• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Compressive Wideband Spectrum SensingBased on Random Matrix Theory

    2015-12-20 09:14:14CAOKaitian曹開(kāi)田DAILinyan戴林燕HANGYiling杭燚靈ZHANGLeiGUKaidong顧凱冬

    CAO Kaitian(曹開(kāi)田),DAI Linyan(戴林燕),HANG Yiling(杭燚靈),ZHANG Lei(張 蕾),GU Kaidong(顧凱冬)

    1 Key Lab of Broadband Wireless Communication and Sensor Network Technology,Ministry of Education,Nanjing University of Posts and Telecommunications,Nanjing 210023,China

    2 College of Overseas Education,Nanjing University of Posts and Telecommunications,Nanjing 210023,China

    Introduction

    Cognitive radio(CR)has been proposed as a promising and effective technology to solve the conflict between wireless spectrum scarcity and underutilization,which can greatly improve the spectrum usage efficiency[1]by allowing secondary users(SUs)to share the licensed spectrum with primary users(PUs).To access the licensed spectrum,SUs firstly need to sense a wide frequency range to find the available spectrum holes and avoid interfering with the operations of PUs.Therefore,spectrum sensing is a fundamental technique and plays an essential role in a cognitive radio network(CRN).

    To sense a wideband spectrum,the traditional spectrum sensing schemes require very high-rate analog-to-digital converters(ADCs)according to Nyquist-Shannon sampling criterion.However,in practice,the requirement could not be met because such a high-speed sampling rate moves inevitably toward a physical barrier[2].Fortunately,compressive sampling (CS)theory has emerged as a framework that can significantly reduce the front-end data acquisition burden.Thus,in recent years,the spectrum sensing techniques based on CS have received considerable attention.However,most of the existing spectrum sensing schemes based on CS firstly need to recover the signal before spectrum sensing, which leads to the terribly disadvantageous influence on the computational complexity and spectrum sensing time.In fact,signal recovery is not necessary in signal detection because we are just interested in whether the spectrum is occupied by PU or not,not PU signals itself.Therefore,spectrum sensing approaches directly without requiring signal reconstruction[2-4]have been discussed.However, these approaches need priori knowledge of the noise variance,channel gain and PU signal.

    Eigenvalue-based spectrum sensing algorithms[5]the are recently proposed as blind detection methods.In these eigenvalue-based sensing algorithms, the maximum eigenvalue of the received signal sample covariance matrix is usually used and supposed to converge to Tracy-Widom distribution[6]according to random matrix theory (RMT)under PU signal is absent,and the decision threshold is derived based on the limiting Tracy-Widom distribution.However,the drawbacks existed in the eigenvalue-based sensing algorithms proposed in Ref.[5]limit their applications in the real world:(1)requiring the infinite number of receivers and signal samples,otherwise,resulting in sensing performance decrease;(2)sampling the signal with at least Nyquist rate is a big challenge for wideband spectrum sensing; (3)requiring a look-up table to approximately calculate the decision threshold since probability density function (PDF) of Tracy-Widom distribution has no closed form expression.Kortun et al.found the closed form PDF[7]to estimate the exact decision threshold with finite number of samples and receivers.However,drawbacks(1)and(2)described above cannot be solved yet.Moreover,the sensing performance of the method in Ref.[7]is quite sensitive to the number of samples.

    In order to overcome the aforementioned problems,an eigenvalue-based compressive wideband spectrum sensing(ECWSS)algorithm based on CS is proposed in this paper.In the proposed ECWSS algorithm,the exact decision threshold can be derived by the closed form PDF of the extreme eigenvalues,and the compressive measurements that are far fewer than Nyquist samples are directly utilized to sense the wideband spectrum without reconstructing PU signal.In addition,to mitigate the data acquisition overhead of SUs,a sensor-assisted cooperative spectrum sensing framework is also addressed in which the sensor nodes(SNs)around SU aim at receiving the compressive samples instead of SU and fusion center(FC)fuses the binary decisions made by SUs and makes the final decision.

    1 Compressed Sensing Theory

    In this section,we firstly give a brief introduction to the CS theory.Given a real-valued signal s′∈RN,which can be viewed as an N ×1column vector in RN.Suppose that the signal s′can be represented in terms of a group orthogonal basis vectors,then the signal s′can be expressed as s′is the N×Northogonal basis vector matrix,θ=[θ1θ2… θN]Tis an N×1column vector of weighting coefficients.The signal s′isρ-sparse if onlyρcoefficients in vectorθare nonzero or large andρ ?Nis satisfied.

    Let y′=Φs′=ΦΨθbe the M ×1measurement vector(M?N)whereΦis the M ×N measurement matrix.CS theory demonstrates that as long as the signal s′isρ-sparse in Ψ domain and all these above matrices satisfy restricted isometry property (RIP),the original signal s′can be recovered by M compressive measurements y′ with overwhelming probability[8].A related condition,referred to as incoherence,requires that the rows ofΦcannot sparely represent the columns ofΨ,and vice versa[9].

    However,signal recovery is not necessary in signal detection applications.This paper aims to detect the PU signal directly with compressive samples far fewer than Nyquist samples without reconstructing the PU signal.Baraniuk[9]indicates that both RIP and incoherence can be satisfied with high probability by selectingΦ as a random matrix.Therefore,it is crucial to construct the measurement matrixΦfor the signal recovery.Without loss of generality,the random matrixΦcan be constructed as follows:given M and N,let the entriesφi,jof Φ be independent and identically distributed(i.i.d)random variables with EIn addition,we require that the distribution ofφi,jis a sub-Gaussian distribution[2].

    2 Sensor-Assisted Compressive Wideband Spectrum Sensing Scenario and System Model

    One of the reasons why the traditional spectrum sensing techniques cannot be directly used for performing wideband spectrum sensing is because they make a single binary decision for the whole spectrum and thus cannot identify individual spectrum holes that lie within the wideband spectrum.Meanwhile,in practice,PUs only occupy apart of spectral range that are the sub-channels or sub-bands rather than the whole wide frequency range at any time.Therefore,for convenience,the wideband spectrum [0,fL]of the input wideband signal s(t)can be supposed to be divided into L non-overlapping sub-bands with their frequency boundaries located at 0<f1<f2<… <fL,where fLis the maximum frequency in s(t).

    In the sensor-assisted cooperative spectrum sensing paradigm shown in Fig.1,some SNs are closely placed around the SU to periodically sample the signal within a subband of interest at a sampling rate far lower than Nyquist frequency,and forward their samples to the nearby SU over a common channel,which can significantly alleviate the communication and data acquisition overhead of SU.SUs just focus on making hard decisions based on these samples,and FC fuses the hard decisions and decides whether the spectrum band is occupied by PU.Due to far fewer compressive samples than Nyquist samples,we can save energy and prolong the lifetime of the sensor-assisted CRN.

    Fig.1 Sensor-assisted cooperative spectrum sensing scenario

    We suppose that there are K SNs around each SU and M consecutive compressive measurements are sampled by each SN,then for any sub-band signal of interest,the compressive measurements observed by SNk(k =1,2,…,K)under two hypotheses H0and H1are given as follows,

    where s is the PU signal,yk=(yk(1) yk(2) … yk(M))Tis the M ×1 compressive measurement vector at SNk,hkdenotes the channel fading coefficient from PU to SNk, xk=(xk(1) xk(2) … xk(N))Tis the received PU signal vector by SNk,and wk=(wk(1) wk(2) … wk(N))T~N(0,σ2IN)denotes the i.i.d Gaussian noise.Hypotheses H0and H1represent absence and presence of PU,respectively.Suppose that the signal xkis independent of the noise wk,therefore,the compressive measurements yk(m)(m =1,2,…,M)are the sub-Gaussian variables[2].Φis the known M×Nrandom measurement matrix,and for any xk∈ RN, Φ satisfies the following expression with probability at least 1-2e-cMδ2[2],

    where 0<δ <1and c>0is a small constant.

    3 ECWSS Scheme and Performance Analysis

    Based on Eq.(1),we can obtain the CS matrix at each SU as follows

    For all K SNs,Eq.(1)can be generally rewritten as

    where x =[x1x2… xK]and w =[w1w2… wK]are the N×K matrices.Note that the received PU signal xkis independent of the Gaussian noise wkandthus we can deduce the compressive sample covariance matrix under the two hypotheses as follows

    In this paper,the proposed ECWSS decision rule based on the ratio of maximum to minimum eigenvalue(MME)can be expressed as follows

    where Tis the test statistic andγis the decision threshold.The probabilities of detection Pdand false alarm Pfcan be defined as

    where f1and f0denote the PDFs of the test statistic Tunder H1and H0,respectively.

    In practice,since we do not know whether the PU signal exists or not,whereas the noise definitely exists.Therefore,it is reasonable to estimate the decision threshold in terms of the predefined Pf.In order to compute Pfgiven in Eq.(8),we should know the PDF of the test statistic T under H0.The authors in Ref.[10]gives the following theorem.

    Theorem Let an M×Kcomplex Gaussian random matrix A be distributed as A~CN(0,σ2IM?IK).Then the complex central Wishart matrix and its distribution are denoted by W=AHA ~CWK(K,σ2IK).The condition number of a Wishart matrix Wis defined as cond(W)and the density of xis given by

    where fλmax,xis the joint density ofλmaxand x.fλmax,xis still complex,as seen in Refs.[7]and[10].Edelman derives the following proposition in his Ph.D.dissertation[11].

    Proposition If the number of cooperative receivers(K)and the number of samples(M)are approximately equal(i.e.,K=M)and both K and M are large,then the density of Tunder hypothesis H0can be approximated as

    where f0(T)denotes the probability density function of T under H0.Therefore,the probability of false alarm can be derived as

    Thus,from Eq.(11)we can obtain

    Thus,we can calculate the probability of detection Pdbased on Eqs.(7)and(12)at each SU.FC combines the binary decisions transmitted by SUs with“OR”rule and makes the final hard decision.

    In this paper,we also consider the ECWSS scheme using the generalized orthogonal matching pursuit (gOMP)[12]reconstruction algorithm and MME scheme with Nyquist samples in Ref.[5]as the benchmark for comparison.For our propose ECWSS scheme,the calculation ofneeds K×M multiplications and additions,and computation of the maximum (or minimum) eigenvalue needs O (K3)multiplications and additions.Therefore, the total computational complexity(multiplications and additions)of ECWSS is K×M +O(K3).For MME scheme,its total computational complexity is K×N+O(K3)[5].Compared with the proposed ECWSS scheme,the ECWSS with gOMP recovery algorithm has additional computational complexity O(ρMN)[12].Therefore,the proposed ECWSS in this paper has a considerably computational advantage over the other two methods.

    4 Simulation Results

    In this section,randomly generated signals are used and simulations are written in Matlab.Simulation results are averaged over 5 000Monte-Carlo realizations to demonstrate the detection performance of the proposed ECWSS without reconstruction compared with the MME scheme based on Nyquist samples in Ref.[5]and the ECWSS with gOMP algorithm.We define signal to noise ratio,N=100,σ2=1and the number of SUs is 20.To test the robustness of all the three schemes to the noise uncertainty,we let the estimated noise variance beand define the noise uncertainty factor as(dB).

    Figure 2illustrates the receiver operating characteristic(ROC)curves of the three methods underη=1 dB.The detection performance of both the two ECWSS schemes rises dramatically as the compression ratioincreases.Furthermore,we have also observed that MME scheme detection performance remains constant regardless of M because MME adopts Nyquist samples not the compressive measurements at all.The figure reveals that the proposed ECWSS method approximates the MME detection performance when noise uncertainty exists(η=1dB).

    Fig.2 ROC curves(SNR=-10dB,K=40,η=1dB)

    The probability of detection versus SNR is shown in Fig.3.The detection performance of all the three schemes greatly ascends with the increase of SNR.The larger Kis,the better the detection performance of the three schemes is.This is because more number of cooperative SNs can lead to the better sensing performance gain.The simulation results illustrate that the detection performance of the proposed ECWSS without signal reconstruction approximates that of MME algorithm with almost no performance degrade;meanwhile,the complexity of ECWSS algorithm is much lower than those of the other two schemes.Therefore,in terms of the computational complexity,the proposed ECWSS scheme is actually the optimal algorithm among all the three schemes.

    Fig.3 Pdvs.SNR

    5 Conclusions

    This paper presents a wideband spectrum sensing approach based on the extreme eigenvalues of CS covariance matrix of the received signal.The sensor-assisted cooperative sensing paradigm is also addressed in this paper to alleviate the load of the SUs,and makes them aim at operations over the available spectrum rather than data acquisition.In addition,the exact and simple closed form PDF of the ratio of MME is used to set threshold.The theoretical analyses and simulation results reveal that the proposed ECWSS scheme has the lowest computational complexity among the three schemes and approximates the optimal MME algorithm.

    [1]Fragkiadakis A G,Tragos E Z,Askoxylakis I G.A Survey on Security Threats and Detection Techniques in Cognitive Radio Networks[J].IEEE Communications Surveys &Tutorials,2013,15(1):428-445.

    [2]Davenport M A,Boufounos P T,Wakin M B,et al.Signal Processing with Compressive Measurements[J].IEEE Journal of Selected Topics in Signal Processing,2010,4(2):445-460.

    [3]Najafabadi D M,Tadaion A A,Sahaf M R A.Wideband Spectrum Sensing by Compressed Measurements[C].IEEE Symposium on Computers and Communications,Cappadocia,Turkey,2012:667-671.

    [4]Wimalajeewa T,Chen H,Varshney P K.Performance Analysis of Stochastic Signal Detection with Compressive Measurements [C].The 44th Asilomar Conference on Signals,Systems and Computers,Monterey,CA,USA,2010:813-817.

    [5]Zeng Y H,Liang Y C.Eigenvalue-Based Spectrum Sensing Algorithms for Cognitive Radio [J].IEEE Transactions on Communications,2009,57(6):1784-1793.

    [6]Johnstone I M.On the Distribution of the Largest Eigenvalue in Principle Components Analysis[J].Annals of Statistics,2001,29(2):295-327.

    [7]Kortun A,Ratnarajah T,Sellathurai M,et al.On the Performance of Eigenvalue-Based Cooperative Spectrum Sensing for Cognitive Radio [J].IEEE Journal of Selected Topics in Signal Processing,2011,5(1):49-55.

    [8]Candes E J,Wakin M B.An Introduction to Compressive Sampling[J].IEEE Signal Processing Magazine,2008,25(2):21-30.

    [9]Baraniuk R G.Compressive Sensing [J].IEEE Signal Processing Magazine,2007,24(4):118-121.

    [10]Ratnarajah T,Vaillancourt R,Alvo M.Eigenvalues and Condition Numbers of Complex Random Matrices[J].Society for Industrial and Applied Mathematics,2005,26(2):441-456.

    [11]Edelman A.Eigenvalues and Condition Numbers of Random Matrices [D].Cambridge: Massachusetts Institute of Technology,1989.

    [12]Wang J,Kwon S,Shim B.Generalized Orthogonal Matching Pursuit[J].IEEE Transactions on Signal Processing,2012,60(12):6202-6216.

    性色avwww在线观看| 国产高潮美女av| 级片在线观看| 一级av片app| 亚洲一区高清亚洲精品| 久久精品国产99精品国产亚洲性色| 在线免费十八禁| av在线播放精品| 国产亚洲精品久久久com| 国产高清不卡午夜福利| 成人午夜精彩视频在线观看| 国产亚洲av片在线观看秒播厂 | 国内精品美女久久久久久| 不卡视频在线观看欧美| 免费人成在线观看视频色| 久久久久久久国产电影| 99国产精品一区二区蜜桃av| 日韩av在线大香蕉| 18禁在线无遮挡免费观看视频| 又粗又硬又长又爽又黄的视频| 天堂√8在线中文| 男人舔女人下体高潮全视频| 免费看a级黄色片| 男女下面进入的视频免费午夜| 汤姆久久久久久久影院中文字幕 | 别揉我奶头 嗯啊视频| 人妻系列 视频| 久久久色成人| 亚洲国产精品成人久久小说| 亚洲精品国产av成人精品| 嫩草影院入口| 天美传媒精品一区二区| 亚洲av电影在线观看一区二区三区 | 精品久久久噜噜| 非洲黑人性xxxx精品又粗又长| 搡女人真爽免费视频火全软件| 日产精品乱码卡一卡2卡三| 久久久久久九九精品二区国产| 波野结衣二区三区在线| 夫妻性生交免费视频一级片| 色综合色国产| 色网站视频免费| 特级一级黄色大片| 久久亚洲国产成人精品v| 啦啦啦韩国在线观看视频| 国产淫语在线视频| 欧美变态另类bdsm刘玥| 少妇高潮的动态图| 午夜福利网站1000一区二区三区| 久久99精品国语久久久| 日本色播在线视频| 国产不卡一卡二| 精品人妻视频免费看| 精品久久久久久久久亚洲| 精品人妻视频免费看| 国产av码专区亚洲av| 亚洲色图av天堂| 人妻夜夜爽99麻豆av| 亚洲成人av在线免费| 免费观看在线日韩| av播播在线观看一区| 亚洲av二区三区四区| 白带黄色成豆腐渣| 国产成人精品久久久久久| 美女脱内裤让男人舔精品视频| 亚洲av二区三区四区| 午夜免费男女啪啪视频观看| 美女被艹到高潮喷水动态| 99热这里只有是精品50| av黄色大香蕉| 国产精品美女特级片免费视频播放器| 亚洲国产最新在线播放| 99久久精品国产国产毛片| 欧美激情在线99| 听说在线观看完整版免费高清| 男女边吃奶边做爰视频| 在线观看一区二区三区| 国产一区二区三区av在线| 日本免费一区二区三区高清不卡| 纵有疾风起免费观看全集完整版 | 大又大粗又爽又黄少妇毛片口| 免费观看精品视频网站| 欧美性感艳星| 精品国产三级普通话版| 精品一区二区免费观看| 日韩一本色道免费dvd| 国产成人精品久久久久久| 日韩视频在线欧美| 免费黄色在线免费观看| 免费观看的影片在线观看| 老师上课跳d突然被开到最大视频| 亚洲成人久久爱视频| 国产免费视频播放在线视频 | 内射极品少妇av片p| 国产精品久久久久久久久免| 国产亚洲av嫩草精品影院| 国模一区二区三区四区视频| 我要看日韩黄色一级片| 国产精品,欧美在线| 亚洲av福利一区| 国产精品久久久久久av不卡| .国产精品久久| 亚洲欧美精品自产自拍| 国产爱豆传媒在线观看| 国产伦精品一区二区三区视频9| 99久久中文字幕三级久久日本| 日韩精品有码人妻一区| 国内精品美女久久久久久| 91久久精品电影网| 1000部很黄的大片| 久久久亚洲精品成人影院| 日韩,欧美,国产一区二区三区 | 亚洲美女视频黄频| 深夜a级毛片| 国产精品人妻久久久影院| 亚洲综合精品二区| 午夜免费激情av| 久久人人爽人人片av| 黄色欧美视频在线观看| 少妇高潮的动态图| 国产午夜福利久久久久久| 神马国产精品三级电影在线观看| 日本免费一区二区三区高清不卡| 亚洲国产精品专区欧美| 中文精品一卡2卡3卡4更新| 视频中文字幕在线观看| 91久久精品国产一区二区三区| 亚洲欧美日韩卡通动漫| 人妻少妇偷人精品九色| 午夜福利成人在线免费观看| 99久久成人亚洲精品观看| 天堂影院成人在线观看| 看片在线看免费视频| www.av在线官网国产| 亚洲乱码一区二区免费版| 国产男人的电影天堂91| 久久久精品欧美日韩精品| 日本猛色少妇xxxxx猛交久久| 国产一区亚洲一区在线观看| 色综合站精品国产| 超碰av人人做人人爽久久| 亚洲国产最新在线播放| 午夜精品在线福利| 久久精品夜色国产| 啦啦啦啦在线视频资源| 特大巨黑吊av在线直播| 国产精品久久久久久久久免| 午夜激情欧美在线| 久久精品国产亚洲网站| 三级毛片av免费| 日本黄色片子视频| 一级av片app| 欧美3d第一页| 国产乱来视频区| 干丝袜人妻中文字幕| 午夜激情福利司机影院| 99在线视频只有这里精品首页| 午夜免费激情av| 毛片女人毛片| 亚洲国产色片| 热99re8久久精品国产| 狂野欧美白嫩少妇大欣赏| 久久精品夜色国产| 人人妻人人澡欧美一区二区| 又粗又爽又猛毛片免费看| 午夜福利高清视频| 寂寞人妻少妇视频99o| 大话2 男鬼变身卡| 少妇被粗大猛烈的视频| 欧美精品国产亚洲| 天美传媒精品一区二区| 成人午夜高清在线视频| 综合色av麻豆| 日本欧美国产在线视频| 国产精品一区www在线观看| 亚洲精品一区蜜桃| 麻豆成人av视频| 三级经典国产精品| 大话2 男鬼变身卡| 国产一级毛片七仙女欲春2| 国产精品无大码| 久久久久精品久久久久真实原创| 国产精品一区二区三区四区免费观看| 91精品国产九色| 在线a可以看的网站| 久久久精品94久久精品| 免费看av在线观看网站| 欧美三级亚洲精品| 直男gayav资源| 热99在线观看视频| 美女国产视频在线观看| 日韩欧美 国产精品| 晚上一个人看的免费电影| 最近的中文字幕免费完整| 搡老妇女老女人老熟妇| 日本色播在线视频| 一边亲一边摸免费视频| 成人av在线播放网站| 日韩av在线免费看完整版不卡| 国产成人a∨麻豆精品| 久久精品夜色国产| 亚洲av成人精品一区久久| 亚洲精品日韩av片在线观看| 国产精品美女特级片免费视频播放器| 99久久人妻综合| 国产成人a区在线观看| 国产黄a三级三级三级人| 国产精品,欧美在线| 男人舔女人下体高潮全视频| 偷拍熟女少妇极品色| av天堂中文字幕网| 床上黄色一级片| 一级二级三级毛片免费看| 国产精品.久久久| 久久精品综合一区二区三区| 中文字幕熟女人妻在线| 一二三四中文在线观看免费高清| 51国产日韩欧美| 亚洲欧美精品综合久久99| 亚洲欧美日韩高清专用| 国产精品女同一区二区软件| 国产视频首页在线观看| 中文字幕精品亚洲无线码一区| 国产成人午夜福利电影在线观看| 青春草视频在线免费观看| 亚洲真实伦在线观看| 成人漫画全彩无遮挡| a级毛片免费高清观看在线播放| 国产精品av视频在线免费观看| 纵有疾风起免费观看全集完整版 | 如何舔出高潮| 男女视频在线观看网站免费| 国产单亲对白刺激| 丝袜美腿在线中文| 村上凉子中文字幕在线| 少妇裸体淫交视频免费看高清| 婷婷色av中文字幕| 欧美成人一区二区免费高清观看| 日韩强制内射视频| 久久精品久久久久久久性| 97在线视频观看| 伦精品一区二区三区| 国产精品久久久久久久电影| 成人国产麻豆网| 精品酒店卫生间| 免费av毛片视频| 亚洲国产精品成人久久小说| 国产中年淑女户外野战色| 女的被弄到高潮叫床怎么办| 成人美女网站在线观看视频| 国产免费福利视频在线观看| 久久久亚洲精品成人影院| 99在线人妻在线中文字幕| 久久国内精品自在自线图片| 日本黄大片高清| 青春草国产在线视频| 亚洲不卡免费看| 国产成人午夜福利电影在线观看| 午夜福利在线观看免费完整高清在| 国产高清视频在线观看网站| 免费av毛片视频| or卡值多少钱| 一区二区三区免费毛片| av天堂中文字幕网| 麻豆国产97在线/欧美| 亚洲综合精品二区| 亚洲久久久久久中文字幕| 亚洲最大成人中文| 亚洲精品乱码久久久v下载方式| 国产精品一区二区三区四区久久| 一夜夜www| 亚洲精品456在线播放app| 能在线免费看毛片的网站| 啦啦啦啦在线视频资源| 别揉我奶头 嗯啊视频| kizo精华| 99热这里只有精品一区| 成人亚洲精品av一区二区| 久久久精品大字幕| 免费av不卡在线播放| av在线观看视频网站免费| 国产男人的电影天堂91| 欧美xxxx黑人xx丫x性爽| 欧美成人免费av一区二区三区| 黄色一级大片看看| 亚洲av日韩在线播放| 美女黄网站色视频| 18禁裸乳无遮挡免费网站照片| 极品教师在线视频| 少妇高潮的动态图| 我的女老师完整版在线观看| 99国产精品一区二区蜜桃av| 久久人人爽人人片av| 少妇的逼水好多| 国产一级毛片七仙女欲春2| 最近最新中文字幕免费大全7| 色播亚洲综合网| 男人狂女人下面高潮的视频| 国产亚洲精品av在线| 日韩精品青青久久久久久| 狂野欧美激情性xxxx在线观看| 最近的中文字幕免费完整| 亚洲国产日韩欧美精品在线观看| 国产老妇伦熟女老妇高清| 亚洲精品自拍成人| 爱豆传媒免费全集在线观看| 在线免费十八禁| 天堂av国产一区二区熟女人妻| eeuss影院久久| 国产精品久久久久久久久免| 免费观看精品视频网站| 国产午夜福利久久久久久| 高清av免费在线| 网址你懂的国产日韩在线| 日韩欧美精品免费久久| 级片在线观看| 亚洲乱码一区二区免费版| 女人被狂操c到高潮| 免费av观看视频| 草草在线视频免费看| 一个人观看的视频www高清免费观看| 亚洲欧美精品综合久久99| 日韩制服骚丝袜av| 色网站视频免费| 精品午夜福利在线看| av女优亚洲男人天堂| 麻豆一二三区av精品| 日韩av不卡免费在线播放| 国产精品一区二区三区四区久久| 亚洲精品,欧美精品| 男插女下体视频免费在线播放| 岛国毛片在线播放| 国产高清有码在线观看视频| 天天一区二区日本电影三级| 一夜夜www| 国产午夜精品论理片| 国产精品无大码| 寂寞人妻少妇视频99o| 亚洲精品影视一区二区三区av| 成人高潮视频无遮挡免费网站| 我要搜黄色片| 日韩国内少妇激情av| 狂野欧美激情性xxxx在线观看| a级一级毛片免费在线观看| 国产精品久久视频播放| 天美传媒精品一区二区| 亚洲,欧美,日韩| 综合色av麻豆| 欧美高清成人免费视频www| 亚洲内射少妇av| 国产色婷婷99| 久久人人爽人人爽人人片va| 啦啦啦韩国在线观看视频| 国产一区二区亚洲精品在线观看| 色哟哟·www| 亚洲在线观看片| 我的女老师完整版在线观看| 国产成人精品一,二区| 日韩大片免费观看网站 | 成人一区二区视频在线观看| 国产精品蜜桃在线观看| 免费看av在线观看网站| 亚洲真实伦在线观看| 欧美xxxx性猛交bbbb| 亚洲精品影视一区二区三区av| 日韩国内少妇激情av| 69人妻影院| 干丝袜人妻中文字幕| 成人毛片60女人毛片免费| 久久久久网色| 精品人妻偷拍中文字幕| 麻豆成人午夜福利视频| 22中文网久久字幕| 在线免费观看不下载黄p国产| 国产高潮美女av| 久99久视频精品免费| 青春草国产在线视频| 人人妻人人看人人澡| 成人三级黄色视频| 毛片一级片免费看久久久久| 亚洲三级黄色毛片| 26uuu在线亚洲综合色| 好男人在线观看高清免费视频| 欧美97在线视频| 亚洲成人中文字幕在线播放| 日韩欧美精品免费久久| 中文资源天堂在线| 国产成人91sexporn| 免费黄色在线免费观看| 日韩成人伦理影院| 国产成人91sexporn| 亚洲欧美日韩高清专用| 欧美日韩国产亚洲二区| 99久久中文字幕三级久久日本| 国模一区二区三区四区视频| 亚洲人成网站在线播| 欧美激情国产日韩精品一区| 日本wwww免费看| 欧美色视频一区免费| 18+在线观看网站| eeuss影院久久| 日韩av在线大香蕉| 国产大屁股一区二区在线视频| .国产精品久久| 97超视频在线观看视频| 中文乱码字字幕精品一区二区三区 | 日日啪夜夜撸| av在线播放精品| 国产在视频线在精品| 国产 一区精品| 春色校园在线视频观看| 黄色欧美视频在线观看| 免费无遮挡裸体视频| 免费观看a级毛片全部| 免费av毛片视频| 简卡轻食公司| 看十八女毛片水多多多| 黑人高潮一二区| 欧美丝袜亚洲另类| 中文字幕av在线有码专区| 成年女人看的毛片在线观看| 国产黄a三级三级三级人| 国产精品一区www在线观看| 久久这里有精品视频免费| 在线观看av片永久免费下载| 国国产精品蜜臀av免费| 嘟嘟电影网在线观看| 欧美三级亚洲精品| 精品久久国产蜜桃| 蜜桃亚洲精品一区二区三区| 人体艺术视频欧美日本| 国产黄a三级三级三级人| 蜜桃亚洲精品一区二区三区| 亚洲成人av在线免费| 97在线视频观看| 国产一级毛片在线| 国产精品久久久久久久电影| 欧美性猛交黑人性爽| 在线播放国产精品三级| 国产爱豆传媒在线观看| 国产黄片视频在线免费观看| 国产色爽女视频免费观看| av在线观看视频网站免费| 久久韩国三级中文字幕| 老师上课跳d突然被开到最大视频| 两个人的视频大全免费| 日韩强制内射视频| 欧美成人午夜免费资源| 久久精品91蜜桃| 日韩强制内射视频| 又黄又爽又刺激的免费视频.| 亚洲av中文av极速乱| 性色avwww在线观看| 欧美激情国产日韩精品一区| 精品久久久久久久久av| 高清在线视频一区二区三区 | 日韩精品有码人妻一区| 亚洲国产色片| 日本熟妇午夜| 床上黄色一级片| 国产在视频线在精品| 亚洲精品日韩在线中文字幕| 免费观看的影片在线观看| 天堂av国产一区二区熟女人妻| 少妇人妻一区二区三区视频| 亚洲天堂国产精品一区在线| 国产精品永久免费网站| av播播在线观看一区| 亚洲欧美一区二区三区国产| 国产精品.久久久| 免费看美女性在线毛片视频| 成人一区二区视频在线观看| 亚洲av男天堂| 日本黄色片子视频| 国产精品乱码一区二三区的特点| 七月丁香在线播放| 99热这里只有是精品在线观看| 国产成人一区二区在线| 日韩欧美三级三区| 一级黄片播放器| 白带黄色成豆腐渣| 色哟哟·www| 桃色一区二区三区在线观看| 小说图片视频综合网站| 日韩大片免费观看网站 | 偷拍熟女少妇极品色| 一级毛片aaaaaa免费看小| 免费不卡的大黄色大毛片视频在线观看 | 色综合站精品国产| 如何舔出高潮| 大话2 男鬼变身卡| 免费看美女性在线毛片视频| 午夜精品一区二区三区免费看| 亚洲成人精品中文字幕电影| 久久久国产成人免费| 网址你懂的国产日韩在线| 久久久精品94久久精品| 亚洲精品一区蜜桃| 日产精品乱码卡一卡2卡三| 18禁裸乳无遮挡免费网站照片| 中文字幕av在线有码专区| 久久99热这里只有精品18| 国产精品美女特级片免费视频播放器| www.av在线官网国产| 一级毛片电影观看 | 国产老妇女一区| 两个人视频免费观看高清| 日韩视频在线欧美| 久久婷婷人人爽人人干人人爱| 精品无人区乱码1区二区| 亚洲精品aⅴ在线观看| 国产精华一区二区三区| 亚洲色图av天堂| 观看美女的网站| 久久久久久久久中文| 国产一区二区在线av高清观看| 亚洲av成人精品一区久久| 亚洲av.av天堂| 久久精品国产亚洲av天美| 在线观看一区二区三区| 麻豆精品久久久久久蜜桃| 国产精品一区二区在线观看99 | 国产免费一级a男人的天堂| 丰满少妇做爰视频| 网址你懂的国产日韩在线| 国产黄片视频在线免费观看| 国产伦一二天堂av在线观看| 丰满乱子伦码专区| 亚洲av中文字字幕乱码综合| 麻豆国产97在线/欧美| 大又大粗又爽又黄少妇毛片口| 久久99热这里只有精品18| 国产91av在线免费观看| 亚洲美女视频黄频| 国产在视频线在精品| 国产成人免费观看mmmm| 黄色欧美视频在线观看| 久久人人爽人人爽人人片va| 啦啦啦韩国在线观看视频| 97在线视频观看| 亚洲人成网站在线观看播放| 中文字幕熟女人妻在线| 久久久久免费精品人妻一区二区| 国产精品精品国产色婷婷| 日韩在线高清观看一区二区三区| 久久久久久久午夜电影| 免费一级毛片在线播放高清视频| 国产成人精品婷婷| 日韩视频在线欧美| 成年女人永久免费观看视频| 日韩成人伦理影院| 狠狠狠狠99中文字幕| 三级经典国产精品| 久久久久九九精品影院| 边亲边吃奶的免费视频| 狂野欧美白嫩少妇大欣赏| 日产精品乱码卡一卡2卡三| 蜜桃亚洲精品一区二区三区| 久久这里只有精品中国| 久久久a久久爽久久v久久| 国产黄a三级三级三级人| 18+在线观看网站| 天美传媒精品一区二区| 亚洲av二区三区四区| 国产在视频线精品| 日韩欧美 国产精品| 51国产日韩欧美| 只有这里有精品99| 中文字幕免费在线视频6| 久久久久久伊人网av| 联通29元200g的流量卡| 嫩草影院精品99| 成人高潮视频无遮挡免费网站| 亚洲精品国产av成人精品| 亚洲精品乱码久久久久久按摩| 女的被弄到高潮叫床怎么办| 美女黄网站色视频| 免费一级毛片在线播放高清视频| 欧美一区二区国产精品久久精品| 波野结衣二区三区在线| 色视频www国产| 亚洲精品乱久久久久久| 天天一区二区日本电影三级| 熟女人妻精品中文字幕| 国产精品久久久久久精品电影| 伦精品一区二区三区| 亚洲国产色片| 国产成人91sexporn| 特级一级黄色大片| 欧美色视频一区免费| 搡女人真爽免费视频火全软件| 午夜免费男女啪啪视频观看| 久久国内精品自在自线图片| 男女下面进入的视频免费午夜| 久久久久久久久中文| 毛片女人毛片| 成人国产麻豆网| av在线亚洲专区| 在线免费十八禁| 亚洲av男天堂| 日韩,欧美,国产一区二区三区 | 免费看a级黄色片| 亚洲三级黄色毛片| 欧美xxxx黑人xx丫x性爽| 国产精品国产三级专区第一集| av在线老鸭窝| 免费搜索国产男女视频| 久久久午夜欧美精品| 国产成人a区在线观看| 欧美成人a在线观看| 欧美日韩在线观看h| 国产激情偷乱视频一区二区| 亚洲欧美清纯卡通| 最新中文字幕久久久久| 91狼人影院|