• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Vibration Feature Fusion for State Evaluation of Machinery

    2015-12-20 09:14:12LIKangLINXiliang林習(xí)良HUXiangjiang胡湘江CAIZigang蔡自剛
    關(guān)鍵詞:湘江

    LI Kang(李 康),LIN Xiliang(林習(xí)良),HU Xiangjiang(胡湘江),CAI Zigang(蔡自剛)

    1Joint Lab of Flight Vehicle Ocean-Based Measurement and Control,China Satellite Maritime Tracking and Control Department,Jiangyin 214431,China

    2School of Mechanical Engineering,Xi'an Jiaotong University,Xi'an 710049,China

    Introduction

    In order to inspect states of mechanical equipments,one single feature of vibration signals is usually selected as state parameter.For example,Shao et al.[1]adopted rootmean-square (RMS)value and Kurtosis value as state parameters.Nagi et al.[2]took average amplitude of failure frequency and its six-step harmonic as state parameter.However,further research discovers that single feature is only effective for certain phase and certain failure mode.It means that a given feature behaves differently for different failure modes and different features behave differently at certain condition.An excellent state parameter should capture performance change of machinery in different phases[3-4].To overcome the disadvantages of single feature,state parameter construction based on feature fusion technology was researched[4-6].Because that failure mode and failure vibration are hard to obtain in application,while the self-organizing map(SOM)[7-8]is an unsupervised and emulative algorithm,feature fusion method based on SOM is researched as the emphasis in this paper.

    Section 1introduces the principle of the SOM.Feature fusion method based on SOM is presented in section 2.Section 3 designs an experimental flat and analyzes experimental results.Section 4concludes this paper.

    1 Principle of SOM

    Brain neurology shows that nerve cells at different area in brain have different functions.The cells are sensitive for different information feature,forming different paths.In the brain,the input signals of nerve cell partly come from feeling apparatus and partly come from feedback of cells in the same area.Information exchanges of nerve cells have the characteristics that adjacent cells inspire each other and farther cells restrain each other or inspire faintly.The self-organizing characteristics of the brain can be discovered from the phenomena that response of the nerve cells for certain input is tactic.SOM is presented according to such self-organizing characteristics of brain.The two-dimensional dot-matrix structure of SOM imitates structure of nerve cells in brain.The SOM imitates functions of clustering,self-organizing and selfstudying by reciprocities between different cells.Therefore,the SOM is an unsupervised forward network.It captures important feature or inherent law of data and sorts input vectors to different classes.What's more,the SOM can map arbitrary multidimensional input data to plane or line,beseeming analysis of multidimensional data.

    The structure of SOM is shown in Fig.1.The SOM contains input layer and output layer.Number of nerve cells for the input layer is n,and the output layer is the plane dot-matrix with M =m2cells.Topology of the output layer can be hexagon,gridding,and so on.Coefficients connect cells between input and output layers and connect cells in the output layer.We can see that there exist two kinds of coefficients which separately reflect response intensity for input and mutual action between cells of the output layer.

    Fig.1 Structure of SOM

    The learning algorithm of SOM is shown in Fig.2.

    Fig.2 Learning algorithm of SOM

    Supposing that the input is n dimensional vector x =(x1,x2,…,xn)Tand the output has M nodes,learning algorithm of SOM is as follows.

    (1)Network initialization

    Set the coefficients between input layer and output layer as random.

    (2)Vector input

    Normalize the input vector x =(x1,x2,…,xn)Tand provide the vector to input vector of SOM.

    (3)Euclidean distance calculation

    Calculate the Euclidean distance between input vector and coefficients in step (1).The distance between input vector and the j-th coefficient can be calculated as follows.

    where wijdenotes the coefficient between the i-th input nerve cell and the j-th output nerve cell.

    (4)The cell which has the minimum Euclidean distance with input vector is victorious nerve cell.

    Mark the victorious nerve cell as j*,j =1,2,…,M and present its neighbor muster.

    (5)Update coefficients of the victorious nerve cell and its neighbor muster

    Update coefficients of the victorious nerve cell and its neighbor muster using the following formula.

    whereηis learning efficiency,and 0<η<1.h(j,j*)is the neighbor muster of victorious nerve cell which usually has Gauss form.

    whereσ2reflects neighbor area which deflates along with learning.Therefore,h(j,j*)is wide at beginning and getting narrow along with SOM learning.

    (6)Check if the learning satisfy request or not

    If the learning process satisfy request,end the learning.Otherwise,return to step(2)and keep on learning.In the SOM,we can see that coefficients of the victorious nerve cell and its neighbor muster are nearby the input vector.At beginning,h(j,j*)is wide and the map is cursory.However,h(j,j*)is narrower along with learning and cells of neighbor muster tail off.Therefore,resolving power of space is enhanced.

    2 Vibration Feature Fusion Based on SOM

    2.1 Fusion algorithm

    The SOM can classify input data according to Euclidean distance between coefficients and input vector.Different classes denote different states of machinery.The state change can be described by moving contrail of victorious nerve cell.In the normal state,the victorious nerve cell clusters in a certain area.When the machine scathes,the victorious nerve cell is out of the area of normal state.Out magnitude depends on failure mode and failure extend.Therefore,the failure extend can be assessed by the minimum quantization error (MQE)[4].The assessing process is as follows.

    (1)Normal state features train the SOM,obtaining coefficients of normal state.

    (2)Calculate Euclidean distance between features of vibration and all coefficients of normal state.

    (3)The best matching unit(BMU)is the cell whose coefficient distance is the shortest.And the shortest distance is the fusion result and a kind of state parameter.

    Essentially,the distance between BMU and input vector is the distance between current state and normal state.And the distance is defined as MQEas follows.

    where D is the input feature vector,and mBMUis the coefficient of BMU.

    2.2 Trend information extract based on wavelet packet

    In the process of vibration collection,feature extraction and feature fusion,data disturbing inevitably occurs.Disorder of feature fusion results exists.Some literature adopts the step of denoising for vibration signals[9],but the disorder of results for feature fusion howbeit exists.One of the reasons is that the vibration signals interfuse random noise when working.Another reason is that steps of feature extraction and feature fusion interfuse data noise.Some literature adopts method of slippage average to eliminate disorder[10], but the method easily brings end-point phenomena and state contrail of machinery leads or lags compared with real state contrail.It's very dangerous when sampling alternation is great.

    Considering that trend information is signal with low frequency while data disturbing is signal with high frequency.The MQE,seen as a signal and wavelet packet[11-12],is used to separate trend information and data disturbing.The MQE is decomposed by wavelet packet first and the low-frequency band is the trend information of MQE.The trend information of MQE is the final state parameter.

    The feature fusion method based on SOM is shown in Fig.3.

    Fig.3 Feature fusion algorithm based on SOM

    3 Experimental Results

    3.1 Experimental flat construction and vibration signals collection

    Experimental flat is designed for bearing accelerating fatigue in this paper.The flat consists of lathe bed,main body,drive system,load system,lubricating system,PID controlling system,wiring controlling system and computer system.The flat is shown in Fig.4.

    Fig.4 Experimental flat

    The flat uses computer to simulate working condition of bearing,such as load,rotate speed and temperature,fitting failure simulation or accelerating fatigue of bearing whose inner-diameter is 80-150mm.

    The main body of the flat includes radial loading,electricity axis,coupler,brace shafting,experimental bearing,axes loading and data collection system.The main body adopts splitting structure to make teardown easy.

    The coupler adopts cantilever framework,fixing experimental bearing to cantilever point of brace shafting.Load mode is the hydraulic and proportional loading.The main body is shown in Fig.5.

    Fig.5 The main body of the experimental flat

    In the experiment,the alternator drives the bearing through the coupler.The rotating speed is 6 000r/min.Radial load is 11kN and axes load is 2kN.Type of the experimental bearing is H7018C.Lance vibration sensors are used to collect radial vibration,the sampling frequency is 20 kHz,the sampling length is 32 786,and the sampling alternation is 5 min.In the 70th hour,the experimental bearing damages lightly.In the 86th hour after the experiment beginning,the experimental bearing invalidates.

    3.2 Feature fusion results based on SOM

    As we all know,RMS values of vibration and its envelope are not sensitive for forepart damage while their stability is well;however,Kurtosis values of vibration and its envelope are sensitive for pulse-forepart damage but their stability is bad;waveform parameter values of vibration and its envelope are not sensitive for pulse-forepart damage but they reflect the whole intensity of vibration well[13].Therefore,each kind of feature has his strong point while each feature can not reflect state of mechanical equipment in different stage effectively.Thus, RMS, Kurtosis and waveform parameter of vibration signals of 0-25hand their envelopes are used to train the SOM in the experiment.Then,MQE values are continually calculated by inputting the six features of vibration signal in whole life to SOM trained.At last,“db5”wavelet packet is used to decompose MQE curve into five frequency bands,and the first band with the lowest frequency is the final state parameter.The experimental process is shown in Fig.6.The experimental results are shown in Fig.7.

    Fig.6 The experimental process

    Fig.7 Results of feature fusion based on SOM

    We can see from Fig.7that at the time of 70h,MQE rises abruptly,detecting the state change of experimental bearing.After that,MQE rises astatically,implying that desquamating of the bearing is getting serious.

    At the time of 82 h, MQE rises rapidly and exponentially,implying that the bearing comes into invalidation stage.MQE is sensitive for both forepart damage and afternoon damage,and the stability is well.Therefore,the MQE reflects state of mechanical equipment in different stages effectively.

    4 Conclusions

    To overcome the problem that differentkinds of vibration features can not reflect state of machinery in different stages effectively,a vibration feature fusion method based on SOM is presented in this paper.Wavelet packet is used to extract trend information of MQE curve,enhancing state differentiating.Experimental flat is designed for bearing accelerating fatigue.And experimental results are shown to validate the effectiveness of feature fusion based on SOM.

    [1]Shao Y,Nezu K.Prognosis of Remaining Bearing Life Using Neural Network [J].Journal of Systerms and Control Engineering,2000,214(3):217-230.

    [2]Nagi Z G,Mark L A.Neural Network Degradation Model for Computing and Updating Residual Life Distributions[J].IEEE Transactions on Automation Science and Engineering,2008,5(1):154-163.

    [3]Shen Z J,Chen X F,He Z J.Remaining Life Predictions of Rolling Bearing Based on Relative Features and Multivariable Support Vector Machine [J].Journal of Mechanical Engineering,2013,49(2):183-189.

    [4]Qiu H,Lee J,Lin J,et al.Robust Performance Degradation Assessment Methods for Enhanced Rolling Element Bearing Prognostics[J].Advanced Engineering Informatics,2003,17(3/4):127-140.

    [5]Zhang L J,Liu B,Zhang B,et al.Feature Extraction Method of Bearing Performance Degradation Based on Time-Frequency Image Fusion [J].Journal of Mechanical Engineering,2013,49(22):53-58.

    [6]Liao L X,Lee J.A Novel Method for Machine Performance Degradation Assessment Based on Fixed Cycle Features Test[J].Journal of Sound and Vibration,2009,326(3/4/5):894-908.

    [7]Bishop C M.Neural Networks for Pattern Recognition[M].UK:Oxford University Press,1995:91-108.

    [8]Jiang W J.Fault Diagnosis of Vehicle Rolling Bearing Based on Wavelet Packet and SOM Neural Network[J].Machine Design and Research,2012,28(6):70-73.

    [9]Duan C D.Research on Fault Diagnostics Based on Second Generation Wavelet[M].Xi'an:Xi'an Jiaotong University,2005.(in Chinese)

    [10]Miao X W.Prognosis of Remaining Life for Aero Engine Main Bearing[M].Beijing:Beihang University,2009.(in Chinese)

    [11]Ji Y B.Frequency-Order of Wavelet Packet[J].Journal of Vibration and Shock,2005,24(3):96-110.(in Chinese)

    [12]Wu W B,Wu W M.Diagnosis of Flow Control Valve Using Wavelet Packet [J].Journal of Jinggangshan University,2011,32(1):97-99.(in Chinese)

    [13]He Z J.Theories and Application of Machinery Fault Diagnostics[M].Beijing:High Education Press,2009:34-36.(in Chinese)

    猜你喜歡
    湘江
    湘江渡
    心聲歌刊(2021年1期)2021-07-22 07:52:18
    湘江魂
    歌海(2021年2期)2021-06-22 02:25:59
    悠然湘江上
    湘江之戀
    詠湘江戰(zhàn)役
    文史春秋(2019年7期)2019-09-10 08:36:50
    紅三十四師浴血奮戰(zhàn)湘江之側(cè)
    文史春秋(2019年7期)2019-09-10 08:36:44
    湘江邊走走
    湘江模樣
    湘江渡
    歌海(2019年6期)2019-02-22 12:23:31
    湘江大地
    名作欣賞(2017年25期)2017-11-06 01:40:12
    麻豆国产97在线/欧美| 人妻丰满熟妇av一区二区三区| 嫩草影院入口| 亚洲av熟女| av视频在线观看入口| 18禁裸乳无遮挡免费网站照片| 桃红色精品国产亚洲av| 欧美乱妇无乱码| 天天躁日日操中文字幕| 久久6这里有精品| 久久6这里有精品| 91久久精品国产一区二区成人| 制服丝袜大香蕉在线| 91久久精品国产一区二区成人| 18美女黄网站色大片免费观看| 亚洲人成伊人成综合网2020| 午夜日韩欧美国产| 日韩精品青青久久久久久| 精品一区二区免费观看| 十八禁网站免费在线| 亚州av有码| 99国产极品粉嫩在线观看| av中文乱码字幕在线| 少妇丰满av| 久久国产乱子免费精品| 国产一区二区在线观看日韩| 91午夜精品亚洲一区二区三区 | 熟女人妻精品中文字幕| 免费观看的影片在线观看| 最近中文字幕高清免费大全6 | 三级国产精品欧美在线观看| 成年女人看的毛片在线观看| 国产老妇女一区| 成年版毛片免费区| 婷婷亚洲欧美| 国产精品人妻久久久久久| 欧美日本视频| 欧美激情国产日韩精品一区| 欧美日韩国产亚洲二区| 国产成+人综合+亚洲专区| 午夜免费男女啪啪视频观看 | 亚洲av免费高清在线观看| 亚洲第一电影网av| 九九在线视频观看精品| 久久久久久久久久黄片| 久久久国产成人免费| 十八禁国产超污无遮挡网站| 国内精品美女久久久久久| 一进一出好大好爽视频| 一本久久中文字幕| 免费人成在线观看视频色| 动漫黄色视频在线观看| 亚洲自偷自拍三级| 国产成人aa在线观看| 高潮久久久久久久久久久不卡| 在线a可以看的网站| 少妇被粗大猛烈的视频| 一区二区三区四区激情视频 | 日本 av在线| 国产黄色小视频在线观看| x7x7x7水蜜桃| 久久久久久久久久成人| 日本一本二区三区精品| 动漫黄色视频在线观看| 色哟哟·www| 麻豆国产av国片精品| 十八禁国产超污无遮挡网站| 老熟妇仑乱视频hdxx| 国产高清视频在线观看网站| 99精品久久久久人妻精品| 亚洲av成人精品一区久久| 在线观看免费视频日本深夜| 草草在线视频免费看| 女人十人毛片免费观看3o分钟| 最新在线观看一区二区三区| 白带黄色成豆腐渣| 一级黄片播放器| 尤物成人国产欧美一区二区三区| 免费人成在线观看视频色| 久久久久国产精品人妻aⅴ院| 麻豆久久精品国产亚洲av| 日本精品一区二区三区蜜桃| 国产精品美女特级片免费视频播放器| 亚洲三级黄色毛片| 亚洲精品一区av在线观看| 亚洲无线在线观看| 免费在线观看亚洲国产| 日本熟妇午夜| 香蕉av资源在线| 成人午夜高清在线视频| 真实男女啪啪啪动态图| 亚洲精品在线美女| 91麻豆精品激情在线观看国产| 免费搜索国产男女视频| 久久精品国产亚洲av天美| 9191精品国产免费久久| 动漫黄色视频在线观看| 97超视频在线观看视频| 午夜爱爱视频在线播放| 国产日韩欧美在线精品| 日本黄大片高清| 久久久国产一区二区| 69av精品久久久久久| 日本欧美国产在线视频| 中文字幕亚洲精品专区| 欧美成人精品欧美一级黄| 亚洲人成网站高清观看| 欧美激情国产日韩精品一区| 一级毛片黄色毛片免费观看视频| 成人毛片a级毛片在线播放| 久久99蜜桃精品久久| 男女下面进入的视频免费午夜| 精品午夜福利在线看| 午夜免费鲁丝| 国产欧美日韩一区二区三区在线 | 午夜免费鲁丝| 老女人水多毛片| 免费观看在线日韩| 欧美精品国产亚洲| 天堂俺去俺来也www色官网| 人人妻人人爽人人添夜夜欢视频 | 内射极品少妇av片p| 亚洲熟女精品中文字幕| 久久久久九九精品影院| 成人一区二区视频在线观看| 亚洲精品日韩av片在线观看| 欧美激情在线99| 亚洲精品乱码久久久v下载方式| 亚洲av二区三区四区| 美女国产视频在线观看| 国产成人aa在线观看| 国产精品不卡视频一区二区| 久久99热这里只有精品18| 日韩免费高清中文字幕av| 日韩不卡一区二区三区视频在线| 一二三四中文在线观看免费高清| 日日啪夜夜爽| 午夜日本视频在线| 色视频在线一区二区三区| 欧美成人精品欧美一级黄| 波野结衣二区三区在线| 一级毛片电影观看| 国产69精品久久久久777片| 国产探花极品一区二区| 亚洲一级一片aⅴ在线观看| 久久久久网色| 国产成人午夜福利电影在线观看| 久久99热这里只有精品18| 大香蕉97超碰在线| 搞女人的毛片| 亚洲av免费在线观看| 人妻少妇偷人精品九色| 天天一区二区日本电影三级| 国产成人精品婷婷| 中文字幕亚洲精品专区| 欧美xxⅹ黑人| 日韩成人av中文字幕在线观看| 欧美高清性xxxxhd video| 99视频精品全部免费 在线| 少妇的逼好多水| 在线免费观看不下载黄p国产| 人妻一区二区av| 日本wwww免费看| 99久久精品国产国产毛片| 精品久久久久久久人妻蜜臀av| 欧美日韩视频精品一区| 毛片女人毛片| 国产探花极品一区二区| 一边亲一边摸免费视频| 欧美 日韩 精品 国产| 精品国产一区二区三区久久久樱花 | 黄色配什么色好看| 亚洲综合色惰| 久久99热6这里只有精品| 国产精品一区二区三区四区免费观看| 美女国产视频在线观看| 性色av一级| 亚洲色图av天堂| xxx大片免费视频| a级毛色黄片| 久久久久久久久久久免费av| 国产欧美另类精品又又久久亚洲欧美| 狂野欧美白嫩少妇大欣赏| 伦精品一区二区三区| 亚洲伊人久久精品综合| 亚洲精品成人av观看孕妇| 欧美人与善性xxx| 精品一区二区免费观看| 性色av一级| 成人亚洲欧美一区二区av| 国产国拍精品亚洲av在线观看| 人妻系列 视频| 国产精品一区二区三区四区免费观看| 亚洲精品色激情综合| 少妇人妻精品综合一区二区| 国产有黄有色有爽视频| 国产精品女同一区二区软件| 又黄又爽又刺激的免费视频.| 精品人妻偷拍中文字幕| 久久99热这里只频精品6学生| 极品少妇高潮喷水抽搐| 亚洲欧美日韩无卡精品| 高清欧美精品videossex| 另类亚洲欧美激情| 亚洲av.av天堂| 免费黄色在线免费观看| 最近中文字幕2019免费版| 久久久久久国产a免费观看| 国产中年淑女户外野战色| 成人高潮视频无遮挡免费网站| 日韩大片免费观看网站| 亚洲精品456在线播放app| 国产有黄有色有爽视频| 中国国产av一级| 日日啪夜夜爽| av免费观看日本| 性色avwww在线观看| 国产又色又爽无遮挡免| 国产精品国产三级国产av玫瑰| 99热全是精品| 波野结衣二区三区在线| 亚洲av一区综合| videos熟女内射| 午夜日本视频在线| 久久久色成人| 搞女人的毛片| 精品一区在线观看国产| 亚洲成人一二三区av| 亚洲精华国产精华液的使用体验| av免费在线看不卡| 青春草国产在线视频| 久久久久久久久久人人人人人人| 97超视频在线观看视频| 国产老妇伦熟女老妇高清| 伊人久久精品亚洲午夜| 久久精品国产自在天天线| 亚洲欧美日韩卡通动漫| 国产精品国产av在线观看| 少妇丰满av| 国产美女午夜福利| 国产伦在线观看视频一区| 免费观看a级毛片全部| 丰满乱子伦码专区| 久久韩国三级中文字幕| 51国产日韩欧美| 免费人成在线观看视频色| 人体艺术视频欧美日本| 99热网站在线观看| 日韩成人av中文字幕在线观看| 少妇熟女欧美另类| 午夜免费男女啪啪视频观看| 欧美精品人与动牲交sv欧美| 亚洲av免费在线观看| 日本欧美国产在线视频| 国产一区有黄有色的免费视频| 一个人看视频在线观看www免费| 亚洲精品,欧美精品| 搡老乐熟女国产| a级毛色黄片| 搞女人的毛片| 狂野欧美激情性xxxx在线观看| 亚洲精品乱码久久久v下载方式| 午夜日本视频在线| 亚洲精品日本国产第一区| 国产精品一区二区三区四区免费观看| 欧美一区二区亚洲| 日韩欧美一区视频在线观看 | 男女边摸边吃奶| videossex国产| 97超碰精品成人国产| 99久久中文字幕三级久久日本| 超碰97精品在线观看| 亚洲精品aⅴ在线观看| 性插视频无遮挡在线免费观看| 亚洲精华国产精华液的使用体验| 国产黄a三级三级三级人| 99热这里只有精品一区| 成人黄色视频免费在线看| 在线 av 中文字幕| 99视频精品全部免费 在线| 在线观看美女被高潮喷水网站| 青春草视频在线免费观看| 免费播放大片免费观看视频在线观看| 国产精品伦人一区二区| 成人毛片a级毛片在线播放| 王馨瑶露胸无遮挡在线观看| 国产欧美亚洲国产| 亚洲av一区综合| 亚洲丝袜综合中文字幕| 亚洲av福利一区| 狠狠精品人妻久久久久久综合| 亚洲av国产av综合av卡| 午夜爱爱视频在线播放| 国产精品一区二区性色av| 欧美成人a在线观看| 亚洲国产精品999| 欧美精品国产亚洲| 国产高清三级在线| 精品一区二区免费观看| 欧美高清性xxxxhd video| 国产精品福利在线免费观看| 韩国av在线不卡| 亚洲欧美一区二区三区黑人 | 噜噜噜噜噜久久久久久91| 观看免费一级毛片| 亚洲国产精品专区欧美| 欧美成人午夜免费资源| 久久精品久久久久久噜噜老黄| a级毛色黄片| 交换朋友夫妻互换小说| 国产亚洲精品久久久com| 国产毛片a区久久久久| 日韩强制内射视频| 看黄色毛片网站| 久久精品人妻少妇| 国产亚洲av嫩草精品影院| 大香蕉久久网| 久久99热这里只频精品6学生| 看黄色毛片网站| 亚洲av福利一区| 尤物成人国产欧美一区二区三区| 精品国产乱码久久久久久小说| 久久精品国产亚洲网站| freevideosex欧美| 五月天丁香电影| av天堂中文字幕网| 91精品伊人久久大香线蕉| 高清视频免费观看一区二区| 噜噜噜噜噜久久久久久91| 久久精品熟女亚洲av麻豆精品| 99久久中文字幕三级久久日本| 狠狠精品人妻久久久久久综合| 久久99蜜桃精品久久| 水蜜桃什么品种好| 成人毛片a级毛片在线播放| 春色校园在线视频观看| 肉色欧美久久久久久久蜜桃 | 日韩欧美 国产精品| 亚洲欧美清纯卡通| 欧美日韩一区二区视频在线观看视频在线 | 人妻系列 视频| 欧美精品人与动牲交sv欧美| 国产 精品1| 亚洲第一区二区三区不卡| 国产成人a∨麻豆精品| 亚洲在久久综合| av在线天堂中文字幕| 另类亚洲欧美激情| 国产视频首页在线观看| 成人午夜精彩视频在线观看| 精品久久国产蜜桃| 欧美变态另类bdsm刘玥| 国产视频首页在线观看| 欧美日本视频| 亚洲精品国产色婷婷电影| 可以在线观看毛片的网站| 免费电影在线观看免费观看| 亚洲天堂国产精品一区在线| 亚洲伊人久久精品综合| 涩涩av久久男人的天堂| 久久久久久久久大av| 18禁动态无遮挡网站| 街头女战士在线观看网站| 久久久久性生活片| 午夜福利在线在线| 大又大粗又爽又黄少妇毛片口| 哪个播放器可以免费观看大片| 欧美丝袜亚洲另类| 亚洲激情五月婷婷啪啪| 在线免费观看不下载黄p国产| 男的添女的下面高潮视频| 久久久久网色| 亚洲av欧美aⅴ国产| 一本一本综合久久| 欧美精品一区二区大全| 97精品久久久久久久久久精品| 两个人的视频大全免费| 亚洲国产色片| av网站免费在线观看视频| 日韩亚洲欧美综合| 亚洲av欧美aⅴ国产| 亚洲欧美中文字幕日韩二区| 日韩一本色道免费dvd| 在线免费十八禁| 身体一侧抽搐| 午夜爱爱视频在线播放| 男人舔奶头视频| 国产精品99久久99久久久不卡 | 黄色怎么调成土黄色| 97在线人人人人妻| 亚洲国产精品专区欧美| 亚洲成人一二三区av| 永久免费av网站大全| 99久国产av精品国产电影| 免费观看av网站的网址| 在现免费观看毛片| 国产高潮美女av| 成年人午夜在线观看视频| 大话2 男鬼变身卡| 日韩亚洲欧美综合| 久久久亚洲精品成人影院| 国产 精品1| 我的老师免费观看完整版| 国精品久久久久久国模美| 日韩欧美一区视频在线观看 | 麻豆精品久久久久久蜜桃| 国产黄片美女视频| 久久99热这里只有精品18| 久久久久国产精品人妻一区二区| 大香蕉久久网| 国产成人福利小说| 国产91av在线免费观看| 两个人的视频大全免费| 久久6这里有精品| 成人美女网站在线观看视频| 亚洲自拍偷在线| 日韩免费高清中文字幕av| 欧美+日韩+精品| 国产欧美另类精品又又久久亚洲欧美| 欧美丝袜亚洲另类| 免费观看av网站的网址| 啦啦啦中文免费视频观看日本| 亚洲三级黄色毛片| 亚洲av成人精品一二三区| 亚洲av在线观看美女高潮| 国产成人91sexporn| 最近最新中文字幕大全电影3| 大码成人一级视频| 国产午夜精品一二区理论片| 偷拍熟女少妇极品色| 免费看光身美女| 丝袜美腿在线中文| 高清午夜精品一区二区三区| 简卡轻食公司| 久久99蜜桃精品久久| 国产v大片淫在线免费观看| 久久久久精品久久久久真实原创| 乱码一卡2卡4卡精品| 精品午夜福利在线看| 亚洲丝袜综合中文字幕| 一级二级三级毛片免费看| 精品少妇黑人巨大在线播放| 卡戴珊不雅视频在线播放| 免费av不卡在线播放| 性色avwww在线观看| 国产免费福利视频在线观看| 狂野欧美白嫩少妇大欣赏| 亚洲精品,欧美精品| 女的被弄到高潮叫床怎么办| 亚洲av.av天堂| 黄色欧美视频在线观看| 激情 狠狠 欧美| 不卡视频在线观看欧美| 嫩草影院入口| 寂寞人妻少妇视频99o| 黄色视频在线播放观看不卡| 国产成人a∨麻豆精品| 天天一区二区日本电影三级| 能在线免费看毛片的网站| 精品熟女少妇av免费看| 亚洲欧美日韩另类电影网站 | 亚洲av成人精品一二三区| 老女人水多毛片| 中文精品一卡2卡3卡4更新| 秋霞伦理黄片| 久久人人爽av亚洲精品天堂 | 日韩精品有码人妻一区| 老师上课跳d突然被开到最大视频| 自拍欧美九色日韩亚洲蝌蚪91 | 国产大屁股一区二区在线视频| 国产亚洲91精品色在线| 中国美白少妇内射xxxbb| 欧美激情在线99| 在线天堂最新版资源| 久久久久网色| 国产午夜精品久久久久久一区二区三区| 久久久久久久国产电影| 亚洲一级一片aⅴ在线观看| 午夜免费观看性视频| 亚洲av一区综合| 人人妻人人澡人人爽人人夜夜| 久久国内精品自在自线图片| 午夜福利在线在线| 蜜桃久久精品国产亚洲av| 国产精品人妻久久久影院| 午夜免费观看性视频| 日韩成人av中文字幕在线观看| .国产精品久久| 国产片特级美女逼逼视频| 自拍偷自拍亚洲精品老妇| 中文字幕亚洲精品专区| 国产一区亚洲一区在线观看| 日韩成人伦理影院| 六月丁香七月| 午夜福利网站1000一区二区三区| 三级国产精品片| 精品久久久久久久久亚洲| 涩涩av久久男人的天堂| 成人特级av手机在线观看| 天天一区二区日本电影三级| 国产亚洲av嫩草精品影院| 亚洲精品日韩在线中文字幕| 久久久久久久国产电影| 午夜激情久久久久久久| 亚洲在久久综合| 一本久久精品| 蜜臀久久99精品久久宅男| 蜜桃久久精品国产亚洲av| 午夜激情久久久久久久| 不卡视频在线观看欧美| 毛片女人毛片| 国产午夜精品久久久久久一区二区三区| 国产久久久一区二区三区| 一边亲一边摸免费视频| 日韩,欧美,国产一区二区三区| 男插女下体视频免费在线播放| 亚洲av中文av极速乱| 18禁动态无遮挡网站| av又黄又爽大尺度在线免费看| 熟女av电影| 美女内射精品一级片tv| 欧美精品人与动牲交sv欧美| 国产欧美日韩一区二区三区在线 | 国产成人午夜福利电影在线观看| 久久韩国三级中文字幕| av网站免费在线观看视频| 极品教师在线视频| 亚洲国产欧美在线一区| 91狼人影院| 能在线免费看毛片的网站| 亚洲精品乱码久久久久久按摩| 欧美日韩亚洲高清精品| 大片电影免费在线观看免费| 国产成人freesex在线| 日本欧美国产在线视频| 久久国产乱子免费精品| 免费少妇av软件| 青青草视频在线视频观看| 久久久久久久久久人人人人人人| 亚洲精品第二区| 免费播放大片免费观看视频在线观看| 免费人成在线观看视频色| 亚洲色图综合在线观看| 边亲边吃奶的免费视频| 午夜精品国产一区二区电影 | 亚洲精品乱码久久久v下载方式| 一级a做视频免费观看| 国产欧美亚洲国产| 下体分泌物呈黄色| 日韩欧美精品v在线| 观看免费一级毛片| 我的老师免费观看完整版| 国产一级毛片在线| 爱豆传媒免费全集在线观看| 国产伦在线观看视频一区| 最近手机中文字幕大全| 国产午夜精品久久久久久一区二区三区| 国产大屁股一区二区在线视频| 久久影院123| 国产熟女欧美一区二区| 成人鲁丝片一二三区免费| 一本色道久久久久久精品综合| 麻豆成人av视频| 亚洲av免费高清在线观看| 亚洲精品日韩av片在线观看| 精品一区二区三卡| 欧美激情在线99| 在线观看av片永久免费下载| 久久精品国产a三级三级三级| 综合色av麻豆| 国产熟女欧美一区二区| 婷婷色av中文字幕| 中文精品一卡2卡3卡4更新| 免费大片黄手机在线观看| 久久久久精品性色| 日本wwww免费看| 国产精品不卡视频一区二区| 春色校园在线视频观看| 免费观看a级毛片全部| 成年女人在线观看亚洲视频 | 老司机影院毛片| 日韩亚洲欧美综合| 日韩av不卡免费在线播放| 亚洲欧美日韩另类电影网站 | 婷婷色麻豆天堂久久| 中文字幕人妻熟人妻熟丝袜美| 欧美一区二区亚洲| 亚洲第一区二区三区不卡| 韩国av在线不卡| 18禁裸乳无遮挡动漫免费视频 | 插阴视频在线观看视频| 亚洲成人精品中文字幕电影| 精品一区二区三卡| 毛片一级片免费看久久久久| 国产精品国产三级专区第一集| 最近最新中文字幕大全电影3| 天美传媒精品一区二区| 男的添女的下面高潮视频| 久久精品国产鲁丝片午夜精品| 亚洲av电影在线观看一区二区三区 | 欧美日韩视频高清一区二区三区二| 亚洲欧美精品自产自拍| 中文字幕免费在线视频6| 国产精品爽爽va在线观看网站| 大陆偷拍与自拍| av女优亚洲男人天堂| 亚洲精品久久久久久婷婷小说| 晚上一个人看的免费电影| 精品久久久久久电影网| 狠狠精品人妻久久久久久综合| 久久久久久久久大av| 夜夜爽夜夜爽视频| 久久久久久国产a免费观看| 免费看不卡的av| 综合色丁香网|