• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      連續(xù)泵浦摻銩雙包層光纖激光器的自脈沖現(xiàn)象

      2015-12-24 17:12:30
      關(guān)鍵詞:脈沖

      ?

      連續(xù)泵浦摻銩雙包層光纖激光器的自脈沖現(xiàn)象

      杜戈果1,2,宋玉立1,2,徐意1,2,王金章1,郭春雨1,曹文華2

      1)深圳市激光工程重點(diǎn)實(shí)驗(yàn)室,先進(jìn)光學(xué)精密制造技術(shù)廣東普通高校重點(diǎn)實(shí)驗(yàn)室,深圳518060;

      2)深圳大學(xué)電子科學(xué)與技術(shù)學(xué)院,深圳518060

      摘要:在2 μm波段運(yùn)轉(zhuǎn)的摻銩雙包層光纖激光器中觀(guān)察到了自脈沖(類(lèi)鎖模)現(xiàn)象.對(duì)單端和雙端泵浦方式以及不同腔長(zhǎng)度下的輸出進(jìn)行比較研究,認(rèn)為這種現(xiàn)象的主要產(chǎn)生機(jī)制可能為摻銩光纖中的自相位調(diào)制和離子簇導(dǎo)致的可飽和吸收效應(yīng).

      關(guān)鍵詞:光電子與激光技術(shù);摻銩光纖;自脈沖;可飽和吸收;自相位調(diào)制;脈沖

      Received: 2014-11-13; Revised: 2015-05-16; Accepted: 2015-05-20

      Foundation: National Natural Science Foundation of China(61308049) ; Special Fund Project for Shenzhen Strategic New Industry(JCYJ20130329103035715 ) ; Shenzhen Fundamental Research Plan of Technology and Science Plan(JC201105170655A)

      Corresponding author: Professor Du Geguo.E-mail: dugeguo@szu.edu.cn

      光纖激光器以其轉(zhuǎn)換效率高、光束質(zhì)量好、可調(diào)諧范圍大及結(jié)構(gòu)緊湊等優(yōu)點(diǎn),在光通信、激光醫(yī)療、工業(yè)加工及航空航天等諸多領(lǐng)域得到廣泛應(yīng)用.實(shí)現(xiàn)脈沖光纖激光器的方法有多種,如調(diào)Q技術(shù)、增益開(kāi)關(guān)和鎖模技術(shù)等[1-4].一般認(rèn)為,沒(méi)有任何調(diào)制器件的連續(xù)泵浦光纖激光器的輸出都是連續(xù)的,但研究發(fā)現(xiàn),即使在連續(xù)抽運(yùn)情況下,摻稀土元素的光纖激光器也會(huì)出現(xiàn)自鎖模導(dǎo)致的脈沖輸出現(xiàn)象,文獻(xiàn)報(bào)道較多的主要有摻鉺和摻鐿光纖激光器等.

      有關(guān)摻鉺光纖激光器,Boudec等[5]在不同腔裝置下,利用不同泵浦波長(zhǎng)進(jìn)行了實(shí)驗(yàn).當(dāng)泵浦功率超過(guò)激光閾值后,高損耗腔的輸出隨泵浦功率的增加從平穩(wěn)階段到脈沖序列連續(xù)變化.文獻(xiàn)[6-10]中,對(duì)摻鉺光纖激光器中的自脈沖現(xiàn)象提出了幾種假設(shè),認(rèn)為離子對(duì)效應(yīng)為導(dǎo)致此現(xiàn)象的主要機(jī)制.離子對(duì)濃度對(duì)摻鉺光纖激光器的動(dòng)態(tài)行為有影響,高摻雜光纖有更明顯的自脈沖現(xiàn)象.而且如果使用接近激光波長(zhǎng)的激光來(lái)泵浦,輸出平穩(wěn)度也可得到明顯改善.

      關(guān)于摻鐿光纖激光器,Hideu等[11]研究了腔損耗對(duì)脈沖動(dòng)態(tài)行為的影響.結(jié)果表明,高損耗腔更容易出現(xiàn)非線(xiàn)性效應(yīng),如布里淵散射和拉曼散射,導(dǎo)致在很大泵浦功率范圍內(nèi)的不規(guī)律自脈沖現(xiàn)象.然而,低損耗腔在泵浦達(dá)到閾值時(shí)出現(xiàn)自脈沖輸出,當(dāng)泵浦功率繼續(xù)增大時(shí),輸出逐步變成準(zhǔn)連續(xù).而且,在布里淵后向散射被抑制的單向環(huán)形腔里,輸出明顯平穩(wěn).文獻(xiàn)[12-13]進(jìn)一步證實(shí)了布里淵后向散射的存在以及對(duì)自脈沖現(xiàn)象的影響.另外,單端和雙端泵浦的不同輸出也表明,增益光纖遠(yuǎn)端的弱吸收導(dǎo)致的可飽和吸收效應(yīng)也會(huì)導(dǎo)致自脈沖現(xiàn)象[14-15].還有其他摻雜光纖中關(guān)于自脈沖現(xiàn)象的報(bào)道,如摻釹光纖激光器[16-17]和摻釤光纖激光器[18]等.

      摻銩光纖激光器以其發(fā)射的2 μm波段激光處于水分子吸收峰,且對(duì)人眼安全的獨(dú)特性能成為全球研究的熱點(diǎn).關(guān)于摻銩光纖激光器的自脈沖現(xiàn)象,Jackson等[19-21]指出離子簇效應(yīng)導(dǎo)致了自脈沖.與單向泵浦相比,雙向泵浦有更平穩(wěn)的激光輸出.Sherif等[22]展示了在1 319 nm泵浦的雙向泵浦線(xiàn)型腔中,不同泵浦功率下的自脈沖現(xiàn)象,他們認(rèn)為是離子簇效應(yīng)導(dǎo)致了這一現(xiàn)象.根據(jù)文獻(xiàn)[14,23],當(dāng)脈沖周期與腔回程有特定對(duì)應(yīng)關(guān)系時(shí),稱(chēng)這種脈沖為鎖模脈沖.本研究報(bào)道了單端和雙端泵浦摻銩光纖激光器中的自脈沖(類(lèi)鎖模)現(xiàn)象,并探討其物理機(jī)制.迄今為止,有關(guān)雙包層摻銩光纖激光器中的調(diào)Q包絡(luò)中的自脈沖自鎖模現(xiàn)象還鮮有報(bào)道.

      1 實(shí)驗(yàn)裝置

      實(shí)驗(yàn)裝置如圖1.其中,圖1(a)為單端泵浦實(shí)驗(yàn)裝置.泵浦源為半導(dǎo)體激光器,最大輸出功率為20 W,工作中心波長(zhǎng)為790 nm.泵浦光經(jīng)由一個(gè)雙透鏡耦合系統(tǒng)聚焦至摻銩光纖.激光諧振腔則為兩面二色鏡形成的法布里—珀羅(Fabry-Pérot,F(xiàn)-P)腔,其中,M1對(duì)790 nm附近的光高透,對(duì)2 μm附近的光高反; M2對(duì)790 nm附近的光高反,對(duì)2 μm附近的光透過(guò)率為50%.所用光纖為進(jìn)口D型雙包層摻銩光纖,纖芯直徑為20 μm,數(shù)值孔徑(numerical aperture,NA)為0.17;內(nèi)包層直徑為300 μm,NA為0.4;外包層和涂覆層直徑分別為353 μm和459 μm;對(duì)790 nm泵浦光的吸收系數(shù)為2.2 dB/m.

      圖1 實(shí)驗(yàn)裝置Fig.1 Experimental setups

      除單端泵浦,還進(jìn)行了雙端泵浦的實(shí)驗(yàn).圖1(b)為雙端泵浦實(shí)驗(yàn)裝置,兩個(gè)泵浦源和增益光纖與單端泵浦情況一致,M3和M1一致,M4為45°入射工作,對(duì)790 nm光高透、2 μm光高反,此端利用光纖端面本身的菲涅爾反射構(gòu)成一個(gè)諧振腔鏡(另一個(gè)腔鏡為M3).對(duì)雙端泵浦,在探測(cè)輸出功率時(shí),為了濾去未吸收的泵浦光,在功率計(jì)前加了一個(gè)對(duì)790 nm高反的平面鏡.

      實(shí)驗(yàn)所用的測(cè)量?jī)x器有:功率計(jì)、示波器(Tektronix,型號(hào)為DPO 7104C)、InGaAs探測(cè)器(Electronic-optics technology,型號(hào)為ET-5000)和光譜儀(Yokogawa,型號(hào)為AQ-6375).

      2 實(shí)驗(yàn)結(jié)果

      2.1不同長(zhǎng)度光纖中的自脈沖現(xiàn)象

      分別對(duì)長(zhǎng)度為1.0、2.6、3.1、5.0和10.0 m的摻銩光纖進(jìn)行實(shí)驗(yàn),在單端泵浦和雙端泵浦的兩種實(shí)驗(yàn)條件下,均觀(guān)察到具有一定鎖模特征的自脈沖現(xiàn)象,脈沖規(guī)律呈現(xiàn)一致性,如圖2.脈沖周期T由腔長(zhǎng)(本實(shí)驗(yàn)中即為光纖長(zhǎng)度)決定,可表示為其中,L為腔長(zhǎng); n為增益介質(zhì)的折射率; c為真空中的光速.

      圖2 不同長(zhǎng)度光纖下的自脈沖(類(lèi)鎖模)輸出Fig.2(Color online) Self-pulses(self-mode-locking-like pulses) with different fiber lengths

      圖3 脈沖的典型演化Fig.3(Color online) Typical evolution of pulses

      圖3和圖4分別為L(zhǎng) =3.1 m,泵浦功率依次為1.7、5.1及7.5 W時(shí)的時(shí)域圖和頻域圖.實(shí)驗(yàn)發(fā)現(xiàn),更高的泵浦(以實(shí)驗(yàn)室可得最高功率來(lái)看)功率不會(huì)給鎖模脈沖帶來(lái)本質(zhì)上的改變,只會(huì)在主脈沖之間引入更多競(jìng)爭(zhēng)性的小脈沖,見(jiàn)圖3(均在10 ns/div下).此外,由圖2可見(jiàn),更長(zhǎng)的光纖長(zhǎng)度也會(huì)給脈沖帶來(lái)這種改變.同時(shí),泵浦功率增加時(shí)光譜向長(zhǎng)波方向移動(dòng).纖芯中形成的熱聚集使基態(tài)各子能級(jí)上的玻爾茲曼粒子增加,受激輻射向基態(tài)的更高子能級(jí)躍遷,從而改變了發(fā)射波長(zhǎng),造成光譜紅移,并出現(xiàn)更多相互競(jìng)爭(zhēng)的縱模,如圖4.

      圖4 不同泵浦功率下的光譜(L = 3.1 m)Fig.4(Color online) Spectra evolution with different pump power(L = 3.1 m)

      實(shí)驗(yàn)中,當(dāng)改變泵浦功率或光纖長(zhǎng)度時(shí),脈寬始終維持在2 ns左右.當(dāng)然,由于實(shí)驗(yàn)設(shè)備所限(示波器帶寬為1 GHz),測(cè)量只能精確到ns量級(jí),真實(shí)值可能更窄或在不同狀況下有所改變.單脈沖能量E和峰值功率P的關(guān)系為其中,Pav為平均功率; f為重復(fù)頻率;τ為脈沖寬度.對(duì)光纖長(zhǎng)度為3.1 m的單端泵浦,實(shí)驗(yàn)可得最大輸出功率為2.5 W,對(duì)應(yīng)單脈沖能量約為80 nJ,峰值功率約為50 W.

      2.2調(diào)Q脈沖包絡(luò)

      通過(guò)調(diào)節(jié)示波器的時(shí)域范圍,發(fā)現(xiàn)輸出并不是穩(wěn)定的連續(xù)鎖模,而是調(diào)Q鎖模,如圖5所示.圖5為光纖長(zhǎng)度為10.0 m時(shí),激光器剛過(guò)閾值的典型時(shí)域圖.當(dāng)泵浦功率逐漸增大時(shí),調(diào)Q脈沖頻率越來(lái)越大,脈寬越來(lái)越窄,出現(xiàn)了調(diào)Q脈沖的典型特征.圖5(d)中的小圖為相同時(shí)域下泵浦功率增加1 W時(shí)的調(diào)Q脈沖圖.然而,進(jìn)一步增大泵浦功率時(shí),脈沖變得不穩(wěn)定,這種結(jié)果表明了腔內(nèi)可能存在較弱的可飽和吸收效應(yīng).這種輸出特征與典型的鎖模激光不同,典型鎖模脈沖在所有時(shí)域下所有單脈沖的幅值一致[24],而這里則是以調(diào)Q包絡(luò)脈沖形式存在.

      圖5 不同時(shí)域下的脈沖演化(L = 10.0 m)Fig.5(Color online) Typical evolution of pulses with different time spans(L = 10.0 m)

      3 討論

      迄今為止,對(duì)稀土摻雜光纖激光器中的自脈沖自鎖?,F(xiàn)象已經(jīng)有較多的實(shí)驗(yàn)和理論研究,但是對(duì)此現(xiàn)象的解釋尚未達(dá)到共識(shí).一個(gè)可能的解釋是由于光纖未泵浦端基態(tài)重吸收導(dǎo)致的可飽和吸收效應(yīng).在本實(shí)驗(yàn)中,當(dāng)采用更高泵浦功率、更短光纖長(zhǎng)度以及雙端泵浦這些措施來(lái)更充分地泵浦整根光纖時(shí),并未發(fā)現(xiàn)脈沖的消失,因此,可以否定未泵浦端可能導(dǎo)致的可飽和吸收效應(yīng)所產(chǎn)生自脈沖現(xiàn)象的解釋?zhuān)墨I(xiàn)[5]中關(guān)于摻鉺光纖激光器也有相似討論,同樣認(rèn)為這種假設(shè)對(duì)摻鉺光纖激光器不合適.

      其次,鎖模光纖激光器中的兩種特殊狀態(tài)——類(lèi)噪聲脈沖群(noise-like pulse)和耗散孤子(dissipative soliton resonance,DSR),與研究中提到的現(xiàn)象也有差異.這兩種現(xiàn)象的實(shí)驗(yàn)裝置中都加入了明顯的鎖模調(diào)制器件,已達(dá)到穩(wěn)定的連續(xù)鎖模狀態(tài).此外,其輸出也有典型特征:類(lèi)噪聲脈沖群的輸出光譜是有較寬3 dB譜寬的平滑曲線(xiàn)[25-26],而DSR則輸出比較典型的方波脈沖和孤子光譜[27-28].本研究中采用的是未加入任何調(diào)制器件的簡(jiǎn)單線(xiàn)型腔,輸出的是呈現(xiàn)調(diào)Q包絡(luò)的鎖模脈沖和存在眾多小峰的不平滑光譜.

      有研究表明,重?fù)诫s摻銩光纖中,銩離子的上轉(zhuǎn)換和重吸收過(guò)程會(huì)導(dǎo)致可飽和吸收[29-31].文獻(xiàn)[7]提到飽和吸收體(離子簇)只存在于重?fù)诫s光纖中.本實(shí)驗(yàn)使用的光纖吸收系數(shù)較低,而吸收系數(shù)與摻雜濃度存在一定程度的正比關(guān)系.由此可推斷,實(shí)驗(yàn)所用光纖并非重?fù)诫s,但這種可飽和吸收在其中應(yīng)該還是起到了一定作用.

      實(shí)驗(yàn)中,由于銩離子的發(fā)射譜和增益帶寬比較寬,諧振腔腔鏡是無(wú)特定波長(zhǎng)選擇的寬帶腔鏡,且增益光纖也比較長(zhǎng).因此,在諧振腔內(nèi)振蕩的縱模很多,不同縱模之間存在激烈的競(jìng)爭(zhēng)和耦合,形成脈沖演化初期的短脈沖.在光強(qiáng)度較高時(shí),自相位調(diào)制發(fā)生作用[32-33],使各個(gè)縱模之間的相位差接近或等于腔內(nèi)的縱模間隔,于是具有相對(duì)優(yōu)勢(shì)的一個(gè)或幾個(gè)模式便從眾多模式中脫穎而出,形成具有一定鎖模特征的脈沖輸出.

      結(jié)語(yǔ)

      在未使用任何特殊鎖模器件情況下,觀(guān)察到線(xiàn)型腔中摻銩光纖激光器的自脈沖(類(lèi)鎖模)現(xiàn)象,脈沖以調(diào)Q包絡(luò)形式存在.分析認(rèn)為主要機(jī)制為自相位調(diào)制和摻銩光纖中的離子簇導(dǎo)致的可飽和吸收效應(yīng).機(jī)理明晰尚需進(jìn)一步的分析與驗(yàn)證.

      引文:杜戈果,宋玉立,徐意,等.連續(xù)泵浦摻銩雙包層光纖激光器的自脈沖現(xiàn)象[J].深圳大學(xué)學(xué)報(bào)理工版,2015,32(4) : 422-427.

      參考文獻(xiàn)/References:

      [1]Harun S W,Saidin N,Zen D I M,et al.Self-starting harmonic mode-locked thulium-doped fiber laser with carbon nanotubes saturable absorber[J].Chinese Physics Letters,2013,30(9) : 094204-1-094204-3.

      [2]Jackson S D.Passively Q-switched Tm3+-doped silica fiber lasers[J].Applied Optics,2007,46(16) : 3311-3317.

      [3]Liu Jiang,Wu Sida,Xu Jia,et al.Mode-locked 2 μm thulium-doped fiber laser with graphene oxide saturable absorber[C]//International Conference on Lasers and Electron-Optics.San Jose(USA) : OSA,2012: JW2A.76-1-JW2A.76-2.

      [4]Wang Q,Geng J,Luo T,et al.Mode-locked 2 μm laser with highly thulium-doped silicate fiber[J].Optics Letters,2009,34(23) : 3616-3618.

      [5]Boudec P L,F(xiàn)lohic M L,F(xiàn)rancois P L,et al.Self-pulsing in Er3+-doped fiber laser[J].Optical and Quantum Electronics,1993,25(5) : 359-367.

      [6]Boudec P L,F(xiàn)rancois P L,Delevaque E,et al.Influence of ion pairs on the dynamical behavior of Er3+-doped fiber laser[J].Optical and Quantum Electronics,1993,25(8) : 501-507.

      [7]Colin S,Contesse E,Boudec P L,et al.Evidence of a saturable-absorption effect in heavily erbium-doped fibers [J].Optics Letters,1996,21(24) : 1987-1989.

      [8]Loh W H,Sandro J P.Suppression of self-pulsing behavior in erbium-doped fiber lasers with resonant pumping: experimental results[J].Optics Letters,1996,21(18) : 1475-1477.

      [9]Sanchez F,Stephan G.General analysis of instabilities in erbium-doped fiber lasers[J].Physical Review E,1996,53(3) : 2110-2122.

      [10]Rojo R R,Mohebi M.Study of the onset of self-pulsing behavior in an Er-doped fiber laser[J].Optics Communications,1997,137(1/2/3) : 98-102.

      [11]Hideur A,Chartier T,Ozkul C,et al.Dynamics andstabilization of a high power side-pumped Yb-doped double-clad fiber laser[J].Optics Communications,2000,186(4/5/6) : 311-317.

      [12]Salhi M,Hideur A,Chartier T,et al.Evidence of Brillouin scattering in an ytterbium-doped double-clad fiber laser[J].Optics Letters,2002,27(15) : 1294-1296.

      [13]Ortac B,Hideur A,Chartier T,et al.Influence of cavity losses on stimulated Brillouin scattering in a self-pulsing side-pumped ytterbium-doped double-clad fiber laser[J].Optics Communications,2003,215(4/5/6) : 389-395.

      [14]Upadhyaya B N,Chakravarty U,Kuruvilla A,et al.Selfpulsing characteristics of a high-power single transverse mode Yb-doped CW fiber laser[J].Optics Communications,2010,283(10) : 2206-2213.

      [15]Chakravarty U,Kuruvilla A,Harikrishnan H,et al.Study on self-pulsing dynamics in Yb-doped photonic crystal fiber laser[J].Optics and Laser Technology,2013,51: 82-89.

      [16]Chen Z J,Grudinin A B,Porta J,et al.Enhanced Q switching in double-clad fiber lasers[J].Optics Letters,1998,23(6) : 454-456.

      [17]Glas P,Naumann M,Schirrmacher A,et al.Self pulsing versus self locking in a CW pumped neodymium doped double clad fiber laser[J].Optics Communications,1999,161(4/5/6) : 345-358.

      [18]Farries M C,Morkel P R,Townsend J E.Spectroscopic and lasing characteristics of samarium doped glass fiber [J].IEE Proceedings J(Optoelectronics),1990,137(5) : 318-322.

      [19]Jackson S D,King T A.Dynamics of the output of heavily Tm-doped double-clad silica fiber lasers[J].Journal of Optical Society of America B,1999,16(12) : 2178-2188.

      [20]Jackson S D,King T A.High-power diode-claddingpumped Tm-doped silica fiber laser[J].Optics Letters,1998,23(18) : 1462-1464.

      [21]Jackson S D.Direct evidence for laser reabsorption as initial cause for self-pulsing in three-level fiber lasers [J].Electronics Letters,2002,38(25) : 1640-1642.

      [22]Sherif A F,King T A.Dynamics and self-pulsing effects in Tm3+-doped silica fiber lasers[J].Optics Communications,2002,208(4/5/6) : 381-389.

      [23]Tsao H X,Chang C H,Lin S T,et al.Passively gainswitched and self mode-locked thulium fiber laser at 1950 nm[J].Optics and Laser Technology,2014,56: 354-357.

      [24]Zhou W,Shen D Y,Wang Y S,et al.Mode-locked thulium-doped fiber laser with a narrow bandwidth and high pulse energy[J].Laser Physics Letters,2012,9(8) : 587-590.

      [25]Tang D Y,Zhao L M,Zhao B.Soliton collapse and bunched noise-like pulse generation in a passive modelocked fiber ring laser[J].Optics Express,2005,13(7) : 2289-2294.

      [26]Li Jianfeng,Yan Zhijun,Sun Zhongyuan,et al.Thuliumdoped all-fiber mode-locked laser based on NPR and 45-tilted fiber grating[J].Optics Express,2014,22(25) : 31020-31028.

      [27]Gumenyuk R,Vartiainen I,Tuovinen H,et al.Dissipative dispersion-managed soliton 2 μm thulium/holmium fiber laser[J].Optics Letters,2011,36(5) : 609-611.

      [28]Haxsen F,Wandt D,Morgner U,et al.Monotonically chirped pulse evolution in an ultrashort pulse thuliumdoped fiber laser[J].Optics Letters,2012,37(6) : 1014-1016.

      [29]Tang Yulong,Xu Jianqiu.Self-induced pulsing in Tm3+-doped fiber lasers with different output couplings[C]//Photonics and Optoelectronics Meetings.Wuhan(China) : SPIE,2009,72760L-1-72760L-10.

      [30]Qamar F Z,King T A.Self-mode-locking effects in heavily doped single-clad Tm3+-doped silica fibre lasers [J].Journal of Modern Optics,2005,52(8) : 1053-1063.

      [31]Liu Chun,Luo Zhengqiang,Huang Yizhong,et al.Selfmode-lock 2 μm Tm-doped double-clad fiber laser with a simple linear cavity[J].Applied Optics,2014,53(5) : 892-897.

      [32]Myslinski P,Chrostowski J,Koningstein J A K,et al.Self-mode locking in a Q-switched erbium-doped fiber laser [J].Applied Optics,1993,32(3) : 286-290.

      [33]Han Xu,F(xiàn)eng Guoying,Wu Chuanlong,et al.Investigation of self-pulsing and self-mode-locking in ytterbiumdoped fiber laser[J].Acta Physica Sinica,2012,61(11) : 114204-1-114204-7.(in Chinese)韓旭,馮國(guó)英,武傳龍,等.摻鐿光纖激光器自脈沖與自脈沖內(nèi)的自鎖模研究[J].物理學(xué)報(bào),2012,61(11) : 114204-1-114204-7.

      【中文責(zé)編:方圓;英文責(zé)編:木南】

      【電子與信息科學(xué)/Electronics and Information Science】

      Citation: Du Geguo,Song Yuli,Xu Yi,et al.Self-pulsing in a continuous wave pumped Tm-doped double-clad fiber laser[J].Journal of Shenzhen University Science and Engineering,2015,32(4) : 422-427.(in Chinese)

      Self-pulsing in a continuous wave pumped Tm-doped double-clad fiber laserDu Geguo1,2,Song Yuli1,2,Xu Yi1,2,Wang Jinzhang1,

      Guo Chunyu1,and Cao Wenhua2

      1) Shenzhen Key Laboratory of Laser Engineering,Key Laboratory of Advanced Optical Precision Manufacturing Technology of Guangdong Higher Education Institution,Shenzhen University,Shenzhen 518060,P.R.China

      2) College of Electronic Science and Technology,Shenzhen University,Shenzhen 518060,P.R.China

      Abstract:We observe the self-pulsing(self-mode-locking like) in a Tm-doped silica fiber laser operating at a wavelength around 2 μm.To get further insight into the variation and evolution of the self-mode-locking,we investigate both single-end and double-end pumping configurations with different cavity-lengths.We find that the main mechanism of self-mode-locking can be attributed to the combination of self-phase modulation effect and the saturable absorption effect caused by ion pairs in Tm-doped fiber.

      Key words:optoelectronic and laser technology; Tm-doped fiber; self-pulsing; saturable absorption; self-phase modulation; pulse

      作者簡(jiǎn)介:杜戈果(1971—),女(漢族),陜西省米脂縣人,深圳大學(xué)教授.E-mail: dugeguo@ szu.edu.cn

      基金項(xiàng)目:國(guó)家自然科學(xué)基金資助項(xiàng)目(61308049) ;深圳市戰(zhàn)略新興產(chǎn)業(yè)發(fā)展專(zhuān)項(xiàng)資金資助項(xiàng)目(JCYJ2013032910303 5715) ;深圳市科技計(jì)劃基礎(chǔ)研究資助項(xiàng)目(JC201105 170655A)

      doi:10.3724/SP.J.1249.2015.04422

      文獻(xiàn)標(biāo)志碼:A

      中圖分類(lèi)號(hào):TN 248

      猜你喜歡
      脈沖
      他們使阿秒光脈沖成為可能
      脈沖無(wú)窮時(shí)滯中立型測(cè)度微分方程mild解的存在性
      具瞬時(shí)脈沖接種與非瞬時(shí)脈沖接種效應(yīng)的一類(lèi)新的SIR傳染病模型研究
      脈沖離散Ginzburg-Landau方程組的統(tǒng)計(jì)解及其極限行為
      上下解反向的脈沖微分包含解的存在性
      黃芩苷脈沖片的制備
      中成藥(2017年12期)2018-01-19 02:06:54
      基于JADE的測(cè)距儀脈沖干擾抑制方法
      模糊自適應(yīng)PID脈沖焊接電源智能控制
      焊接(2016年5期)2016-02-27 13:04:50
      基于Hopkinson桿的窄脈沖校準(zhǔn)系統(tǒng)
      一種基于脈沖耦合神經(jīng)網(wǎng)絡(luò)的去除脈沖噪聲算法
      任丘市| 本溪市| 绥阳县| 揭阳市| 垦利县| 买车| 靖宇县| 五莲县| 崇左市| 张掖市| 济宁市| 辉县市| 商南县| 从江县| 平南县| 井冈山市| 望江县| 巴林左旗| 新和县| 始兴县| 高安市| 呼和浩特市| 宁河县| 布拖县| 湖北省| 深圳市| 安丘市| 略阳县| 石首市| 安福县| 积石山| 容城县| 浠水县| 旬阳县| 新沂市| 洪雅县| 元朗区| 如皋市| 沅陵县| 甘谷县| 泌阳县|