• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    TrainingRobust Support Vector Machine Based on a New Loss Function

    2015-12-20 09:14:18LIUYeqing劉葉青

    LIU Yeqing(劉葉青)

    School of Mathematics and Statistics,Henan University of Science &Technology,Luoyang 471003,China

    Introduction

    Support vector machine (SVM)[1]was introduced by Vladimir Vapnik and colleagues.It is a relatively new learning method used for data classification.The basic idea is to find a hyperplane which separates the d-dimensional data perfectly into its two classes.Since example data were often not linearly separable,the notion of a“kernel induced feature space”was introduced which mapped the data into a higher dimensional space where the data were separable.Typically,casting into such a space would cause overfitting and calculation problems.The key technique used in SVM is that the higher-dimensional space doesn't need to be dealt with directly(as it turns out,only the formula for the dotproduct in that space is needed), which eliminates overfitting and calculation problems.Furthermore,the VCdimension(a measure of a system's likelihood to perform well on unseen data)of SVM can be explicitly calculated,unlike other learning methods such as neural networks,for which there is no measure.Overall,SVM is intuitive,theoretically well-founded,and has shown to be practically successful.

    SVM has been receiving increasing interest in many areas as a popular data classification tool.Unfortunately,researchers have shown that SVM is sensitive to the presence of outliers even though the slack technique is adopted.The central reason is that outliers are always playing dominant roles in determining the decision hyperplane since they tend to have the largest margin losses according to the character of the hinge loss function.

    In machine learning,the hinge loss is a loss function used for training classifiers.The hinge loss is used for the“maximum-margin”classification,most notably for SVM.For an intended output yi=±1and a classifier score f(xi)=wxi+b,the hinge loss of the prediction f(xi)is defined as l(yi·f(xi))=max(0,1-yi·f(xi)).It can be seen that when yiand f(xi)have the same sign,this means that f(xi)predicts the right class and|f(xi)|≥1,l(yi·f(xi))=0,but when they have opposite sign,l(yi·f(xi))increases linearly with f(xi)(one-sided error).SVM uses linear hinge loss function[2].According to the character of the linear hinge loss function,SVM is sensitive to outliers.In addition,the linear hinge loss function was not smooth.Thus, when used in SVM,it degrades the generalization performance of SVM.

    In this paper a new tangent loss function was proposed.As the tangent loss function was not smoothing in some interval,a polynomial smoothing function was used to approximate it in this interval.Based on the tangent loss function,the tangent SVM (TSVM)was proposed.The experimental results show that TSVM reduces the effects of outliers.So the proposed new loss function is effective.

    1 Related Works

    Consider a binary classification problem.Given a training dataset,where xi∈?nand yi∈{-1,+1}.The primal optimization of SVM is usually written as:

    where C >0is a penalty parameter;H1(u)is the linear hinge loss function,which has the form of H1(u)=max(0,1-u).It is obvious that the linear hinge loss function has no limit on the loss values of outliers,whose loss values may be very large when yi(w·xi+b)?1.Thus,of all training samples,the outliers will retain the maximal influences on the solution since they will normally have the largest hinge loss.This results in the decision hyperplane of SVM being inappropriately drawn toward outliers so that its generalization performance is degraded.

    Many loss functions[3-11]have been proposed to improve the generalization performance,increase the speed of optimization problem solving, or account for certain nonstandard situations.

    Lee and Mangasarian[3]proposed quadratic hinge loss function,

    Though quadratic hinge loss function is smooth,it enhances greatly the loss values of outliers.

    Shen et al.[7]proposed a new method that replaced the hinge loss in SVM by a loss function of the form,

    Although their method[7]outperforms SVM in nonseparable cases,the method is computationally much more complex than SVM.

    Lin et al.[8]extended SVM to nonstandard situations by adding an extra term to the hinge loss

    Here the extra termc(y)reflects two types of nonstandard situations:(1)misclassification costs are different for different classes,and(2)the sampling proportions of classes are different from their population proportions due to sampling bias.

    The above loss functions penalize only points with u <1.As a result,they all have the same problems as SVM,namely,they are sensitive to training samples and perform poorly.

    The Ramp loss function

    was used in SVM recently[5-6].The Ramp loss function has been investigated widely in the theoretical literature in order to improve the robustness of SVM,which limits its maximal loss value distinctly.Obviously,the Ramp loss function can put definite restrictions on the influences of outliers so that it is much less sensitive to their presence.Though the Ramp loss function limits the loss values of outliers,the losses caused by outliers are the same as those caused by any other misclassified samples.Thus,all misclassified samples are considered the same.Obviously,outliers and support vectors could not be treated equally.

    2 Tangent Loss Function

    To robustify the SVM,a new loss function is proposed.We call it tangent loss function,which has the form,

    The value of the function T(u)is in the interval[0,2).It is apparent that the loss function T(u)limits loss value of outliers.However,the tangent loss function is not smooth when u=1,and a polynomial function is used as the smooth approximation for T (u ) in the intervalwhere k >0.Thus,T(u)changes into a new smoothing loss function S(u)(see Fig.1),

    Thus,under the smoothing loss S(u),optimization problem(1)changes into the following problem,

    We call this SVM as TSVM.

    3 Experiments

    Fig.1 The function image of S(u)

    To verify the efficiency of the tangent loss function,experiments are performed on UCI data sets.We compare TSVM with SVM,which use the loss function of H2(u).Because the H2(u)quadratic hinge loss function is smooth function,the corresponding optimization problem can be solved directly.If we use the linear loss function H1(u),then the corresponding optimization problem can be solved only after being approximated using a smooth function.BFGS algorithm was used to solve the optimization problem(2).The algorithms are written in Matlab7.1,k =25,and other parameters are chosen for optimal performance.

    We demonstrate the effectiveness of the TSVM by comparing it numerically with SVM on UCI data sets.

    Those data sets include moderate sized data sets,monks-1,monks-2,breast-w,heart-statlog;balance and large data sets magic gamma telescope.In data sets monks-1 and monks-2,the training samples are draw-out from the testing samples.Their training samples are fixed.In other data sets,the training samples are chosen randomly,the remaining samples are testing samples.In the latter data sets,to demonstrate the capability of TSVM,training set sizes change.We performs 5-fold cross validation on each data set.Table 1shows the results of TSVM and SVM according to average testing accuracy,and p,q,and k are the numbers of training samples,testing samples,and outliers,respectively.

    Table 1 Comparing the testing accuracy of TSVM and SVM

    In order to compare the robustnesses of TSVM and SVM,we repeat above experiments on these training sets by adding 1% outliers.The outliers are produced by changing their labels.TSVM and SVM learn classification on such new training sets.The experimental results are also reported in Table 1.It is obvious that testing accuracy of TSVM is higher than that of SVM on all data sets.As a result of adding 1% outliers to the datasets,the testing accuracy of TSVM decreases no more than 1.5% while that of SVM decreases much more significantly by about 1.5%-7.5%.

    The experimental results show that TSVM is effective and is more robust to outliers than SVM.

    4 Conclusions and Future Research

    Because of using hinge loss function,conventional SVM is sensitive to outliers.A new loss function-tangent loss function was proposed.Since the tangent loss function was not smooth, a smoothing function was adopted to approximate it.The experimental results show the tangent loss function is more robust to outliers than linear hinge loss function.Therefore,the proposed new loss function is effective.

    There are several other research directions that need to be further pursued.Such as comparison with other large margin classifiers and other approaches to large sample bias problems would be interesting and generalized to nonlinear kernel functions needs to be investigated in the future.

    [1]Vapnik V.Satistical Learning Theory[M].New York:Wiley-Interscience,1998.

    [2]Chapelle O.Training a Support Vector Machine in the Primal[J].Neural Computation,2007,19(5):1155-1178.

    [3]Lee Y J,Mangasarian O L.SSVM:a Smooth Support Vector Machine for Classification[J].Computational Optimization and Applications,2001,22(1):5-21.

    [4]Wang S C,Jiang W,Tsui K L.Adjusted Support Vector Machines Based on a New Loss Function[J].Annals of Operations Research,2008,174(1):83-101.

    [5]Xu L,Crammer K,Schuurmans D.Robust Support Vector Machine Training via Convex Outlier Ablation [C].Proceedings of the 21st National Conference on Artificial Intelligence,Boston,2006:1321-1323.

    [6]Wang L,Jia H D,Li J.Training Robust Support Vector Machine with Smooth Ramp Loss in the Primal Space[J].Neurocomputing,2008,71(479):3020-3025.

    [7]Shen X,Tseng G C,Zhang X,et al.Onψ-Learning[J].Journal of American Statistical Association,2003,98(463):724-734.

    [8]Lin Y,Lee Y K,Wahba G.Support Vector Machines for Classification in Nonstandard Situations [J].Machine Learning,2002,46(2):191-202.

    [9]Wu Y C,Liu Y F.Non-crossing Large-Margin Probability Estimation and Its Application to Robust SVM via Preconditioning[J].Statistical Methodology,2011,8(1):56-67.

    [10]Ertekin S,Bottou L,Giles C.Nonconvex Online Support Vector Machines[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2010,33(2):368-381.

    [11]Zhong P.Training Robust Support Vector Regression with Smooth Non-convex Loss Function[J].Optimization Methods&Software,2012,27(6):1039-1058.

    如日韩欧美国产精品一区二区三区| 老司机影院成人| 蜜桃国产av成人99| 日韩精品免费视频一区二区三区| 男女之事视频高清在线观看 | 国产成人精品久久久久久| 日本色播在线视频| 欧美久久黑人一区二区| 亚洲欧美精品综合一区二区三区| tube8黄色片| 色94色欧美一区二区| 亚洲熟女精品中文字幕| 午夜免费鲁丝| 日韩中文字幕欧美一区二区 | 国产成人精品无人区| av片东京热男人的天堂| 亚洲婷婷狠狠爱综合网| 国产成人欧美| 国产精品久久久人人做人人爽| 蜜桃在线观看..| 一本久久精品| 午夜激情久久久久久久| 欧美日韩福利视频一区二区| 午夜影院在线不卡| 免费黄网站久久成人精品| 亚洲成人手机| 永久免费av网站大全| 五月开心婷婷网| 一本一本久久a久久精品综合妖精| 青春草视频在线免费观看| 波多野结衣av一区二区av| 国产伦理片在线播放av一区| 久久av网站| 99国产精品免费福利视频| 亚洲久久久国产精品| 精品酒店卫生间| 欧美日韩综合久久久久久| 看十八女毛片水多多多| 久久人妻熟女aⅴ| av网站免费在线观看视频| 国产精品一国产av| 天美传媒精品一区二区| 如何舔出高潮| 五月开心婷婷网| 又大又黄又爽视频免费| 91精品伊人久久大香线蕉| 熟妇人妻不卡中文字幕| 亚洲成人av在线免费| 亚洲av成人精品一二三区| 啦啦啦视频在线资源免费观看| 老司机靠b影院| 国产一区二区三区综合在线观看| 欧美日韩一级在线毛片| 久久 成人 亚洲| 亚洲精品国产av蜜桃| 亚洲国产日韩一区二区| 最黄视频免费看| av在线播放精品| 性色av一级| 国产日韩欧美在线精品| 亚洲精品久久成人aⅴ小说| 午夜福利一区二区在线看| 国产欧美亚洲国产| 国产一区二区激情短视频 | 精品少妇内射三级| 中文字幕精品免费在线观看视频| 国产精品一区二区精品视频观看| 丰满饥渴人妻一区二区三| 午夜精品国产一区二区电影| 丝袜喷水一区| 亚洲国产精品999| 男女免费视频国产| 亚洲精品国产一区二区精华液| 久久精品亚洲熟妇少妇任你| 日本欧美视频一区| 伊人亚洲综合成人网| 黑人猛操日本美女一级片| 97人妻天天添夜夜摸| 人妻 亚洲 视频| 久久久亚洲精品成人影院| 免费av中文字幕在线| 欧美精品亚洲一区二区| 18禁国产床啪视频网站| 99精品久久久久人妻精品| 丁香六月欧美| 国产日韩欧美亚洲二区| 国产成人精品无人区| 99热网站在线观看| 亚洲精品久久午夜乱码| 伊人久久大香线蕉亚洲五| 久久久国产精品麻豆| 菩萨蛮人人尽说江南好唐韦庄| 91精品国产国语对白视频| 久久久久久人妻| 国产精品一区二区在线观看99| 99久久精品国产亚洲精品| 一级毛片我不卡| 亚洲第一av免费看| 日韩人妻精品一区2区三区| 夫妻午夜视频| 建设人人有责人人尽责人人享有的| 18禁国产床啪视频网站| 日韩伦理黄色片| 9191精品国产免费久久| 欧美在线黄色| 超色免费av| 色视频在线一区二区三区| 久久久久久人人人人人| 国产av精品麻豆| 大码成人一级视频| 亚洲精品成人av观看孕妇| 男女床上黄色一级片免费看| 精品国产乱码久久久久久小说| 国产成人a∨麻豆精品| 国产日韩欧美亚洲二区| 亚洲国产欧美一区二区综合| 亚洲精品久久午夜乱码| 乱人伦中国视频| 成人亚洲欧美一区二区av| 最近最新中文字幕免费大全7| 在现免费观看毛片| 亚洲国产精品999| 看非洲黑人一级黄片| 午夜91福利影院| 欧美精品高潮呻吟av久久| 国产女主播在线喷水免费视频网站| 国产人伦9x9x在线观看| 国产成人欧美| 中文字幕人妻丝袜制服| 一级毛片电影观看| 久久久久久久国产电影| 香蕉丝袜av| 国产男女内射视频| 性色av一级| videosex国产| 十分钟在线观看高清视频www| 在线 av 中文字幕| 久久av网站| 视频区图区小说| 无限看片的www在线观看| 国产精品香港三级国产av潘金莲 | 一级片'在线观看视频| 欧美乱码精品一区二区三区| 高清不卡的av网站| 一区二区av电影网| 亚洲国产精品一区三区| 免费av中文字幕在线| 免费高清在线观看视频在线观看| 少妇被粗大猛烈的视频| 久久久久久久久久久久大奶| 免费少妇av软件| 深夜精品福利| 大话2 男鬼变身卡| 观看av在线不卡| 日韩中文字幕视频在线看片| 免费观看性生交大片5| 午夜91福利影院| 超碰97精品在线观看| 亚洲国产毛片av蜜桃av| 啦啦啦 在线观看视频| 纵有疾风起免费观看全集完整版| 精品国产乱码久久久久久小说| 国产激情久久老熟女| 精品少妇内射三级| 国产爽快片一区二区三区| 尾随美女入室| 亚洲av男天堂| 一边摸一边做爽爽视频免费| 人人妻人人澡人人爽人人夜夜| 大码成人一级视频| 老司机靠b影院| 肉色欧美久久久久久久蜜桃| 国产视频首页在线观看| 伊人久久国产一区二区| 1024视频免费在线观看| netflix在线观看网站| avwww免费| 如日韩欧美国产精品一区二区三区| 99九九在线精品视频| 秋霞伦理黄片| 午夜老司机福利片| 一级a爱视频在线免费观看| 国产又爽黄色视频| 精品免费久久久久久久清纯 | 亚洲国产av新网站| 97精品久久久久久久久久精品| 国产成人精品福利久久| 午夜激情久久久久久久| 男人舔女人的私密视频| 久久99一区二区三区| 黄片播放在线免费| 欧美av亚洲av综合av国产av | 黑人巨大精品欧美一区二区蜜桃| 日韩av不卡免费在线播放| 丁香六月欧美| 国产午夜精品一二区理论片| 久久久久精品久久久久真实原创| 9热在线视频观看99| 日韩,欧美,国产一区二区三区| 十分钟在线观看高清视频www| 韩国av在线不卡| 国产男女超爽视频在线观看| 黑人欧美特级aaaaaa片| 亚洲国产精品国产精品| 一区二区三区精品91| 亚洲国产最新在线播放| 亚洲成av片中文字幕在线观看| 一级毛片 在线播放| 一边摸一边做爽爽视频免费| 免费观看人在逋| 在线观看国产h片| 国产乱人偷精品视频| 最新的欧美精品一区二区| 丰满少妇做爰视频| 亚洲,欧美精品.| 成人国产av品久久久| 国产伦人伦偷精品视频| 欧美久久黑人一区二区| 欧美97在线视频| av福利片在线| 国产黄色视频一区二区在线观看| 岛国毛片在线播放| 国产精品 欧美亚洲| 自线自在国产av| 美女大奶头黄色视频| 国产成人免费无遮挡视频| 男女无遮挡免费网站观看| 99精品久久久久人妻精品| 国语对白做爰xxxⅹ性视频网站| 久久天堂一区二区三区四区| 久久久久国产一级毛片高清牌| 如何舔出高潮| 天天躁夜夜躁狠狠久久av| 久久 成人 亚洲| 两个人免费观看高清视频| 亚洲欧洲国产日韩| 免费看av在线观看网站| 高清黄色对白视频在线免费看| av国产精品久久久久影院| 青春草视频在线免费观看| 又大又黄又爽视频免费| 国产亚洲av高清不卡| 丝袜美腿诱惑在线| 国产精品女同一区二区软件| 男人添女人高潮全过程视频| 操美女的视频在线观看| 丝袜在线中文字幕| 亚洲精品日韩在线中文字幕| 99久久综合免费| 欧美激情 高清一区二区三区| 极品人妻少妇av视频| 性色av一级| 国产成人精品无人区| 男男h啪啪无遮挡| 亚洲成人国产一区在线观看 | 欧美 亚洲 国产 日韩一| 国产精品二区激情视频| 国产片内射在线| 免费黄频网站在线观看国产| 亚洲av成人精品一二三区| 亚洲三区欧美一区| 高清黄色对白视频在线免费看| 卡戴珊不雅视频在线播放| 亚洲视频免费观看视频| 日本猛色少妇xxxxx猛交久久| 人人妻,人人澡人人爽秒播 | 一本—道久久a久久精品蜜桃钙片| 亚洲成人一二三区av| 亚洲欧美一区二区三区黑人| 精品一区在线观看国产| 日韩中文字幕欧美一区二区 | 国产不卡av网站在线观看| 电影成人av| 一级毛片电影观看| 亚洲五月色婷婷综合| 成年av动漫网址| 色94色欧美一区二区| 精品国产一区二区久久| 日日摸夜夜添夜夜爱| 伊人久久大香线蕉亚洲五| 五月开心婷婷网| 免费不卡黄色视频| 一级毛片我不卡| 人人妻,人人澡人人爽秒播 | 久久久久精品性色| 精品国产国语对白av| 久久人人爽人人片av| 久久韩国三级中文字幕| 久久久久国产精品人妻一区二区| 亚洲伊人色综图| 久久精品人人爽人人爽视色| 一区二区av电影网| 黄色毛片三级朝国网站| www.自偷自拍.com| 免费观看av网站的网址| 中文精品一卡2卡3卡4更新| 777久久人妻少妇嫩草av网站| 国产精品国产av在线观看| 欧美亚洲 丝袜 人妻 在线| 国产av国产精品国产| 国产乱人偷精品视频| 亚洲一码二码三码区别大吗| 久久久久精品国产欧美久久久 | 满18在线观看网站| 国产精品久久久久成人av| 国产成人精品福利久久| 久久精品久久精品一区二区三区| 男女床上黄色一级片免费看| 久久久久久久久免费视频了| 亚洲精品一二三| 国产成人啪精品午夜网站| 精品亚洲成国产av| 少妇人妻久久综合中文| 伊人久久国产一区二区| 精品久久久久久电影网| 亚洲av在线观看美女高潮| 亚洲一卡2卡3卡4卡5卡精品中文| 国产一级毛片在线| 哪个播放器可以免费观看大片| 国产精品国产三级国产专区5o| 国产成人精品久久二区二区91 | 黄色一级大片看看| 精品少妇久久久久久888优播| 亚洲成人国产一区在线观看 | 在线免费观看不下载黄p国产| 欧美xxⅹ黑人| netflix在线观看网站| 大香蕉久久网| 日日爽夜夜爽网站| 伦理电影大哥的女人| 久久青草综合色| 免费在线观看完整版高清| svipshipincom国产片| 国产日韩欧美在线精品| 国产男人的电影天堂91| 日本欧美视频一区| 亚洲精品国产一区二区精华液| 国产精品久久久av美女十八| 一本色道久久久久久精品综合| 十八禁高潮呻吟视频| 操出白浆在线播放| 老熟女久久久| 99热网站在线观看| 男女午夜视频在线观看| 最新在线观看一区二区三区 | 一区二区日韩欧美中文字幕| 国产精品欧美亚洲77777| 亚洲国产看品久久| 男女边吃奶边做爰视频| 午夜免费男女啪啪视频观看| √禁漫天堂资源中文www| 日韩精品免费视频一区二区三区| 夫妻午夜视频| 91成人精品电影| 欧美精品一区二区免费开放| 久久精品久久精品一区二区三区| bbb黄色大片| 水蜜桃什么品种好| 中文字幕人妻丝袜一区二区 | 国产黄色视频一区二区在线观看| 19禁男女啪啪无遮挡网站| 18禁裸乳无遮挡动漫免费视频| 国产日韩欧美视频二区| 男女免费视频国产| 国产av国产精品国产| 亚洲av在线观看美女高潮| 成人毛片60女人毛片免费| 91老司机精品| 久久久国产欧美日韩av| 最新的欧美精品一区二区| 久久综合国产亚洲精品| 亚洲精品一区蜜桃| 1024视频免费在线观看| 91精品伊人久久大香线蕉| 日韩一区二区视频免费看| 免费在线观看黄色视频的| 丝袜脚勾引网站| 大香蕉久久网| 久久久精品94久久精品| 伊人久久国产一区二区| 丝袜人妻中文字幕| 亚洲婷婷狠狠爱综合网| 蜜桃在线观看..| 亚洲欧美成人综合另类久久久| 久久人人97超碰香蕉20202| 国产国语露脸激情在线看| 亚洲专区中文字幕在线 | 日本欧美视频一区| svipshipincom国产片| 国产又色又爽无遮挡免| 久久人人爽av亚洲精品天堂| 大香蕉久久网| 女人爽到高潮嗷嗷叫在线视频| 国产av码专区亚洲av| 我要看黄色一级片免费的| 久久精品国产亚洲av高清一级| 在线 av 中文字幕| 亚洲一区二区三区欧美精品| 亚洲精品中文字幕在线视频| 精品国产乱码久久久久久小说| 日韩制服丝袜自拍偷拍| 成人国语在线视频| 精品一区二区三卡| 搡老乐熟女国产| 欧美黑人欧美精品刺激| 久久久久久久精品精品| 性高湖久久久久久久久免费观看| 午夜福利影视在线免费观看| 男的添女的下面高潮视频| 久久久久国产精品人妻一区二区| 亚洲美女黄色视频免费看| 欧美成人精品欧美一级黄| 日韩精品有码人妻一区| 波多野结衣av一区二区av| 色综合欧美亚洲国产小说| 男女无遮挡免费网站观看| 久久久精品94久久精品| 亚洲在久久综合| 在线观看免费高清a一片| 欧美最新免费一区二区三区| 在现免费观看毛片| 这个男人来自地球电影免费观看 | 国产精品秋霞免费鲁丝片| 国产亚洲精品第一综合不卡| 国产男女内射视频| 人妻一区二区av| 啦啦啦在线免费观看视频4| 波野结衣二区三区在线| 久久久久网色| 日韩大码丰满熟妇| 亚洲精品国产av蜜桃| 亚洲av男天堂| 久热这里只有精品99| 亚洲国产精品一区三区| 久久精品人人爽人人爽视色| 亚洲四区av| 日韩人妻精品一区2区三区| 天堂俺去俺来也www色官网| 午夜av观看不卡| 丝袜在线中文字幕| 女人精品久久久久毛片| 日韩欧美一区视频在线观看| 日本av手机在线免费观看| 国产一区二区激情短视频 | 免费人妻精品一区二区三区视频| 亚洲国产中文字幕在线视频| 中国国产av一级| 日本91视频免费播放| 欧美日韩视频精品一区| 免费日韩欧美在线观看| 国产又色又爽无遮挡免| 亚洲av福利一区| 国产乱人偷精品视频| 免费在线观看黄色视频的| 丰满饥渴人妻一区二区三| 久久精品国产亚洲av高清一级| 色播在线永久视频| 国产探花极品一区二区| 欧美另类一区| 国产日韩欧美在线精品| 日本午夜av视频| 少妇人妻精品综合一区二区| 国产成人精品久久久久久| xxxhd国产人妻xxx| av视频免费观看在线观看| 欧美日韩亚洲国产一区二区在线观看 | av有码第一页| 各种免费的搞黄视频| 精品亚洲乱码少妇综合久久| 日本午夜av视频| 亚洲欧美一区二区三区久久| 欧美日韩亚洲综合一区二区三区_| 日韩免费高清中文字幕av| 亚洲精品美女久久av网站| 久久久久久久久免费视频了| 另类亚洲欧美激情| 777米奇影视久久| 亚洲美女搞黄在线观看| 两性夫妻黄色片| 国产 精品1| 中文字幕人妻丝袜制服| 嫩草影院入口| 伦理电影大哥的女人| 一区二区三区四区激情视频| 亚洲成av片中文字幕在线观看| 欧美少妇被猛烈插入视频| 日韩视频在线欧美| 免费久久久久久久精品成人欧美视频| 国产色婷婷99| 可以免费在线观看a视频的电影网站 | 亚洲男人天堂网一区| 成人影院久久| 久久久欧美国产精品| 国产精品 欧美亚洲| 日韩欧美一区视频在线观看| 国产亚洲午夜精品一区二区久久| 日韩精品免费视频一区二区三区| 大片电影免费在线观看免费| 日韩视频在线欧美| 2018国产大陆天天弄谢| 巨乳人妻的诱惑在线观看| 国产片内射在线| 五月开心婷婷网| a级毛片黄视频| 男人操女人黄网站| 欧美精品高潮呻吟av久久| 精品第一国产精品| 精品国产一区二区三区久久久樱花| 亚洲欧美一区二区三区国产| 日韩精品有码人妻一区| 欧美黑人精品巨大| 在线观看免费高清a一片| 永久免费av网站大全| 黄色 视频免费看| 国产成人欧美在线观看 | 亚洲成色77777| 亚洲国产欧美网| 天天添夜夜摸| 久久精品国产综合久久久| 午夜福利在线免费观看网站| 热re99久久国产66热| 亚洲人成77777在线视频| 久久精品国产综合久久久| 最近中文字幕2019免费版| 日韩欧美精品免费久久| 成人毛片60女人毛片免费| 在线免费观看不下载黄p国产| 1024视频免费在线观看| 青春草国产在线视频| 这个男人来自地球电影免费观看 | 日韩大码丰满熟妇| 国产亚洲一区二区精品| 国产精品成人在线| 老司机靠b影院| 又大又黄又爽视频免费| 亚洲伊人色综图| 18禁裸乳无遮挡动漫免费视频| 日韩一本色道免费dvd| 最近的中文字幕免费完整| 免费高清在线观看视频在线观看| 精品国产超薄肉色丝袜足j| 看非洲黑人一级黄片| 日韩制服丝袜自拍偷拍| av.在线天堂| 亚洲国产中文字幕在线视频| 午夜免费观看性视频| 黑人猛操日本美女一级片| 国产一卡二卡三卡精品 | 免费少妇av软件| 欧美少妇被猛烈插入视频| 亚洲国产看品久久| 各种免费的搞黄视频| 久久国产精品男人的天堂亚洲| 伦理电影免费视频| 考比视频在线观看| 2018国产大陆天天弄谢| 国产av一区二区精品久久| 欧美少妇被猛烈插入视频| 99re6热这里在线精品视频| 丁香六月欧美| 免费女性裸体啪啪无遮挡网站| 国产精品一区二区精品视频观看| 国产一区二区三区av在线| 久久久久久久大尺度免费视频| 亚洲国产av影院在线观看| 亚洲欧美色中文字幕在线| 欧美另类一区| 亚洲中文av在线| 久久精品亚洲熟妇少妇任你| av在线观看视频网站免费| 国产在线一区二区三区精| 精品久久久久久电影网| 秋霞伦理黄片| 久久久久久久精品精品| 老司机影院毛片| 777久久人妻少妇嫩草av网站| 一区在线观看完整版| 国产野战对白在线观看| 久久久久精品国产欧美久久久 | 少妇猛男粗大的猛烈进出视频| 欧美日韩亚洲综合一区二区三区_| 日韩 亚洲 欧美在线| 亚洲一卡2卡3卡4卡5卡精品中文| 精品人妻一区二区三区麻豆| 美女扒开内裤让男人捅视频| 人妻一区二区av| 99久久99久久久精品蜜桃| 国产免费福利视频在线观看| 久久精品国产综合久久久| 久久99一区二区三区| 妹子高潮喷水视频| 亚洲av成人精品一二三区| 精品一品国产午夜福利视频| 搡老乐熟女国产| 黄色一级大片看看| 热99国产精品久久久久久7| av在线观看视频网站免费| 黄色 视频免费看| 亚洲av男天堂| h视频一区二区三区| 99热网站在线观看| 在线观看国产h片| videosex国产| 欧美日韩av久久| 欧美日韩视频精品一区| 伊人久久大香线蕉亚洲五| 狂野欧美激情性xxxx| 天天影视国产精品| 精品一区在线观看国产| 久久鲁丝午夜福利片| 2021少妇久久久久久久久久久| 久久性视频一级片| 无遮挡黄片免费观看| 中国国产av一级| 国产有黄有色有爽视频|