片视频在线观看| videossex国产| 国产深夜福利视频在线观看| av.在线天堂| 女人精品久久久久毛片| 亚洲精品日本国产第一区| 欧美精品高潮呻吟av久久| 插逼视频在线观看| 日韩精品有码人妻一区| 插阴视频在线观看视频| 欧美97在线视频| 免费观看在线日韩| xxx大片免费视频| 欧美 亚洲 国产 日韩一| 内地一区二区视频在线| 亚洲第一区二区三区不卡| 最近最新中文字幕免费大全7| 王馨瑶露胸无遮挡在线观看| 免费少妇av软件| 亚洲欧美一区二区三区黑人 | 亚洲精华国产精华液的使用体验| 国产 一区精品| 成人18禁高潮啪啪吃奶动态图 | 性色av一级| 国产精品99久久久久久久久| 成人国产麻豆网| 久久国产亚洲av麻豆专区| 国产精品99久久99久久久不卡 | 亚洲精品久久久久久婷婷小说| av一本久久久久| 狂野欧美白嫩少妇大欣赏| 人妻 亚洲 视频| 在线观看av片永久免费下载| 高清av免费在线| 国产亚洲精品久久久com| 国产色爽女视频免费观看| av.在线天堂| 在线观看三级黄色| 人妻少妇偷人精品九色| 人人妻人人爽人人添夜夜欢视频 | 乱系列少妇在线播放| 成人午夜精彩视频在线观看| 亚洲精品自拍成人| 久久99热这里只频精品6学生| 国产精品伦人一区二区| av有码第一页| 国内揄拍国产精品人妻在线| 自拍欧美九色日韩亚洲蝌蚪91 | 熟女电影av网| 国产 精品1| 婷婷色av中文字幕| 美女cb高潮喷水在线观看| 黄色怎么调成土黄色| 国产免费一区二区三区四区乱码| 日韩成人av中文字幕在线观看| 毛片一级片免费看久久久久| 中文字幕av电影在线播放| 黑人猛操日本美女一级片| 色哟哟·www| 国产亚洲91精品色在线| 丰满人妻一区二区三区视频av| 99热网站在线观看| 美女xxoo啪啪120秒动态图| 视频中文字幕在线观看| 精品国产国语对白av| 在线观看www视频免费| 十八禁网站网址无遮挡 | 香蕉精品网在线| 80岁老熟妇乱子伦牲交| 欧美精品一区二区免费开放| 午夜福利影视在线免费观看| 国产日韩欧美在线精品| 久久亚洲国产成人精品v| 久久精品夜色国产| 大陆偷拍与自拍| 女的被弄到高潮叫床怎么办| 免费人成在线观看视频色| 中文在线观看免费www的网站| 免费黄网站久久成人精品| 亚洲精华国产精华液的使用体验| 久久精品国产亚洲av涩爱| 国产在线免费精品| 人体艺术视频欧美日本| 国产黄色免费在线视频| 久久久国产精品麻豆| 国内少妇人妻偷人精品xxx网站| 男女免费视频国产| 成年美女黄网站色视频大全免费 | a级一级毛片免费在线观看| 伊人亚洲综合成人网| 免费观看a级毛片全部| 毛片一级片免费看久久久久| 日韩欧美一区视频在线观看 | 久久精品久久久久久久性| 五月开心婷婷网| 桃花免费在线播放| 在线免费观看不下载黄p国产| 内射极品少妇av片p| 亚洲国产av新网站| 下体分泌物呈黄色| 看免费成人av毛片| 高清av免费在线| 青春草国产在线视频| 黄色一级大片看看| 亚洲欧洲日产国产| 高清毛片免费看| 午夜福利在线观看免费完整高清在| 免费久久久久久久精品成人欧美视频 | 欧美精品高潮呻吟av久久| 亚洲av欧美aⅴ国产| 丰满迷人的少妇在线观看| 纯流量卡能插随身wifi吗| 国产av精品麻豆| 日韩av免费高清视频| 午夜激情福利司机影院| 三级经典国产精品| 狂野欧美激情性xxxx在线观看| 国产精品蜜桃在线观看| 伦理电影大哥的女人| 国内少妇人妻偷人精品xxx网站| 欧美日韩在线观看h| 五月伊人婷婷丁香| 又粗又硬又长又爽又黄的视频| 免费av中文字幕在线| av在线播放精品| 一区二区三区四区激情视频| a级毛色黄片| 久久狼人影院| 黄色日韩在线| 午夜日本视频在线| 亚洲欧美成人综合另类久久久| 大码成人一级视频| 亚洲色图综合在线观看| 国产精品久久久久久精品电影小说| 亚洲四区av| 妹子高潮喷水视频| 男人狂女人下面高潮的视频| 国产色爽女视频免费观看| 久久婷婷青草| 内射极品少妇av片p| 九草在线视频观看| 中文字幕人妻丝袜制服| 亚洲欧美精品自产自拍| 男女啪啪激烈高潮av片| 免费观看av网站的网址| av福利片在线| 久久久国产一区二区| 久久久久人妻精品一区果冻| 欧美日韩av久久| 亚洲av综合色区一区| 国产成人freesex在线| 亚洲精品久久久久久婷婷小说| 久久精品久久精品一区二区三区| av专区在线播放| 伊人久久精品亚洲午夜| 亚洲电影在线观看av| 五月天丁香电影| 欧美日韩亚洲高清精品| 黄色欧美视频在线观看| 亚洲精品aⅴ在线观看| 国产一区二区在线观看日韩| 国产精品女同一区二区软件| 日本黄色片子视频| 亚洲无线观看免费| 青春草视频在线免费观看| 大香蕉久久网| av免费在线看不卡| 九色成人免费人妻av| 最近手机中文字幕大全| 偷拍熟女少妇极品色| 久久99热这里只频精品6学生| 好男人视频免费观看在线| a级毛色黄片| 国产精品麻豆人妻色哟哟久久| 伊人久久精品亚洲午夜| 久久99蜜桃精品久久| 日本爱情动作片www.在线观看| 国产爽快片一区二区三区| 亚洲性久久影院| 免费看不卡的av| 国产伦精品一区二区三区四那| 精品人妻偷拍中文字幕| 26uuu在线亚洲综合色| 天堂8中文在线网| 国产精品熟女久久久久浪| 精品人妻一区二区三区麻豆| 一级毛片aaaaaa免费看小| .国产精品久久| 精品人妻偷拍中文字幕| 久久综合国产亚洲精品| 国产美女午夜福利| 国产在线男女| 久久99蜜桃精品久久| 少妇裸体淫交视频免费看高清| 亚洲美女搞黄在线观看| 国产伦理片在线播放av一区| 欧美日韩一区二区视频在线观看视频在线| 成人国产麻豆网| 久久久久人妻精品一区果冻| 久久人人爽人人片av| 观看免费一级毛片| 午夜福利,免费看| 黄色配什么色好看| av免费观看日本| 免费久久久久久久精品成人欧美视频 | av一本久久久久| 高清在线视频一区二区三区| 亚洲美女黄色视频免费看| 亚洲av免费高清在线观看| 高清视频免费观看一区二区| 亚洲天堂av无毛| 欧美日韩国产mv在线观看视频| 国产精品伦人一区二区| 国产中年淑女户外野战色| 两个人免费观看高清视频 | 久久久久久久久大av| 久久综合国产亚洲精品| 国产黄色视频一区二区在线观看| 久久人人爽人人片av| 亚洲精华国产精华液的使用体验| 三级经典国产精品| 如日韩欧美国产精品一区二区三区 | 免费看日本二区| 国产伦理片在线播放av一区| 国产黄色免费在线视频| 欧美日韩av久久| 亚洲成人av在线免费| 久久人人爽av亚洲精品天堂| 欧美一级a爱片免费观看看| 日韩伦理黄色片| 韩国av在线不卡| 久久人妻熟女aⅴ| 国产免费视频播放在线视频| 久久久久久久久久成人| 成人漫画全彩无遮挡| 成人美女网站在线观看视频| 成人国产av品久久久| 老女人水多毛片| 69精品国产乱码久久久| 免费黄色在线免费观看| 永久免费av网站大全| 18禁在线无遮挡免费观看视频| 18+在线观看网站| 日韩三级伦理在线观看| 精品99又大又爽又粗少妇毛片| 最新的欧美精品一区二区| 大香蕉97超碰在线| 日本免费在线观看一区| 一二三四中文在线观看免费高清| 欧美日本中文国产一区发布| 丰满迷人的少妇在线观看| 精品视频人人做人人爽| 日韩三级伦理在线观看| 内地一区二区视频在线| 久久精品久久久久久噜噜老黄| 一级黄片播放器| 高清黄色对白视频在线免费看 | 在线观看av片永久免费下载| 国产淫片久久久久久久久| 欧美区成人在线视频| 久久精品久久精品一区二区三区| 在线精品无人区一区二区三| 偷拍熟女少妇极品色| 久热这里只有精品99| 亚洲欧洲国产日韩| 欧美日韩av久久| 国产毛片在线视频| 91aial.com中文字幕在线观看| 高清欧美精品videossex| 欧美成人午夜免费资源| 人妻少妇偷人精品九色| 国产欧美亚洲国产| 午夜久久久在线观看| 免费看日本二区| 成年人免费黄色播放视频 | 午夜影院在线不卡| 日韩av在线免费看完整版不卡| 亚洲精品久久久久久婷婷小说| 亚洲国产精品一区三区| 99热这里只有精品一区| 边亲边吃奶的免费视频| 18禁在线播放成人免费| 日本91视频免费播放| 永久免费av网站大全| 高清不卡的av网站| 精品一品国产午夜福利视频| 国产一区二区在线观看av| 人妻人人澡人人爽人人| 91午夜精品亚洲一区二区三区| 久久人人爽av亚洲精品天堂| 国产一级毛片在线| 国产精品久久久久久久电影| 欧美日韩在线观看h| 伦理电影免费视频| 久久精品久久精品一区二区三区| 免费看日本二区| 久久久久久久大尺度免费视频| 久久女婷五月综合色啪小说| 欧美日韩综合久久久久久| 国产精品一区二区在线不卡| 亚洲欧美成人精品一区二区| 亚洲国产精品一区三区| 人人妻人人爽人人添夜夜欢视频 | 一级av片app| 亚洲精品,欧美精品| 欧美xxxx性猛交bbbb| 纵有疾风起免费观看全集完整版| 欧美日韩av久久| 天天操日日干夜夜撸| 日韩亚洲欧美综合| 永久网站在线| 在现免费观看毛片| 寂寞人妻少妇视频99o| 99久久精品国产国产毛片| 国产有黄有色有爽视频| 大香蕉97超碰在线| 边亲边吃奶的免费视频| 久久久久国产精品人妻一区二区| 亚洲av国产av综合av卡| 韩国av在线不卡| 亚洲av国产av综合av卡| 色视频www国产| 国产亚洲5aaaaa淫片| 少妇熟女欧美另类| 国产精品偷伦视频观看了| 99热全是精品| 国产真实伦视频高清在线观看| 国产乱来视频区| 欧美亚洲 丝袜 人妻 在线| 狂野欧美白嫩少妇大欣赏| 精品人妻偷拍中文字幕| 麻豆乱淫一区二区| 亚洲欧美一区二区三区黑人 | 国产一区二区三区av在线| 国产乱来视频区| 亚洲真实伦在线观看| 秋霞在线观看毛片| 中文欧美无线码| 亚洲精品中文字幕在线视频 | 亚洲精品第二区| 亚洲精品日韩在线中文字幕| 国产视频内射| 五月伊人婷婷丁香| 99久久人妻综合| 色婷婷av一区二区三区视频| 免费黄频网站在线观看国产| 各种免费的搞黄视频| 91成人精品电影| 久久久久久伊人网av| 中文在线观看免费www的网站| 日韩大片免费观看网站| 青春草视频在线免费观看| 九色成人免费人妻av| 国产伦精品一区二区三区四那| 多毛熟女@视频| 少妇被粗大的猛进出69影院 | 久久99一区二区三区| 麻豆成人午夜福利视频| freevideosex欧美| 欧美丝袜亚洲另类| 免费播放大片免费观看视频在线观看| 国产爽快片一区二区三区| 国产欧美日韩综合在线一区二区 | 亚洲一区二区三区欧美精品| 热re99久久精品国产66热6| 免费人妻精品一区二区三区视频| 性色av一级| 亚洲天堂av无毛| 中文字幕免费在线视频6| 99热国产这里只有精品6| 成人二区视频| 一区在线观看完整版| 欧美成人精品欧美一级黄| 免费播放大片免费观看视频在线观看| 丁香六月天网| 九色成人免费人妻av| 少妇被粗大的猛进出69影院 | 久久免费观看电影| 一级黄片播放器| 久久久久久久久久久久大奶| 久久精品久久久久久久性| av免费观看日本| 在线亚洲精品国产二区图片欧美 | 热re99久久国产66热| 伦理电影大哥的女人| 亚洲高清免费不卡视频| 男女免费视频国产| 亚洲人与动物交配视频| 欧美日韩视频精品一区| 熟妇人妻不卡中文字幕| 一本—道久久a久久精品蜜桃钙片| 国产精品麻豆人妻色哟哟久久| 少妇的逼好多水| 国产在线男女| 综合色丁香网| 国产高清不卡午夜福利| 色婷婷久久久亚洲欧美| 蜜臀久久99精品久久宅男| 亚洲国产欧美日韩在线播放 | 一级毛片aaaaaa免费看小| 黑人猛操日本美女一级片| 亚洲欧美成人精品一区二区| 久久6这里有精品| 国产黄片美女视频| 婷婷色综合www| 久久久久久久久久久久大奶| 性色av一级| 免费播放大片免费观看视频在线观看| 国产亚洲av片在线观看秒播厂| 国产国拍精品亚洲av在线观看| 精品视频人人做人人爽| 亚洲国产精品一区三区| h日本视频在线播放| 日韩欧美精品免费久久| 国产永久视频网站| 麻豆精品久久久久久蜜桃| 街头女战士在线观看网站| 精品99又大又爽又粗少妇毛片| 国产成人91sexporn| 国产免费又黄又爽又色| 伦理电影免费视频| 久久久久国产网址| 一本大道久久a久久精品| 亚洲av欧美aⅴ国产| 国产69精品久久久久777片| 亚洲欧洲日产国产| 久久久久久久久大av| 国产精品一二三区在线看| 欧美精品一区二区大全| 一区二区三区乱码不卡18| 人妻一区二区av| 伦精品一区二区三区| 丰满人妻一区二区三区视频av| 国产欧美日韩一区二区三区在线 | 人人妻人人澡人人爽人人夜夜| 夫妻午夜视频| 精品亚洲成a人片在线观看| 久久99蜜桃精品久久| 丝袜脚勾引网站| 在线天堂最新版资源| 啦啦啦视频在线资源免费观看| 久久久欧美国产精品| 五月玫瑰六月丁香| 国产亚洲av片在线观看秒播厂| 亚洲经典国产精华液单| 亚洲欧美精品专区久久| 日韩 亚洲 欧美在线| 中文字幕久久专区| 七月丁香在线播放| 熟妇人妻不卡中文字幕| 国产精品国产三级专区第一集| 一本一本综合久久| 亚洲成色77777| 91在线精品国自产拍蜜月| 精品久久久噜噜| 99久久中文字幕三级久久日本| 亚洲精品国产av蜜桃| 欧美精品一区二区免费开放| 国产乱来视频区| 91aial.com中文字幕在线观看| 黑人巨大精品欧美一区二区蜜桃 | 亚洲精品视频女| 国产精品久久久久久久久免| 一级毛片 在线播放| 国产淫语在线视频| 校园人妻丝袜中文字幕| 看十八女毛片水多多多| 国产精品久久久久久精品电影小说| 亚洲精品,欧美精品| 九九爱精品视频在线观看| 2018国产大陆天天弄谢| 91精品一卡2卡3卡4卡| 热re99久久国产66热| 中文字幕人妻丝袜制服| 99热6这里只有精品| 精品国产一区二区久久| 一级毛片aaaaaa免费看小| 啦啦啦中文免费视频观看日本| 夫妻性生交免费视频一级片| 狂野欧美白嫩少妇大欣赏| 国产一区二区三区av在线| 久久久国产欧美日韩av| 一级a做视频免费观看| 国产探花极品一区二区| 国产精品嫩草影院av在线观看| 国产亚洲5aaaaa淫片| 黑人巨大精品欧美一区二区蜜桃 | 久久久久久久久大av| 99久久精品一区二区三区| 最近中文字幕高清免费大全6| 永久网站在线| 少妇熟女欧美另类| 久久久久久伊人网av| 80岁老熟妇乱子伦牲交| 91精品伊人久久大香线蕉| 国产成人精品无人区| 91精品国产九色| 国产欧美另类精品又又久久亚洲欧美| 欧美激情国产日韩精品一区| 亚洲va在线va天堂va国产| 一区二区三区精品91| av线在线观看网站| 国产亚洲最大av| 免费av不卡在线播放| 国产 精品1| 最新中文字幕久久久久| 成人综合一区亚洲| 日本爱情动作片www.在线观看| 精品熟女少妇av免费看| 一级av片app| 亚洲精品乱久久久久久| 精品少妇黑人巨大在线播放| 免费观看的影片在线观看| 亚洲美女黄色视频免费看| av黄色大香蕉| 欧美性感艳星| 亚洲欧美一区二区三区黑人 | 五月玫瑰六月丁香| 久久精品国产亚洲av涩爱| 亚洲精品日本国产第一区| av免费观看日本| 成年女人在线观看亚洲视频| 国产成人免费无遮挡视频| 91午夜精品亚洲一区二区三区| 中文字幕亚洲精品专区| 亚洲欧洲日产国产| 国产黄片美女视频| 人妻系列 视频| 各种免费的搞黄视频| 欧美+日韩+精品| 在现免费观看毛片| 3wmmmm亚洲av在线观看| 国产av一区二区精品久久| 亚洲成人手机| 自拍偷自拍亚洲精品老妇| 亚洲国产毛片av蜜桃av| 国产精品一区二区在线不卡| 欧美三级亚洲精品| 性色av一级| 又粗又硬又长又爽又黄的视频| 久久鲁丝午夜福利片| 熟女人妻精品中文字幕| 搡女人真爽免费视频火全软件| 亚洲精品一二三| 欧美日韩国产mv在线观看视频| 人妻夜夜爽99麻豆av| 亚洲美女搞黄在线观看| 中国国产av一级| av.在线天堂| 亚洲av不卡在线观看| 大片电影免费在线观看免费| 国产黄片美女视频| 免费在线观看成人毛片| 五月玫瑰六月丁香| 国产白丝娇喘喷水9色精品| 国产 精品1| 七月丁香在线播放| 亚洲久久久国产精品| av女优亚洲男人天堂| 亚洲怡红院男人天堂| 91精品一卡2卡3卡4卡| 国内精品宾馆在线| 看非洲黑人一级黄片| 日韩在线高清观看一区二区三区| 亚洲四区av| 日韩伦理黄色片| 91精品一卡2卡3卡4卡| 午夜老司机福利剧场| 自拍偷自拍亚洲精品老妇| 中文字幕久久专区| 毛片一级片免费看久久久久| 日本与韩国留学比较| 日本欧美视频一区| 六月丁香七月| 黄片无遮挡物在线观看| av专区在线播放| 亚洲国产最新在线播放| av免费观看日本| 国产精品人妻久久久久久| av不卡在线播放| 观看av在线不卡| 午夜免费男女啪啪视频观看| 大片免费播放器 马上看| 欧美日韩视频精品一区|