• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Application of improved PSO-based to neural network control system of parallel mechanism

    2015-12-19 08:47:54ChangjianWANGPengWANGSchoolofMechanicalEngineeringYangtzeUniversityJingzhou434000China
    機床與液壓 2015年12期
    關(guān)鍵詞:自適應(yīng)性控制精度魯棒性

    Chang-jian WANG,Peng WANG(School of Mechanical Engineering,Yangtze University,Jingzhou 434000,China)

    Application of improved PSO-based to neural network control system of parallel mechanism

    Chang-jian WANG,Peng WANG*
    (School of Mechanical Engineering,Yangtze University,Jingzhou 434000,China)

    As the traditional PID neural network could not effectively control the real-time nonlinear multivariable system,this paper proposed a new type of multivariable adaptive PID neural network controller.This control system could put out feedback and activation feedback,with the function of proportion,integration and differentiation.We used the Particle Swarm Algorithm which is based on the solution space division to optimize the parameters of the controller.It also could eliminate effect of initial values on the accuracy of the controller and can be applied to the parallel mechanism control system.As the simulation results shown,controller had higher precision,better robustness and adaptability.This research provided a theoretical basis for the optimization design and performance analysis of the parallel mechanism.

    PID neural network,Parallel mechanism,Improved particle swarm algorithm

    Hydromechatronics Engineering

    http://jdy.qks.cqut.edu.cn

    E-mail:jdygcyw@126.com

    1 Introduction

    Comparing to the series robot,the parallel robot has high stiffness,strong bearing capacity,high precision and compact structure.It could be suitable for some applications in machining,aircraft manufacturing,and health care which have small work space and large load strength.

    With the rapid development of computer technology and artificial intelligence,people integrate mathematical models and operating experience into the computer in order to control the entire mechanical system[1]. It is very difficult to establish an accurate model of control system of parallel mechanism due to typically nonlinear multivariable systems and uncertainties and other factors outside interference.So PID control and its combination with other control theory can be used to solve such problems and favored by the majority of researchers.Neural network has powerful computing,strong robust,high fault tolerance and self-learning that can be approached to continuous linear function,but the presence of slow learning speed,many input parameters and poor dynamic performance make it not easy to achieve in reality.To solve this problem,the advantages of PID controller and neural network were combined and then a new neural network PID controller(PIDNNC)was brought up that it had robustness,high control accuracy and could overcome the above drawbacks[2].This paper introduced an improved Particle Swarm Optimization(PSO)based on the solution space and put it into PIDNNC in order to figure out the local minima due to the gradient descent method of adjusting the weights and thresholds.This method not only improved the learning speed and convergence rate,but also obtained a better accuracy,sta-bility and convergence.Furthermore it provided a theoretical basis for improving control precision of parallel mechanism.

    2 Improved particle swarm optimization

    PSO is an optimized algorithm which makes use of group collaboration to achieve the global intelligent research.PSO imitate the process of bird population prey:each particle in the PSO“flights”towards to the optimal direction based on a search of all the particles and their own experience[3-4].Firstly,PSO initializes group of particles N,and then finds the optimal solution through an iterative process.The extreme speed and position of particles are updated by tracking the personal best position and global best position in each iteration.Update formula is as follows:

    Vi:evolution of the ithparticle velocity;Xi:position of the ithparticle;pBest[i]:the“best”position of the ithparticle;g:the“best”position in group;w:inertia weigh;c1,c2:acceleration factor;rand(t):random function,generate[0,1]of the random number.

    The solution space is derived from a term of linear algebra which is defined as follows:if ξ1,ξ2,…,ξnare N solutions of homogeneous linear equations,then any linear combination of their c1ξ1+c2ξ2+…+cnξnis also the solution vector of homogeneous linear equations.The collection of all the solutions formed a vector space,which is called solution space[5].It can be divided precisely and refined PSO.But one of the most critical factors is how to determine the extreme value area p,when p is stability as well as other areas are basically stable.How to divide solution space is as follows.

    1)Initialize attribute of particles,such as equally spaced and speed distribution;

    2)Record test value and solutions of statistics for each particle,all the particles are ranked according to the initialized attribute,and then identify the most value area and extreme area of every range and calculate the probability p;

    3)If the probability p is stable,output the value;otherwise return to(1)with doubling the size of particle swarm.

    Determination of the probability p is that it assumed p1,…,pnafter n times testing,if p satisfy i≥n/2 andwe define p is stable,moreover β≤0.001 could meet test requirements.

    In the researching process of particle swarm,every particle is constantly pursuing the known optimal position.But it also could cause other particles chasing the local extremes when it becomes the temporary optimal location,hence the whole population into this local extreme.Therefore,to solve this problem of blind search,we first divided the solution space of all the particle swarm into several regions;if there was only one extreme value in a certain area,then blind search could work:the particles could be automatically tend to it.Space can be divided equally,randomly or with the graphics division(such as triangles,squares);each interval was an independent group of small particles.Interval extreme could be found in each area with performance standards,and then compare each interval extreme;finally,find a whole range extreme position for an optimum solution.

    3 Controller design of parallel mechanism

    3.1 Multivariable control PIDNNC

    PID control,produced in the early 20th century,has dominated the field of automatic control,depending on its simple structure,good stability and flexible handling.Neural network with its own self-correction and adaptive capacity has been widely adopted in different situations.A new controller PIDNNC,in which structural features and control laws were effectively combined,is shown in Fig.1.There are input section ej(j=1,2,…,s),one output section and three hidden layers;hidden layer,input and output end existed recursive feedback loop;there is a linear activation function in the hidden layer and output layer[6].In the controller,the first node a1of hidden layer contained a dynamic output feedback and record function which could feedback the weighting sum to node n1,while the second node a2does not had feedback;the third node a3has active feedback and it delayed with minus units of output after weighting sum of nodes n3and regarded it as a new input to n3.

    As is shown in the Fig.1,PIDNNC is negative feedback loop;input is rj(k)(j=1,2…s),output is yj(k)(j=1,2,…,s),system output error is ej(k)= rj(k)-yj(k).The controller’s output at time k in hidden layer is αi(k)(i=1,2,3)

    Network terminal output:

    Compared to formula(1)(2)(3)to(5),(1)presents the integral feature like the PID control.(2)is of proportion character which has activated feedback and(3)reflects the differential aspect.Unlike previous PID neural network,which is caused by controller that contains the output feedback and self-feedback network hybrid recursive composition,PIDNNC is designed convenient,simple structure and the determined number of nodes in the hidden layer.In addition,three sets of hidden layer weights w1j,w2j,w3j(j=1,2,…,s)are similar to the proportion,integration and differential that make physical meaning of parameters relatively clear.Multivariable controller is designed according to the complexity of the object and this process is more convenient than conventional PID.

    Fig.1 ControIIer of PIDNNC

    In the design process of the controller,we need to determine the number of input layer,hidden layer and output layer first,and then to adjust the network weights w1j,w2j,w3j(j=1,2,…,s)and output weights w1(k),w2(k),w3(k)to obtain better properties neural network.According to(4),the characteristics of PIDNNC are determined by the weights of hidden layer while the rule of output layer is summation which function is linear.Therefore,in order to decrease training time and study design,the output weights wi(i=1,2,3)is set to 1,and learning optimization parameters to wij(i=1,2,3;j=1,2,…,s).

    In this article,we made the improved PSO into m file using Matlab,and then optimized the objective function with Sim function.Firstly,the initial values of parameters were entered into the parameter matrix X,then system block diagram was built by Simulink and saved to mdl format.Finally,used the Sim function to write the objective function program and optimized it with m file.

    3.2 Controller of parallel mechanism

    Fig.2 displays the 3-TPT parallel mechanism,which is composed of fixed platform,moving platform,driven rod and connecting rod.Both moving platform and fixed platform are equilateral triangle,each drive rod is connected to parallel mechanism with Hooke joint,so as the moving platform and fixed platform. Three drive rods are driven by servo motor and adjust the position of movable platform by changing the length.They withstand external forces and torque[7].

    Fig.2 3-TPT paraIIeI mechanisms

    Degree of freedom can be deduced by KutzbachGrable:

    F:DOF;n:the number of component;g:kinematic pair;fi:the relative freedom of kinematic pair of i-th.

    In the parallel mechanism,n=8,g=9,each Hooke joint has 2 rotational DOF and each moving pair has 1 DOF,socording to(6)F=3,the DOF of 3-TPT parallel mechanism is 3.

    In this paper,the model of parallel mechanism was established by Simulink in SimMechanics simulation and integrated to the control system[8].The model of PIDNNC is shown below.

    Fig.3 ModeI of PIDNNC

    Fig.4 System simuIation diagram

    4 Improved PSO algorithm steps

    When PSO optimized to PIDNNC,the objective function of the controller is fitness function;to search the optimal position by improved PSO is to minimize mean square error,fitness function is as follow:

    Where,l:sampled data;s:the number of input node;rj(k)-yj(k):output error.Optimization steps are as follows.

    1)PIDNNC controller and particle swarm initialization parameter is set according to the number of input layer neurons of controlled object[9],hidden layer nodes are set 3(Kp,Ki,Kd);initialized the population of position and velocity,set test number M and divided entire population into n subintervals.

    2)Put the values of Kp,Ki,Kdobtained by using conventional calculation as an initial value of hidden layer weights wij(0),then set output layer weights wi=1(i=1,2,3),computing u(0)[10].

    3)Calculated a1(k),a2(k),a3(k)and output u(k);set k=k+1,return to recalculate until the output meet accuracy requirements.

    5 Simulations

    Set parameters of 3-TPT parallel mechanism:R= 600 mm,r=200 mm;the size of provision population is 200,maximum number of iteration is 200,acceleration factor c1=2,c2=2,maximum speed v=0.2,inertia weight w=0.8.

    This paper performed a contrast experiment between traditional PID and PIDNNC optimized by improved PSO.Figure 5 is an improved PSO evolutionary curve,it can be seen that the it converges very fast early,later to slow down when search the optimal solution.This method could solve effectively the problem of local convergence.And in Fig.6,under the signal control of sine wane,PIDNNC optimized by PSO can adjust three output parameters online,accuracy and systematics error are improved and displacement is better.

    Fig.5 PSO evoIution curve

    Fig.6 Contrast curve of dispIacement and controI error

    6 Conclusions

    This paper introduced a new PSO based on divided solution space and put it into the design of a new multivariate controller PIDNNC which effectively solved the problem of multivariable nonlinear systems of traditional PID neural network.Hidden layer of the controller had the effect of proportional,integral and derivative at same time it had better stability,accuracy and robustness.Taking the improved PSO to optimized neural network system overcomed the problem of local minimum caused by the use of gradient descent,this made selection and learning of neural network more simpler,convergence more faster and looking for solutions more accurately.

    [1]TAN Xiankun.Improved control algorithm based on particle swarm optimization and its simulation research[J].Machine Tool&Hydraulics,2012,40(19):28-33.

    [3]Cong Shuang,Liang Yan-yang,Li Guo-dong.Multivariable Adaptive PID-like Neural Network Controller and Its Design Method[J].Inform Ation and Control,2006,35(5):565-573.

    [3]AO Chaohua,BI Jianchao.Improved algorithm of PSO and its application in parameter tuning of control system[J]. Machine Tool&Hydraulics,2012,40(12):84-90.

    [4]Che Lin-xian,He Bing,Yi jian,etal.Improved Particle Swarm Optimization for Forward Positional Analysis Symmertrical Stewart Parallel Manipulators[J].Transactions of the Chinese Society for Agricultural Machinery,2008,39(10):159-163.

    [5]Zhao Wei,Cai Xing-sheng.PSO Improved Algorthmg Based on the Solution Space Division[J].Journal of Jilin University:Science Edition,2012,50(4):725-732.

    [6]Liang Yan-yang.Nonlinear Adaptive Control of Time-carying Uncertain Electro-mechanical Motion System[D].Hefei:University of Science and Technology of China,2008.

    [7]Yang Hui,Zhao Heng-hua,F(xiàn)u Hong-shuan.The Establishment and Simulation of the Parallel Mechanism Virtual Prototype[J].Journal of Engineering Design,2012,19(6):445-448.

    [8]QIN Huiming,LI Xiao.Neural Network Control for Teleoperated Construction Robot Based on WAN[J].Machine Tool &Hydraulics,2014,42(3):5-8.

    [9]Feng Dong-qing,Xing Guang-cheng,F(xiàn)ei Min-rui,etal. Improved PSO-based Multivariable PID-like Neural Network Control[J].Journal of Simulation,2011,23(2):363-385.

    [10]Zhou Xi-feng.The Control of PID Neural Network Based on β Parameterized B-spline Basic Functions and Improved PSO[J].Maufacturing Automation,2011,33(10):61-67.

    基于改進的PSO在并聯(lián)機構(gòu)神經(jīng)網(wǎng)絡(luò)控制系統(tǒng)中的應(yīng)用

    王長建,王 鵬*
    長江大學(xué)機械工程學(xué)院,湖北荊州 434000

    針對傳統(tǒng)PID神經(jīng)網(wǎng)絡(luò)不能實時有效地控制非線性多變量系統(tǒng)的問題,設(shè)計了一種新型多變量自適應(yīng)PID神經(jīng)網(wǎng)絡(luò)控制器。該控制器的隱含層帶有輸出反饋和激活反饋,實現(xiàn)了比例、微分和積分功能。利用一種基于解空間劃分的改進粒子群算法對控制器參數(shù)進行優(yōu)化,消除了初始值對控制器準(zhǔn)確性的影響,并將控制器應(yīng)用于并聯(lián)機構(gòu)控制中。由仿真結(jié)果可知:控制器控制精度高,魯棒性和自適應(yīng)性較強。這一研究為并聯(lián)機構(gòu)的精準(zhǔn)控制和優(yōu)化設(shè)計提供了理論基礎(chǔ)。

    PID神經(jīng)網(wǎng)絡(luò);并聯(lián)機構(gòu);改進PSO算法

    10.3969/j.issn.1001-3881.2015.12.010Document code:A

    TH165+.2

    1 July 2014;revised 17 February 2015;accepted 5 March 2015

    Chang-jian WANG,Professor.E-mail:wangchangjian2468@ 163.com

    *Corresponding author:Peng WANG,Master.

    E-mail:47361222@qq.com

    猜你喜歡
    自適應(yīng)性控制精度魯棒性
    基于TRIZ理論的巡檢機器人移動底盤結(jié)構(gòu)創(chuàng)新設(shè)計
    機械傳動(2025年1期)2025-02-25 00:00:00
    基于多源異構(gòu)信息融合的采摘機械臂驅(qū)動控制研究
    荒漠綠洲區(qū)潛在生態(tài)網(wǎng)絡(luò)增邊優(yōu)化魯棒性分析
    高校外籍教師自適應(yīng)性調(diào)整探索——基于四川文理學(xué)院8名外教非結(jié)構(gòu)式訪談的定性研究
    基于確定性指標(biāo)的弦支結(jié)構(gòu)魯棒性評價
    MW級太空發(fā)電站微波能量波束指向控制精度分析
    基于非線性多輸入多輸出近似動態(tài)規(guī)劃的發(fā)動機缸平衡智能調(diào)節(jié)算法
    基于安卓的智能車轉(zhuǎn)速系統(tǒng)的設(shè)計與實現(xiàn)
    水下大壩裂縫圖像分割方法研究 
    基于非支配解集的多模式裝備項目群調(diào)度魯棒性優(yōu)化
    天美传媒精品一区二区| 国产成人精品婷婷| 女人精品久久久久毛片| 搡老乐熟女国产| 国产亚洲精品久久久com| 熟妇人妻不卡中文字幕| 欧美日本中文国产一区发布| 午夜av观看不卡| 国产片内射在线| 午夜老司机福利剧场| 另类精品久久| 久久久久国产网址| 国产黄频视频在线观看| 欧美另类一区| 天堂俺去俺来也www色官网| 免费少妇av软件| 看免费成人av毛片| 国产永久视频网站| 菩萨蛮人人尽说江南好唐韦庄| av又黄又爽大尺度在线免费看| av免费在线看不卡| 国产一区亚洲一区在线观看| 精品午夜福利在线看| 国产精品欧美亚洲77777| 欧美少妇被猛烈插入视频| 国产精品女同一区二区软件| 看免费av毛片| 日韩欧美精品免费久久| 黄色视频在线播放观看不卡| 韩国高清视频一区二区三区| 欧美日韩亚洲高清精品| 97在线人人人人妻| 久久精品aⅴ一区二区三区四区 | 免费日韩欧美在线观看| 青春草国产在线视频| 曰老女人黄片| 欧美丝袜亚洲另类| 亚洲av在线观看美女高潮| 国产在线一区二区三区精| 久久狼人影院| 亚洲精品美女久久久久99蜜臀 | 亚洲色图 男人天堂 中文字幕 | 我要看黄色一级片免费的| 春色校园在线视频观看| 色婷婷久久久亚洲欧美| 一二三四在线观看免费中文在 | 国产白丝娇喘喷水9色精品| 22中文网久久字幕| 日韩三级伦理在线观看| 亚洲欧美中文字幕日韩二区| 午夜免费男女啪啪视频观看| 如日韩欧美国产精品一区二区三区| 制服人妻中文乱码| 啦啦啦啦在线视频资源| 久久精品人人爽人人爽视色| 黑人高潮一二区| 日韩免费高清中文字幕av| 伊人久久国产一区二区| 熟女电影av网| 欧美另类一区| 欧美成人精品欧美一级黄| 国产一区二区三区综合在线观看 | 97在线人人人人妻| 亚洲精品aⅴ在线观看| 久久人人爽人人爽人人片va| 在线 av 中文字幕| 久久亚洲国产成人精品v| 欧美亚洲 丝袜 人妻 在线| 91久久精品国产一区二区三区| 一二三四在线观看免费中文在 | 中文精品一卡2卡3卡4更新| 在线 av 中文字幕| 亚洲性久久影院| 久久99蜜桃精品久久| 久久人人爽av亚洲精品天堂| 内地一区二区视频在线| av.在线天堂| 最近最新中文字幕免费大全7| av电影中文网址| 精品亚洲成国产av| 久久人妻熟女aⅴ| av又黄又爽大尺度在线免费看| 亚洲精品日本国产第一区| 男人添女人高潮全过程视频| 国产精品偷伦视频观看了| 黄片播放在线免费| 伊人久久国产一区二区| 天天躁夜夜躁狠狠久久av| 激情五月婷婷亚洲| 蜜桃国产av成人99| videosex国产| 少妇的逼好多水| 国产精品久久久久成人av| 欧美人与性动交α欧美软件 | 亚洲内射少妇av| 一区二区三区四区激情视频| 国产精品嫩草影院av在线观看| av女优亚洲男人天堂| 亚洲婷婷狠狠爱综合网| 国内精品宾馆在线| 激情视频va一区二区三区| 在线亚洲精品国产二区图片欧美| 丁香六月天网| 欧美人与善性xxx| 寂寞人妻少妇视频99o| 日本午夜av视频| 精品午夜福利在线看| 啦啦啦中文免费视频观看日本| 日韩免费高清中文字幕av| 婷婷色av中文字幕| 国产精品久久久av美女十八| 国产成人精品福利久久| 一级片免费观看大全| 亚洲熟女精品中文字幕| av电影中文网址| 美女中出高潮动态图| 婷婷色麻豆天堂久久| 欧美日韩视频高清一区二区三区二| 999精品在线视频| 少妇高潮的动态图| 国产激情久久老熟女| 国产乱来视频区| 十八禁网站网址无遮挡| 日韩精品有码人妻一区| 欧美bdsm另类| 最近中文字幕高清免费大全6| 欧美成人午夜免费资源| 看十八女毛片水多多多| √禁漫天堂资源中文www| 欧美丝袜亚洲另类| 国产成人精品久久久久久| 一级毛片电影观看| 高清在线视频一区二区三区| 亚洲精品视频女| 国产综合精华液| 国产爽快片一区二区三区| 国产熟女欧美一区二区| 9色porny在线观看| tube8黄色片| 成人毛片a级毛片在线播放| 亚洲欧洲精品一区二区精品久久久 | 久久免费观看电影| 午夜福利视频精品| 亚洲丝袜综合中文字幕| 26uuu在线亚洲综合色| 一本久久精品| 不卡视频在线观看欧美| 日本wwww免费看| 我要看黄色一级片免费的| 另类亚洲欧美激情| 日韩大片免费观看网站| 国产一级毛片在线| 高清黄色对白视频在线免费看| 亚洲精品国产色婷婷电影| 欧美日韩亚洲高清精品| 一级,二级,三级黄色视频| 天堂8中文在线网| 伊人久久国产一区二区| 一级片免费观看大全| 天美传媒精品一区二区| 在线观看人妻少妇| 男人操女人黄网站| 亚洲欧美中文字幕日韩二区| 国产成人精品福利久久| 国产片内射在线| 久久久久久久国产电影| 男女啪啪激烈高潮av片| 中文字幕av电影在线播放| 国产又爽黄色视频| 欧美日韩精品成人综合77777| 午夜福利影视在线免费观看| 亚洲精华国产精华液的使用体验| 精品久久久久久电影网| 丝袜脚勾引网站| 精品人妻熟女毛片av久久网站| 免费播放大片免费观看视频在线观看| 久久 成人 亚洲| 晚上一个人看的免费电影| 熟女av电影| 亚洲精品乱码久久久久久按摩| 亚洲成国产人片在线观看| 精品国产国语对白av| 在线观看www视频免费| 国产精品不卡视频一区二区| 国产福利在线免费观看视频| 极品人妻少妇av视频| 91精品国产国语对白视频| 51国产日韩欧美| 精品一区二区三卡| 国产免费现黄频在线看| 哪个播放器可以免费观看大片| av一本久久久久| 亚洲欧美日韩另类电影网站| 国产成人午夜福利电影在线观看| 母亲3免费完整高清在线观看 | 国语对白做爰xxxⅹ性视频网站| 日韩一区二区视频免费看| 一区在线观看完整版| 婷婷色综合www| 18+在线观看网站| 日本wwww免费看| 久久久久国产精品人妻一区二区| 欧美日韩综合久久久久久| 狂野欧美激情性xxxx在线观看| 国产爽快片一区二区三区| 男的添女的下面高潮视频| 啦啦啦中文免费视频观看日本| 精品一区二区三卡| 久久精品久久久久久噜噜老黄| 色婷婷久久久亚洲欧美| 国产白丝娇喘喷水9色精品| 夫妻午夜视频| 欧美精品高潮呻吟av久久| 国产一区二区三区av在线| 午夜老司机福利剧场| 久久这里有精品视频免费| 国产在线免费精品| 如何舔出高潮| 精品人妻在线不人妻| 看免费成人av毛片| 汤姆久久久久久久影院中文字幕| 欧美精品av麻豆av| 日韩一区二区三区影片| 一区二区日韩欧美中文字幕 | 国产精品无大码| 又粗又硬又长又爽又黄的视频| 亚洲四区av| 在线观看www视频免费| 日日摸夜夜添夜夜爱| 哪个播放器可以免费观看大片| 精品久久国产蜜桃| 日韩 亚洲 欧美在线| 精品国产一区二区三区四区第35| 久久国产精品大桥未久av| 国产精品无大码| 亚洲综合色惰| 热re99久久国产66热| 国产精品嫩草影院av在线观看| 国产日韩欧美亚洲二区| 久久精品人人爽人人爽视色| 精品国产一区二区久久| 日本爱情动作片www.在线观看| 晚上一个人看的免费电影| 欧美激情极品国产一区二区三区 | 亚洲高清免费不卡视频| 久久久久久久国产电影| 看十八女毛片水多多多| 国产国语露脸激情在线看| 9191精品国产免费久久| 亚洲精品一区蜜桃| 人体艺术视频欧美日本| 国产成人免费观看mmmm| 在线亚洲精品国产二区图片欧美| 亚洲精品456在线播放app| 欧美日韩一区二区视频在线观看视频在线| 丝袜美足系列| 深夜精品福利| 国产日韩一区二区三区精品不卡| 亚洲av在线观看美女高潮| 91国产中文字幕| 精品一区二区三区视频在线| 女人久久www免费人成看片| 国产高清国产精品国产三级| 人妻 亚洲 视频| 最近最新中文字幕免费大全7| 飞空精品影院首页| 1024视频免费在线观看| 午夜激情av网站| 在线天堂最新版资源| 久久精品久久精品一区二区三区| 国产成人一区二区在线| 精品久久国产蜜桃| 精品视频人人做人人爽| 18禁裸乳无遮挡动漫免费视频| 久久久久久人人人人人| 一区在线观看完整版| 欧美xxxx性猛交bbbb| 亚洲成人av在线免费| 啦啦啦中文免费视频观看日本| 另类亚洲欧美激情| 黑人猛操日本美女一级片| 又黄又爽又刺激的免费视频.| 最新中文字幕久久久久| 国产无遮挡羞羞视频在线观看| 精品福利永久在线观看| 精品一区二区三区视频在线| av.在线天堂| av天堂久久9| 日韩制服丝袜自拍偷拍| 人成视频在线观看免费观看| 日本猛色少妇xxxxx猛交久久| 欧美丝袜亚洲另类| 亚洲av电影在线进入| 日韩大片免费观看网站| 99热全是精品| 亚洲成人av在线免费| 在线观看国产h片| 国产深夜福利视频在线观看| 天天躁夜夜躁狠狠久久av| 亚洲色图 男人天堂 中文字幕 | 国产精品久久久久久久电影| 视频中文字幕在线观看| 又黄又爽又刺激的免费视频.| 69精品国产乱码久久久| 国产成人aa在线观看| 看十八女毛片水多多多| 黑人猛操日本美女一级片| 欧美成人精品欧美一级黄| 最近最新中文字幕大全免费视频 | 久久久精品免费免费高清| 亚洲av男天堂| 妹子高潮喷水视频| 国产免费一级a男人的天堂| 校园人妻丝袜中文字幕| 巨乳人妻的诱惑在线观看| 男人操女人黄网站| 2021少妇久久久久久久久久久| 十八禁网站网址无遮挡| 色吧在线观看| 亚洲精品第二区| 夫妻性生交免费视频一级片| 多毛熟女@视频| 18禁动态无遮挡网站| av.在线天堂| 久久热在线av| 久久精品国产a三级三级三级| 狠狠婷婷综合久久久久久88av| 国产亚洲欧美精品永久| 另类精品久久| 免费av不卡在线播放| 国产男女内射视频| 18禁动态无遮挡网站| 最近中文字幕2019免费版| 午夜久久久在线观看| 国产一级毛片在线| 久久女婷五月综合色啪小说| 国产精品人妻久久久影院| 欧美日韩av久久| 亚洲在久久综合| 99热国产这里只有精品6| 免费日韩欧美在线观看| 久久亚洲国产成人精品v| 色婷婷av一区二区三区视频| 免费观看无遮挡的男女| 亚洲色图综合在线观看| videos熟女内射| 99视频精品全部免费 在线| 国产亚洲午夜精品一区二区久久| 亚洲精品中文字幕在线视频| 亚洲成色77777| 自拍欧美九色日韩亚洲蝌蚪91| 欧美亚洲日本最大视频资源| 免费高清在线观看日韩| 色视频在线一区二区三区| 国产xxxxx性猛交| 久久久久精品久久久久真实原创| 亚洲综合精品二区| 18禁国产床啪视频网站| 日日撸夜夜添| 三级国产精品片| 精品国产一区二区三区久久久樱花| 国产亚洲欧美精品永久| 欧美成人精品欧美一级黄| 交换朋友夫妻互换小说| 一二三四中文在线观看免费高清| 日韩电影二区| 草草在线视频免费看| 少妇熟女欧美另类| a级片在线免费高清观看视频| 国产xxxxx性猛交| 日本黄大片高清| 亚洲伊人久久精品综合| 一二三四中文在线观看免费高清| 亚洲美女搞黄在线观看| 日韩av不卡免费在线播放| 欧美性感艳星| 亚洲av欧美aⅴ国产| 日韩成人av中文字幕在线观看| 久久精品熟女亚洲av麻豆精品| 日韩中字成人| 麻豆精品久久久久久蜜桃| 免费高清在线观看日韩| 国产一区亚洲一区在线观看| 免费看av在线观看网站| 91午夜精品亚洲一区二区三区| 美女内射精品一级片tv| 99re6热这里在线精品视频| 五月玫瑰六月丁香| 久久久久久久国产电影| 男女边摸边吃奶| 老司机亚洲免费影院| 成人亚洲欧美一区二区av| 精品第一国产精品| 国产又爽黄色视频| 搡女人真爽免费视频火全软件| 一二三四在线观看免费中文在 | 边亲边吃奶的免费视频| 久久影院123| 人妻 亚洲 视频| 高清av免费在线| 极品少妇高潮喷水抽搐| 少妇被粗大猛烈的视频| 下体分泌物呈黄色| 国产精品久久久久久久电影| 亚洲精品av麻豆狂野| 久久精品aⅴ一区二区三区四区 | 欧美bdsm另类| 黄色视频在线播放观看不卡| 国产有黄有色有爽视频| 91在线精品国自产拍蜜月| 日韩成人伦理影院| 国产欧美另类精品又又久久亚洲欧美| 秋霞在线观看毛片| 纵有疾风起免费观看全集完整版| 大香蕉97超碰在线| 久久鲁丝午夜福利片| 制服人妻中文乱码| 久久久久久久亚洲中文字幕| 日韩精品有码人妻一区| 婷婷色av中文字幕| 超色免费av| 日韩一区二区三区影片| 国产精品国产三级专区第一集| 熟女人妻精品中文字幕| 精品福利永久在线观看| 男人爽女人下面视频在线观看| 国产成人精品久久久久久| 毛片一级片免费看久久久久| 成人免费观看视频高清| 日日爽夜夜爽网站| 少妇高潮的动态图| 国产成人免费无遮挡视频| 久久久久国产网址| 啦啦啦中文免费视频观看日本| 亚洲精品美女久久av网站| 青青草视频在线视频观看| 人人妻人人爽人人添夜夜欢视频| 免费av中文字幕在线| 久久国产精品男人的天堂亚洲 | 伊人久久国产一区二区| 欧美精品一区二区免费开放| 精品一区二区三区视频在线| 你懂的网址亚洲精品在线观看| 丝袜美足系列| 久久久久精品人妻al黑| 两个人看的免费小视频| 欧美变态另类bdsm刘玥| 一本色道久久久久久精品综合| 乱人伦中国视频| 久久精品久久久久久噜噜老黄| 久久精品久久久久久久性| 男女啪啪激烈高潮av片| 亚洲国产精品成人久久小说| 免费观看av网站的网址| 美国免费a级毛片| 岛国毛片在线播放| 多毛熟女@视频| av在线老鸭窝| 色婷婷av一区二区三区视频| 成人二区视频| 男女边摸边吃奶| 美女国产高潮福利片在线看| 热99国产精品久久久久久7| 欧美+日韩+精品| 男女高潮啪啪啪动态图| 男女无遮挡免费网站观看| 七月丁香在线播放| 亚洲欧美色中文字幕在线| 97在线视频观看| 国产成人一区二区在线| 大片免费播放器 马上看| 寂寞人妻少妇视频99o| 99热全是精品| 亚洲国产av新网站| 精品国产一区二区三区四区第35| 国产精品女同一区二区软件| 久久久久久久久久人人人人人人| 人妻少妇偷人精品九色| 美女主播在线视频| 国产成人精品一,二区| 一级毛片电影观看| 国产欧美亚洲国产| av不卡在线播放| 欧美日韩成人在线一区二区| 亚洲图色成人| 有码 亚洲区| 不卡视频在线观看欧美| 2021少妇久久久久久久久久久| 国产黄色免费在线视频| 免费黄网站久久成人精品| 欧美精品国产亚洲| 精品人妻熟女毛片av久久网站| 国语对白做爰xxxⅹ性视频网站| 日韩人妻精品一区2区三区| 欧美成人精品欧美一级黄| 成人国语在线视频| 免费在线观看完整版高清| 丝袜美足系列| 一级,二级,三级黄色视频| 最近的中文字幕免费完整| 免费在线观看黄色视频的| 国产免费又黄又爽又色| 精品少妇久久久久久888优播| 国产熟女欧美一区二区| 麻豆精品久久久久久蜜桃| 日韩制服骚丝袜av| 久久毛片免费看一区二区三区| 亚洲 欧美一区二区三区| 大陆偷拍与自拍| 曰老女人黄片| 免费在线观看黄色视频的| 18禁在线无遮挡免费观看视频| 久久99一区二区三区| 欧美3d第一页| 国产精品国产三级国产av玫瑰| 国产不卡av网站在线观看| 欧美日韩视频高清一区二区三区二| 免费看光身美女| 天美传媒精品一区二区| 亚洲中文av在线| 热re99久久国产66热| 亚洲成色77777| 一级毛片我不卡| 制服丝袜香蕉在线| 人妻少妇偷人精品九色| 视频在线观看一区二区三区| 国产精品一二三区在线看| 日本av免费视频播放| 国产精品蜜桃在线观看| 久久这里只有精品19| 99久久人妻综合| 国产精品国产三级国产av玫瑰| 亚洲三级黄色毛片| www.熟女人妻精品国产 | 我的女老师完整版在线观看| 丝袜喷水一区| 2018国产大陆天天弄谢| 少妇被粗大的猛进出69影院 | 国产黄色视频一区二区在线观看| 国产永久视频网站| 最近2019中文字幕mv第一页| 国产黄色免费在线视频| 黄网站色视频无遮挡免费观看| 亚洲精品,欧美精品| 亚洲精品中文字幕在线视频| 如日韩欧美国产精品一区二区三区| 另类精品久久| 最黄视频免费看| 18禁观看日本| 一区二区av电影网| 久久久国产欧美日韩av| 大码成人一级视频| 天天影视国产精品| 免费久久久久久久精品成人欧美视频 | 亚洲国产欧美日韩在线播放| 人人妻人人澡人人看| 在线观看人妻少妇| 免费久久久久久久精品成人欧美视频 | 精品酒店卫生间| 国产 精品1| 国产一区二区在线观看av| 国产不卡av网站在线观看| 亚洲综合精品二区| 亚洲天堂av无毛| 精品一品国产午夜福利视频| 毛片一级片免费看久久久久| 18在线观看网站| 精品亚洲成国产av| 久久综合国产亚洲精品| 老司机影院毛片| a级毛片黄视频| 最新的欧美精品一区二区| 黄网站色视频无遮挡免费观看| 免费观看a级毛片全部| 亚洲国产成人一精品久久久| 久久精品国产自在天天线| 高清毛片免费看| 日韩大片免费观看网站| 久久精品熟女亚洲av麻豆精品| 国产高清国产精品国产三级| 捣出白浆h1v1| 精品少妇内射三级| 亚洲一码二码三码区别大吗| 国产69精品久久久久777片| 午夜av观看不卡| 黑人巨大精品欧美一区二区蜜桃 | 精品亚洲成a人片在线观看| 亚洲av福利一区| 蜜桃在线观看..| 亚洲成人手机| 精品人妻偷拍中文字幕| 欧美成人精品欧美一级黄| av免费在线看不卡| 午夜免费男女啪啪视频观看| 久久久久久久精品精品| 黑丝袜美女国产一区| 亚洲综合精品二区| 成人毛片60女人毛片免费| 建设人人有责人人尽责人人享有的| 亚洲美女黄色视频免费看| 成人二区视频| 日本色播在线视频| 97在线人人人人妻| 亚洲内射少妇av| 免费看不卡的av| 最近中文字幕高清免费大全6| 熟女电影av网| 99热6这里只有精品| 视频区图区小说| 成年女人在线观看亚洲视频| 国产成人av激情在线播放| 精品国产一区二区三区久久久樱花| a 毛片基地| 哪个播放器可以免费观看大片| av黄色大香蕉|