• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Aircraft TrajectoryPrediction Based on Modified Interacting Multiple Model Algorithm

    2015-12-20 09:13:58ZHANGJunfeng張軍峰WUXiaoguang武曉光WANGFei

    ZHANG Junfeng(張軍峰),WU Xiaoguang(武曉光),WANG Fei(王 菲)

    College of Civil Aviation,Nanjing University of Aeronautics and Astronautics,Nanjing 211106,China

    Introduction

    Aircraft trajectory prediction is one of the research focuses in air traffic management automation field[1].Fast and accurate trajectory prediction is the fundamental basis for conflict detection and resolution[2],arrival and departure management[3]and trajectory-based operation[4],which can in turn ensure flight safety,improve operational efficiency,and alleviate controller workload.

    Trajectory prediction is the process of predicting the future progress of individual aircraft on the basis of the current aircraft state,estimates of pilot and controller intent,expected environmental conditions and computer models of aircraft performance and procedures.There are two kinds of methods for trajectory prediction:one is based on aircraft performance model and the other optimal estimation theory.The former utilizes various types of aircraft performance parameters and meteorological information to realize aircraft trajectory prediction through the total energy model(TEM)[5].Such method is applied a wide range due to the base of aircraft data(BADA)[6],released by EUROCONTROL Experimental Center(EEC).However,if unable to accurately determine the flight intention,it is difficult to guarantee the accuracy of trajectory prediction[7].Furthermore,wind and other weather factors should be considered,which increase the difficulty to solve the trajectory prediction problem.The latter is also applied far and wide such as Kalman filter,α-β filter[8],which has achieved a certain effect.But a single Kalman filter cannot provide good estimates for a hybrid system with various modes,which is the case in aircraft trajectory prediction.So the aircraft trajectory prediction can be treated as a stochastic linear hybrid systems (SLHS)estimation problem solved by multiple model approach[9].

    Multiple model approach,as an important way to solve the SLHS estimation problems,is known to have a computational cost that grows exponentially with time,and thus suboptimal algorithms such as generalized Psuedo-Bayesian (GPB),interacting multiple model (IMM)algorithms have been proposed.In particular,the IMM algorithm,which has excellent performance with low computational cost,computes the state estimate using a weighted sum of the estimates from a bank of Kalman filters that are matched to different modes of the system,and successfully applied to the aircraft trajectory prediction[10].

    Mode transition detection is the key of SLHS estimation problem,so the hybrid estimation based trajectory prediction method depends greatly on timely and accurate detection of flight mode transitions.The standard IMM algorithm assumes that the residual is zero mean,the mode probability can be calculated through the likelihood function.Usually such assumption is not justified owing to the incompleteness of the mode sets in IMM algorithm[11].Some authors have also considered complete mode sets[12]or a variable structure IMM(VS-IMM)algorithm[13],in which the set of modes is chosen from a finite class of mode sets based on the continuous state estimate.However,when all modes operated non-optimally,the likelihood probabilities of each mode are similar,which leads to the inaccurate mode estimates and results in poor state estimation.Residual-mean IMM (RMIMM)[14]algorithm is proposed by Hwang et al.,which designs a novel likelihood function that uses the mean of the residual produced by each Kalman filter.The designed likelihood function gives clearer and sharper differences between the correct mode and the other modes,so that the number of false mode estimates decreases relative to the standard IMM.But the RMIMM algorithm still follows the assumption of residuals being zero mean[15],and only considers the characteristics of single Kalman filter's(KF's)residual[16]and ignores the mixing process in the standard IMM algorithm.

    In this paper,a modified IMM (M-IMM)algorithm is proposed through the performance study of IMM algorithm and the influence analysis of input interaction for mean deviation of the residuals.Then such proposed M-IMM algorithm is also applied to the aircraft trajectory prediction.And the simulation results indicate that the proposed algorithm is able to realize not only the reduction of false mode estimates but also the improvement of prediction accuracy.

    1 M-IMM Algorithm

    The dynamics of an aircraft as a discrete-time stochastic linear hybrid system is described by:

    where x(k)is the state variable at time k;Am(k)is the state transition matrix;wm(k)(k)is the process noise in flight mode m(k),which is zero-mean,Gaussian sequences with covariance Qm(k):

    z(k)is the measurement variables at time k;Cm(k)is the measurement matrix;v(k)is the measurement noise,which is zero-mean,Gaussian sequences with covariance R:

    m(k)∈ {1,2,…,r }is the flight mode,and a Markov transition of the flight mode is given by:

    whereμ(k)∈Rris the mode probability at time k,andΠ ={πij}∈Rr×ris the mode transition matrix.

    1.1 Mixing

    The input to KFj at time kis adjusted by weighting the output of each KF with the mixing probability as the weight:

    Then the covariance corresponding to Eq.(4)is:

    1.2 KF

    The state estimation and its corresponding covariance are computed based on r KFs running in parallel.The KF is mainly composed of two steps:predicting and updating.The predicting step is described as follows:

    In the updating step,firstly based on predicting state and covariance,the residual is defined as:

    and the KF-computed residual covariance matrix is

    Furthermore,the KF gain is:

    Lastly,the KF state estimate and its corresponding covariance matrix are updated using:

    1.3 Mode probability update

    The performance of the IMM algorithm (as well as other hybrid estimation algorithms in general)depends on the operating scenario.Mathematically,an operating scenario is described in discrete time by the following dynamic system(which can be called as the true system):

    Note that the system is general in the sense that ATmay or may not belong to the mode setof the IMM algorithm.In other words,the true system could be more general than the hybrid system model(Eqs.(1)and(2)),assumed by the IMM algorithm.After all,in the application to aircraft prediction,t he mode setmay not cover the whole dynamic modes of aircraft.Therefore,it should not be arbitrarily assumed that likelihood functionΛj(k)is Gaussian pdf with zero mean.

    Based on the above definition,the state estimation error for KF j can be defined as:

    and the error for the mixed initial condition:

    Substituting Eqs.(6)and (12)into Eq.(8),the residual can be rewritten as

    Substituting Eq.(11)into Eq.(15),

    Based on the definitionsΔAj=AT-AjandΔCj=CT-Cj,

    Expand the above equation:

    Using Eq.(14),then:

    Similarly,substituting Eq.(9)into Eq.(13),the state estimation error for KFj can be written as:

    Using Eqs.(8)and(12):

    i.e.,

    Namely:

    Based on the definitionsΔAj=AT-AjandΔCj=CT-Cj,and using Eq.(14),then:

    As the measurement matrix of any flight mode remains unchanged for trajectory prediction,i.e.,ΔCj=0,Cj=CT=C.Then the mean value of residual and state estimation error are computed by taking the conditional expectation on Eqs.(16)and(17)respectively:

    Since in the IMM framework there is no true model for sure,i.e.,with probability 1,a new definition of the mean of the residual is proposed shown as Eq.(20):a weighted sum of the mean of the residual computed by each KF with the mode probability estimate as the weight.Similarly,a new definition of the mean of the state estimation error shown as Eq.(21)is proposed as a weighted sum of the mean of the state estimation error corresponding to KF j with the same weight.

    where,ΔAi=Aj-Ai,i.e.,suppose mode j corresponding to the true mode,and

    The M-IMM algorithm is proposed based on the above analysis,whose general structure is similar to the standard IMM algorithm except for the“Mode Probability Update”step.In the proposed M-IMM algorithm,likelihood function shown as Eq.(22)is used to update mode probability:

    1.4 Combination output

    The state estimate is a weighted sum of the estimates fromr KFs and the mode estimate is the mode which has the highest mode probability:

    2 Simulation Results

    2.1 Simulation preparation

    The numerical case and radar trajectory case of aircraft horizontal movement are chosen to conduct the simulation validation.The behavior of an aircraft in a local navigation frame(ξ-η)is considered withξ-axis pointing east andη-axis pointing north.Let the continuous state vector be:

    And the aircraft dynamics is described by Ref.[17]:

    where Tsis the sampling time,wξand wηare the process noises,φ =0denotes the aircraft in constant velocity(CV)mode,andφ =1denotes the aircraft in coordinate turn(CT)mode.

    The mode transition matrix is chosen as:Π =

    2.2 Numerical case

    A numerical case for flight trajectory is designed with initial position (x0,y0)= (10,15)km,heading 270°,aircraft speed v =480kn =890km/h,composed of six segments,which is shown as Fig.1.

    Fig.1 Aircraft trajectory diagram

    The parameters chosen in this simulation are as follows:sampling time Ts=1s,the process noise with mean zero and covariance matrices:

    Suppose the root mean squared error (RMSE)of position measurements is 50m,i.e.,the root mean squared(RMS)position error of each direction in a local navigation frame(ξ-η)i s 25m,then the measurement noise with mean zero and covariance matrix:

    The trajectory prediction comparison is shown in Fig.2 about approaches from single KF (CV),IMM algorithm,RMIMM algorithm to M-IMM algorithm.

    The conclusion drawn from Fig.2is that the trajectory prediction performance of KF is poor as a single KF cannot provide good estimates for a hybrid system with various mode.However,IMM algorithm, RMIMM algorithm and the proposed M-IMM algorithm are able to realize the aircraft trajectory prediction.

    In addition,simulation results in Figs.3and 4show how the M-IMM reduces the number of false mode estimates compared with the IMM and RMIMM algorithms.

    Fig.2 Aircraft trajectory prediction diagram

    Fig.3 Mode probabilities of IMM (a),RM-IMM(b),and M-IMM (c)algorithms

    Fig.4 Estimated mode results of IMM (a),RMIMM(b),and M-IMM(c)algorithms

    The quantitative comparison of the above hybrid estimation algorithm is shown in Table 1,in which RMSE is chosen as the criteria for prediction accuracy:

    Table 1 Trajectory prediction results for numerical case

    It can be concluded from Table 1that the proposed MIMM algorithm is able to not noly reduce the number of false mode estimates but also increase the prediciton pricision.

    2.3 Radar trajectory case

    Figure 5is radar trajectories of arrival,departure and overflight at Beijing Terminal Airspace from 14∶00to 18∶00in Feb.19,2012.

    The overflight ETD871is chosen as the simulation case,whose trajectory is shown in Fig.6,where the Beijing Terminal Airspace border is discribed by dotted line.

    Fig.5 Radar trajectories at Beijing Terminal Airspace

    Fig.6 Radar trajectory of flight ETD871

    The parameters chosen are as follows:sampling time Ts=4s(radar update cycle),the covariance matrices of process noise,

    And the measurement noise is mean zero with covariance matrix:

    The quantitative comparison of the above hybrid estimation algorithm is shown in Table 2,in which RMSE is chosen as the criteria for prediction accuracy.

    Table 2 Trajectory prediction results for radar trajectory case

    It can be concluded from Table 2that compared with the standard IMM and RMIMM algorithms,the prediction accuracy is improved and the flight mode estimated error rate is reduced through the proposed M-IMM algorithm.

    3 Conclusions

    Timely and accurate detection of flight mode transitions is the key of aircraft trajectory prediction.On one hand,the proposed M-IMM algorithm has inherited the architecture of standard IMM algorithm,which effectively guarantees the timely detection of the flight mode transitions.On the other hand,the proposed M-IMM algorithm has improved the accuracy of flight mode detection by abandoning the false assumption that likelihood function with zero mean Gaussian distribution.However,flight mode detection by the proposed algorithm still has a certain lag.Therefore,an important direction for the future research lies on trying to reduce the detection lag by concerning the state-dependent mode transition hybrid estimation algorithm.

    [1]Guzhva V S, Abdelghany A, Lipps T.Experimental Approach to NextGen Benefits Estimation:a Case of Single-Airline Aircraft Arrival Management System [J].Journal of Air Transport Management,2014,35:108-116.

    [2]Ruiz S,Piera M,Pozo I.A Medium Term Conflict Detection and Resolution System for Terminal Maneuvering Area Based on Spatial Data and 4D Trajectories [J].Transportation Research Part C:Emerging Technologies,2013,26:396-417.

    [3]Hancerliogullari G,Rabadi G,Al-Salem A H,et al.Greedy Algorithms and Metaheuristics for a Multiple Runway Combined Arrival-Departure Aircraft Sequencing Problem[J].Journal of Air Transport Management,2013,32:39-48.

    [4]Zú?iga C A,Piera M A,Ruiz S,et al.A CD&CR Causal Model Based on Path Shortening/Path Stretching Techniques[J].Transportation Research Part C:Emerging Technologies,2013,33:238-256.

    [5]Alligier R,Gianazza D,Durand N.Learning the Aircraft Mass and Thrust to Improve the Ground-Based Trajectory Prediction of Climbing Flights[J].Transportation Research Part C:Emerging Technologies,2013,36:45-60.

    [6]Eurocontol Experimental Center.User Manual for the Base of Aircraft Data(BADA)[R].Revision 3.10,F(xiàn)rance:EEC,2012.

    [7]Leones J L,Amo A D,Bronsvoort J,et al.Air-Ground Trajectory Synchronization through Exchange of Aircraft Intent Information[J].Air Traffic Control Quarterly,2012,20(4):311-339.

    [8]Bar-Shalom Y,Li X R,Kirubarajan T.Estimation with Applications to Tracking and Navigation:Theory Algorithms and Software[M].USA:John Wiley &Sons,Inc.,2001:466-476.

    [9]Li X R,Jilkov V P.Survey of Maneuvering Target Tracking.Part V:Multiple-Model Methods[J].IEEE Transactions on Aerospace and Electronic Systems,2005,41(4):1255-1321.

    [10]Mazor E,Averbuch A,Bar-Shalom Y,et al.Interacting Multiple Model Methods in Target Tracking:a Surey [J].IEEE Transactions on Aerospace and Electronic Systems,1998,34(1):103-123.

    [11]Chen Y,Cheng Z,Wen S L.Modified IMM Algorithm for Unmatched Dynamic Models[J].Systems Engineering and Electronic,2011,33(12):2593-2597.(in Chinese)

    [12]Li X R,Jilkov V P.Survey of Maneuvering Target Tracking.Part I:Dynamic Models[J].IEEE Transactions on Aerospace and Electronic Systems,2003,39(4):1333-1364.

    [13]Li X R,Zhang Y M.Multiple-Model Estimation with Variable Structure,Part VI:Expected-Mode Augmentation[J].IEEE Transactions on Aerospace and Electronic Systems,2005,41(3):853-867.

    [14]Hwang I,Hwang J,Tomlin C.Flight-Mode-Based Aircraft Conflict Detection Using a Residual-Mean Interacting Multiple Model Algorithm [C].AIAA Guidance,Navigation,and Control Conference and Exhibit,AIAA 2003-5340,Austin,Texas,USA,2003:1-11.

    [15]Hwang I,Balakrishnan H,Tomlin C.State Estimation for Hybrid Systems:Applications to Aircraft Tracking[J].IEE Proceedings:Control Theory and Applications,2006,153(5):556-566.

    [16]Seah C E,Hwang I.Algorithm for Performance Analysis of the IMM Algorithm[J].IEEE Transactions on Aerospace and Electronic Systems,2011,47(2):1114-1124.

    [17]Seah C E,Hwang I.A Hybrid Estimation Algorithm for Terminal-Area Aircraft Tracking [C].AIAA Guidance,Navigation,and Control Conference and Exhibit,AIAA 2007-6691.South Carolina,USA,2007:1-25.

    最近在线观看免费完整版| 美女 人体艺术 gogo| 国产麻豆成人av免费视频| 伦理电影免费视频| 亚洲午夜理论影院| 人人妻人人澡欧美一区二区| 国产精品爽爽va在线观看网站| 亚洲色图 男人天堂 中文字幕| 91麻豆av在线| 亚洲欧美日韩东京热| 精品人妻1区二区| 国产一区二区激情短视频| 色精品久久人妻99蜜桃| 一本精品99久久精品77| 国产一区二区三区视频了| 亚洲美女视频黄频| 国产精品 国内视频| 99久久综合精品五月天人人| 久久精品国产综合久久久| 国产爱豆传媒在线观看 | 黑人欧美特级aaaaaa片| 国产午夜福利久久久久久| 日韩精品免费视频一区二区三区| 老鸭窝网址在线观看| 中出人妻视频一区二区| 免费无遮挡裸体视频| 一进一出好大好爽视频| cao死你这个sao货| 中出人妻视频一区二区| 岛国在线观看网站| 婷婷六月久久综合丁香| 色播亚洲综合网| 亚洲欧美精品综合久久99| 国产免费男女视频| 丁香欧美五月| 亚洲aⅴ乱码一区二区在线播放 | 男女下面进入的视频免费午夜| 欧美日韩乱码在线| 欧美日韩亚洲国产一区二区在线观看| av免费在线观看网站| 国产一区二区在线观看日韩 | www日本黄色视频网| 我要搜黄色片| 亚洲精品国产一区二区精华液| 亚洲最大成人中文| 国产免费av片在线观看野外av| 69av精品久久久久久| 欧美成人免费av一区二区三区| 搞女人的毛片| 他把我摸到了高潮在线观看| 香蕉国产在线看| 黑人欧美特级aaaaaa片| 国产三级中文精品| 久久中文字幕人妻熟女| 久久精品国产99精品国产亚洲性色| 搡老熟女国产l中国老女人| 97碰自拍视频| 午夜亚洲福利在线播放| 99热这里只有精品一区 | 免费在线观看影片大全网站| 91成年电影在线观看| 热99re8久久精品国产| 成人精品一区二区免费| 亚洲专区中文字幕在线| videosex国产| 香蕉国产在线看| 制服人妻中文乱码| 亚洲成人久久性| 久久国产精品影院| 欧美黑人精品巨大| 亚洲精品久久国产高清桃花| 精品第一国产精品| 每晚都被弄得嗷嗷叫到高潮| 99在线人妻在线中文字幕| 十八禁人妻一区二区| 欧美另类亚洲清纯唯美| 婷婷精品国产亚洲av| av在线播放免费不卡| 听说在线观看完整版免费高清| 成人av在线播放网站| 国产精品一区二区免费欧美| 久久婷婷成人综合色麻豆| 国产精品,欧美在线| 母亲3免费完整高清在线观看| 中出人妻视频一区二区| 一本综合久久免费| 一a级毛片在线观看| 俄罗斯特黄特色一大片| 色av中文字幕| 一二三四在线观看免费中文在| 国产精品香港三级国产av潘金莲| 久久亚洲真实| 亚洲人成网站高清观看| 色哟哟哟哟哟哟| 精品乱码久久久久久99久播| 好男人在线观看高清免费视频| 久久久精品大字幕| 999精品在线视频| 欧美黄色片欧美黄色片| 99在线视频只有这里精品首页| 欧美久久黑人一区二区| 男人舔女人的私密视频| 在线观看美女被高潮喷水网站 | 桃色一区二区三区在线观看| 少妇熟女aⅴ在线视频| 在线观看美女被高潮喷水网站 | 日本三级黄在线观看| 国产精品99久久99久久久不卡| 一进一出好大好爽视频| 很黄的视频免费| 香蕉久久夜色| 国产不卡一卡二| 最近最新免费中文字幕在线| 欧美一级a爱片免费观看看 | 亚洲男人的天堂狠狠| 黄色成人免费大全| 久久久久久大精品| 欧美另类亚洲清纯唯美| 一区二区三区高清视频在线| 久久久国产精品麻豆| 最新在线观看一区二区三区| 免费无遮挡裸体视频| 在线免费观看的www视频| 亚洲欧美日韩高清专用| 搞女人的毛片| 亚洲熟妇中文字幕五十中出| 久久久国产成人精品二区| 久久久久国产精品人妻aⅴ院| 久久精品aⅴ一区二区三区四区| 十八禁人妻一区二区| 国产激情欧美一区二区| 男人舔女人下体高潮全视频| 最近在线观看免费完整版| 亚洲国产欧美网| 99re在线观看精品视频| 久久久国产成人免费| 国产亚洲精品综合一区在线观看 | 男女那种视频在线观看| 亚洲美女黄片视频| 午夜免费激情av| 亚洲av中文字字幕乱码综合| 丁香欧美五月| 18禁裸乳无遮挡免费网站照片| 成人一区二区视频在线观看| 精华霜和精华液先用哪个| 一边摸一边抽搐一进一小说| 亚洲在线自拍视频| 成人三级黄色视频| 禁无遮挡网站| 岛国在线观看网站| 日本精品一区二区三区蜜桃| 亚洲第一电影网av| 亚洲电影在线观看av| АⅤ资源中文在线天堂| 欧洲精品卡2卡3卡4卡5卡区| 男人舔女人的私密视频| 亚洲精品久久国产高清桃花| 好看av亚洲va欧美ⅴa在| 18禁黄网站禁片免费观看直播| a在线观看视频网站| 国产激情欧美一区二区| 国产精品久久久av美女十八| 这个男人来自地球电影免费观看| 一级毛片精品| 草草在线视频免费看| 制服诱惑二区| 欧美乱码精品一区二区三区| 亚洲,欧美精品.| 亚洲人成伊人成综合网2020| 女同久久另类99精品国产91| 国产精品精品国产色婷婷| 美女扒开内裤让男人捅视频| 国内少妇人妻偷人精品xxx网站 | 久久国产精品人妻蜜桃| 午夜影院日韩av| 久久天躁狠狠躁夜夜2o2o| 亚洲 欧美一区二区三区| 色在线成人网| 一本久久中文字幕| 中文字幕av在线有码专区| 五月伊人婷婷丁香| 久久香蕉激情| av免费在线观看网站| 久久香蕉国产精品| 欧美国产日韩亚洲一区| 精品人妻1区二区| 色精品久久人妻99蜜桃| 国产伦一二天堂av在线观看| 精品国产美女av久久久久小说| 成人av在线播放网站| 757午夜福利合集在线观看| 天堂动漫精品| svipshipincom国产片| 老熟妇仑乱视频hdxx| 18禁美女被吸乳视频| 亚洲在线自拍视频| 国产高清激情床上av| 精品熟女少妇八av免费久了| 欧美成人午夜精品| 精品免费久久久久久久清纯| 国产激情欧美一区二区| 国产精品一及| 成人三级做爰电影| 波多野结衣高清无吗| 国产精品 国内视频| 99国产精品99久久久久| 久久婷婷人人爽人人干人人爱| 18禁黄网站禁片午夜丰满| 亚洲人成网站在线播放欧美日韩| 中文字幕熟女人妻在线| 精品久久久久久久久久免费视频| 精华霜和精华液先用哪个| 1024手机看黄色片| av福利片在线观看| 一个人免费在线观看电影 | 精品国产超薄肉色丝袜足j| 天天添夜夜摸| 窝窝影院91人妻| avwww免费| 麻豆国产av国片精品| 成人高潮视频无遮挡免费网站| 99热只有精品国产| 少妇的丰满在线观看| 国产午夜福利久久久久久| 精品免费久久久久久久清纯| 一级毛片高清免费大全| 免费在线观看完整版高清| 国产麻豆成人av免费视频| 国产精品99久久99久久久不卡| 久久久久久大精品| 黄色a级毛片大全视频| 亚洲成人中文字幕在线播放| 麻豆成人午夜福利视频| 两性午夜刺激爽爽歪歪视频在线观看 | 国产私拍福利视频在线观看| 午夜激情福利司机影院| 久热爱精品视频在线9| 极品教师在线免费播放| 亚洲人成网站高清观看| 国产成人系列免费观看| 欧美人与性动交α欧美精品济南到| 成人高潮视频无遮挡免费网站| 麻豆国产97在线/欧美 | 男女午夜视频在线观看| 91国产中文字幕| 亚洲欧美日韩东京热| 亚洲精品国产精品久久久不卡| 亚洲国产精品久久男人天堂| ponron亚洲| 一级片免费观看大全| √禁漫天堂资源中文www| 一二三四在线观看免费中文在| 成在线人永久免费视频| 久久久精品国产亚洲av高清涩受| 国产成+人综合+亚洲专区| 十八禁网站免费在线| 欧美日韩亚洲国产一区二区在线观看| 伊人久久大香线蕉亚洲五| a在线观看视频网站| 99国产精品一区二区三区| 国产av不卡久久| 亚洲男人的天堂狠狠| 亚洲真实伦在线观看| 国产av又大| av免费在线观看网站| 免费看美女性在线毛片视频| 国产探花在线观看一区二区| av欧美777| 老司机午夜十八禁免费视频| 动漫黄色视频在线观看| 90打野战视频偷拍视频| 国产v大片淫在线免费观看| 亚洲成人久久爱视频| 99久久无色码亚洲精品果冻| svipshipincom国产片| 国产亚洲av高清不卡| 欧美性猛交╳xxx乱大交人| 欧美国产日韩亚洲一区| 午夜福利在线在线| 色播亚洲综合网| 精品国产乱子伦一区二区三区| 精品国产亚洲在线| videosex国产| 亚洲成a人片在线一区二区| 欧美激情久久久久久爽电影| 精品国产美女av久久久久小说| 欧美成狂野欧美在线观看| 国产片内射在线| 日韩免费av在线播放| 免费看美女性在线毛片视频| 又爽又黄无遮挡网站| 五月玫瑰六月丁香| 国产熟女午夜一区二区三区| 怎么达到女性高潮| 亚洲全国av大片| 国内毛片毛片毛片毛片毛片| 亚洲欧美精品综合久久99| 欧美日本视频| 日韩欧美国产一区二区入口| 我要搜黄色片| 一本精品99久久精品77| 成人三级黄色视频| 亚洲色图 男人天堂 中文字幕| 成人高潮视频无遮挡免费网站| 国产成年人精品一区二区| 国产单亲对白刺激| 欧美不卡视频在线免费观看 | 亚洲五月天丁香| 久久久精品大字幕| av欧美777| 日本撒尿小便嘘嘘汇集6| 一级黄色大片毛片| 国产av不卡久久| 婷婷丁香在线五月| 国产午夜福利久久久久久| 香蕉丝袜av| 级片在线观看| 国产精品影院久久| 毛片女人毛片| netflix在线观看网站| 午夜a级毛片| 国产成人一区二区三区免费视频网站| 国产亚洲精品久久久久久毛片| 俄罗斯特黄特色一大片| 国内精品久久久久精免费| 国产一区二区在线观看日韩 | 国产男靠女视频免费网站| 最近最新中文字幕大全免费视频| 最新美女视频免费是黄的| 久久精品91蜜桃| 亚洲无线在线观看| 美女 人体艺术 gogo| 老熟妇乱子伦视频在线观看| 1024香蕉在线观看| 老司机午夜十八禁免费视频| 超碰成人久久| 亚洲片人在线观看| 两性夫妻黄色片| 国产99久久九九免费精品| 婷婷精品国产亚洲av在线| 69av精品久久久久久| 精品国内亚洲2022精品成人| 9191精品国产免费久久| 两个人看的免费小视频| 国产爱豆传媒在线观看 | 久久久国产成人精品二区| www日本在线高清视频| 91麻豆精品激情在线观看国产| 久久久国产成人免费| 色综合婷婷激情| 国产又色又爽无遮挡免费看| 欧美乱妇无乱码| 国产99久久九九免费精品| 成年人黄色毛片网站| 老司机福利观看| 不卡一级毛片| 91成年电影在线观看| 国产激情久久老熟女| 日本免费一区二区三区高清不卡| 少妇裸体淫交视频免费看高清 | 少妇人妻一区二区三区视频| 亚洲欧美日韩高清专用| 在线观看免费视频日本深夜| 日日干狠狠操夜夜爽| 亚洲精品av麻豆狂野| avwww免费| 免费在线观看亚洲国产| 黄色 视频免费看| 久久精品91无色码中文字幕| 男男h啪啪无遮挡| 午夜福利18| 男女之事视频高清在线观看| 真人做人爱边吃奶动态| 十八禁网站免费在线| 伦理电影免费视频| 国内揄拍国产精品人妻在线| 国产成人欧美在线观看| 久久久久久九九精品二区国产 | 国产麻豆成人av免费视频| 真人一进一出gif抽搐免费| 欧美另类亚洲清纯唯美| 999精品在线视频| 欧美成人一区二区免费高清观看 | 国产成人啪精品午夜网站| 日本黄色视频三级网站网址| 国产成人精品无人区| 韩国av一区二区三区四区| 亚洲国产欧洲综合997久久,| 国产精品 欧美亚洲| 精品人妻1区二区| 免费搜索国产男女视频| 欧美高清成人免费视频www| 久久精品夜夜夜夜夜久久蜜豆 | 好看av亚洲va欧美ⅴa在| 久久中文看片网| 嫁个100分男人电影在线观看| 国产熟女xx| 日韩欧美三级三区| 成人国语在线视频| 成人av一区二区三区在线看| 久久亚洲真实| 日韩欧美在线乱码| 视频区欧美日本亚洲| 国内精品久久久久精免费| 男女下面进入的视频免费午夜| 久久久久性生活片| 午夜两性在线视频| 国产伦人伦偷精品视频| 成人欧美大片| 99久久精品热视频| 亚洲男人的天堂狠狠| 久久精品夜夜夜夜夜久久蜜豆 | 欧美乱码精品一区二区三区| 99精品欧美一区二区三区四区| 国产视频内射| 婷婷精品国产亚洲av| 母亲3免费完整高清在线观看| 国产1区2区3区精品| 男人舔女人下体高潮全视频| 热99re8久久精品国产| 亚洲精品在线美女| 欧美黑人巨大hd| 亚洲中文日韩欧美视频| 亚洲av美国av| 亚洲欧美一区二区三区黑人| av福利片在线| 欧美绝顶高潮抽搐喷水| 少妇被粗大的猛进出69影院| x7x7x7水蜜桃| 国产亚洲av高清不卡| 亚洲国产欧美一区二区综合| 精品第一国产精品| 9191精品国产免费久久| 国产av不卡久久| 亚洲国产精品久久男人天堂| 啦啦啦免费观看视频1| 国产成人影院久久av| 搞女人的毛片| 免费av毛片视频| 高清在线国产一区| 精华霜和精华液先用哪个| 97超级碰碰碰精品色视频在线观看| 日本成人三级电影网站| a级毛片a级免费在线| 久久热在线av| 色噜噜av男人的天堂激情| 女警被强在线播放| 777久久人妻少妇嫩草av网站| 一个人观看的视频www高清免费观看 | 美女免费视频网站| 精品一区二区三区四区五区乱码| 男人舔奶头视频| 69av精品久久久久久| 亚洲国产日韩欧美精品在线观看 | 天天一区二区日本电影三级| 精品久久久久久久毛片微露脸| 国产在线精品亚洲第一网站| 亚洲国产精品sss在线观看| 精品午夜福利视频在线观看一区| 777久久人妻少妇嫩草av网站| 黄频高清免费视频| 99热这里只有是精品50| 人人妻人人澡欧美一区二区| 欧美日韩一级在线毛片| 免费在线观看影片大全网站| 18禁裸乳无遮挡免费网站照片| 黑人巨大精品欧美一区二区mp4| 亚洲五月天丁香| 国产精品国产高清国产av| 99国产精品一区二区蜜桃av| 欧美日韩国产亚洲二区| or卡值多少钱| 人人妻人人看人人澡| 亚洲精品美女久久av网站| 免费在线观看日本一区| 午夜免费观看网址| 伦理电影免费视频| 黄色女人牲交| 亚洲一区高清亚洲精品| 亚洲真实伦在线观看| 老司机午夜十八禁免费视频| 老熟妇仑乱视频hdxx| 给我免费播放毛片高清在线观看| 一区二区三区激情视频| 高清毛片免费观看视频网站| 亚洲精品一卡2卡三卡4卡5卡| 国产精品久久久久久人妻精品电影| 日韩国内少妇激情av| 51午夜福利影视在线观看| 亚洲专区字幕在线| 性色av乱码一区二区三区2| 亚洲国产欧美网| 黄色视频,在线免费观看| 国产伦在线观看视频一区| 黄色视频,在线免费观看| 国产亚洲精品一区二区www| 成在线人永久免费视频| 女人爽到高潮嗷嗷叫在线视频| 嫩草影院精品99| 中文资源天堂在线| 国产伦人伦偷精品视频| 国产伦一二天堂av在线观看| 91av网站免费观看| 免费在线观看视频国产中文字幕亚洲| 亚洲熟女毛片儿| 亚洲av第一区精品v没综合| 国产乱人伦免费视频| 久久亚洲真实| 成人特级黄色片久久久久久久| 后天国语完整版免费观看| 精品电影一区二区在线| 久久久久久亚洲精品国产蜜桃av| 啦啦啦免费观看视频1| 亚洲第一电影网av| 美女黄网站色视频| 高潮久久久久久久久久久不卡| 欧美性猛交黑人性爽| 国产伦在线观看视频一区| 日日干狠狠操夜夜爽| 久久国产精品影院| 欧美乱妇无乱码| 又粗又爽又猛毛片免费看| 精品无人区乱码1区二区| 丁香欧美五月| 国产高清videossex| 国产av不卡久久| 亚洲国产日韩欧美精品在线观看 | 搞女人的毛片| 亚洲欧美一区二区三区黑人| 激情在线观看视频在线高清| 国模一区二区三区四区视频 | av在线天堂中文字幕| 老熟妇乱子伦视频在线观看| 在线观看日韩欧美| 日韩精品免费视频一区二区三区| 国产激情偷乱视频一区二区| 日韩av在线大香蕉| 久久精品人妻少妇| 国产av一区在线观看免费| 欧美一区二区国产精品久久精品 | 日本a在线网址| 欧美三级亚洲精品| 国产69精品久久久久777片 | 真人一进一出gif抽搐免费| 国产精品久久久av美女十八| 看免费av毛片| 日韩av在线大香蕉| 嫩草影视91久久| 精品久久久久久久久久久久久| 天天添夜夜摸| 精品国产亚洲在线| 久久草成人影院| 亚洲av成人av| 白带黄色成豆腐渣| 午夜老司机福利片| 久久天堂一区二区三区四区| 亚洲成av人片在线播放无| 一本久久中文字幕| 国产在线观看jvid| 国产av麻豆久久久久久久| 啪啪无遮挡十八禁网站| 亚洲av成人不卡在线观看播放网| 丰满人妻熟妇乱又伦精品不卡| 国产精品自产拍在线观看55亚洲| 在线观看免费视频日本深夜| 国产精品亚洲av一区麻豆| 亚洲精品色激情综合| 在线十欧美十亚洲十日本专区| 最近在线观看免费完整版| avwww免费| 日韩欧美在线乱码| 久久性视频一级片| 亚洲成人中文字幕在线播放| 日日摸夜夜添夜夜添小说| 精品久久久久久久末码| 欧美日本亚洲视频在线播放| 国内精品久久久久精免费| 色播亚洲综合网| 亚洲精品在线观看二区| 亚洲av成人精品一区久久| 亚洲一码二码三码区别大吗| 97碰自拍视频| 欧美久久黑人一区二区| 亚洲第一欧美日韩一区二区三区| 美女黄网站色视频| www日本在线高清视频| 国产麻豆成人av免费视频| 国产91精品成人一区二区三区| 欧美 亚洲 国产 日韩一| 久99久视频精品免费| 午夜免费观看网址| 超碰成人久久| 国产麻豆成人av免费视频| 亚洲成人国产一区在线观看| 亚洲最大成人中文| 久久久精品国产亚洲av高清涩受| 日韩欧美三级三区| 亚洲午夜精品一区,二区,三区| 免费在线观看亚洲国产| 波多野结衣高清作品| 老熟妇乱子伦视频在线观看| 97超级碰碰碰精品色视频在线观看| 天堂动漫精品| 亚洲精品一卡2卡三卡4卡5卡| 欧美丝袜亚洲另类 | 免费在线观看黄色视频的| 久久精品国产清高在天天线| 日韩国内少妇激情av| 狂野欧美白嫩少妇大欣赏| 国产精品免费一区二区三区在线| 欧美激情久久久久久爽电影| 国内精品久久久久久久电影| 波多野结衣高清作品| 一二三四在线观看免费中文在| 国产单亲对白刺激|