• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Establishment and Application of a Multiplex PCR System for the Detection of Blast Resistance Genes Pi-ta and Pi-b in Rice

    2015-12-14 08:32:18ShuYAOYanqingLIUYadongZHANGZhenZHUTaoCHENQingyongZHAOLihuiZHOUChunfangZHAOXinYUCailinWANG
    Agricultural Science & Technology 2015年10期
    關(guān)鍵詞:植物保護(hù)稻瘟病抗性

    Shu YAO, Yanqing LIU, Yadong ZHANG, Zhen ZHU, Tao CHEN, Qingyong ZHAO, Lihui ZHOU,Chunfang ZHAO, Xin YU, Cailin WANG

    Institute of Food Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu High Quality Rice R&D Center/Nanjing Branch of China National Center for Rice Improvement, Nanjing 210014, China

    Rice blast is one of the most serious diseases of rice that is caused by Magnaporthe grisea, which has become a serious impediment to high and stable yields of rice due to large hazard area and great damage. According to statistics,annual global rice yield loss caused by rice blast accounts for approxi mately 10%-15% of the total yield,resulting in billions of dollars of economic losses[1]. Practice has proved that breeding blast resistant varieties is the most economical and effective method for prevention and control of rice blast. However, due to strong variability of Magnaporthe grisea, resistant varieties may lose resistance after years of cultivation[2]. Therefore,transferring multiple blast resistance genes with different resistance spectra into the same variety by using molecular marker-assisted selection (MAS)technique has become one of the effective measures to breed rice varieties with durable blast resistance[3].

    With the rapid development of molecular biology techniques, so far,more than 50 major blast resistance genes have been fine mapped,among which 24 genes are cloned[4-8]. Pi-ta and Pi-b are two earliest cloned major blast resistance genes[9-10]. In recent years, functional markers of these two resistance genes and their allelic susceptibility loci have been developed,which can rapidly and accurately identify blast resistance genes Pi-ta and Pi-b from rice germplasms[11-12]. Li et al.[13]analyzed the distribution of blast resistance genes Pi-ta and Pi-b in rice germplasms from Yunnan Province using specific molecular markers of these two genes.Liu et al.[14]and Shi et al.[15]identified and analyzed blast resistance genes Pi-ta and Pi-b in main popularized rice varieties in Heilongjiang Province and major cultivars in China using these two specific molecular markers. Previous studies are mostly focused on the distribution of blast resistance genes Pi-ta and Pi-b in different rice varieties by molecular biology techniques, but little information is available on the optimization of mark detection methods.Especially, no studies have been reported on multiplex PCR systems for simultaneous detection of blast resistance genes Pi-ta and Pi-b.Compared with conventional single mark detection, multiplex PCR can detect two or more target genes in one PCR reaction with significantly improved efficiency and remarkably reduced costs[16-17]. Therefore, developing simple,rapid and efficient multiplex PCR systems for specific targets has a great significance for promoting the development of molecular breeding of disease-resistant rice.

    In this study, by investigating the effects of PCR reaction components and cycle parameters on multiplex PCR results, two multiple PCR systems for blast resistance and susceptibility genes were established. There was no mutual inhibition or mismatch between the primers in each system.Rice varieties with known genotypes were detected repeatedly to verify the accuracy and stability of the established multiplex PCR systems.The results showed that these two multiplex PCR systems could be used to simultaneously screen and identify two rice blast resistance (susceptibility)genes in the same PCR reaction. In addition,blast resistance genes (Pi-ta and Pi-b)and blast susceptibility genes (pi-ta and pi-b) in 336 high generation japonica varieties (lines) were detected with these two multiple PCR systems, aiming at providing rapid and efficient marker-assisted selection methods for screening Pi-ta and Pi-b genes,thereby improving the breeding efficiency of blast resistant rice.

    Materials and Methods

    Materials

    Nanjing 44, Nanjing 45, Wuyunjing 7, Wuyunjing 8, Wuyunjing 21,Wujing 15, Wuxiangjing 14, Changnongjing 5, Yandao 9 and Yangjing 805 were used to establish the multiplex PCR system for the detection of blast resistance genes Pi-ta and Pi-b(referred to as system I).Xudao 3,Xudao 4,Xudao 6, Zhendao 88, Huaidao 5, Huaidao 9, Lianjing 4, Lianjing 5,Lianjing 6 and Lianjing 7 were used to establish the multiplex PCR system for the detection of blast susceptibility genes pi-ta and pi-b (referred to as system II). Jia 33 was used as the resistant control,which has been recognized as a blast resistant variety; Lijiangxintuanheigu was used as the susceptible control[13,18]. By using the developed multiplex PCR systems,blast resistance genes Pi-ta and Pi-b in 336 high generation japonica lines were detected and compared with conventional single mark detection to verify the reliability of the multiplex PCR systems. The above materials were planted in the experimental field of Institute of Food Crops, Jiangsu Academy of Agricultural Sciences,which were sown on May 10 and transplanted on June 10. Each material was planted in eight rows, 40 seedlings per row. The spacing in the rows and spacing between rows were 13.2 cm × 26.4 cm. All the seedlings were plants under conventional field management.

    DNA extraction

    Fresh tender leaves were collected from rice seedlings at maximum tillering stage.Genomic DNA of control and experimental varieties was extracted by CTAB method[19]with slight modifications[19].

    Primer synthesis

    Based on the principle of allelespecific PCR, Wang et al.[20]designed specific primers YL155/YL87 and YL183/YL87 according to the sequences of blast resistance and susceptibility genes. The former primers could specifically amplify DNA fragment of blast resistance gene Pi-ta,which was about 1 042 bp; the latter primers could specifically amplify DNA fragment of blast susceptibility gene pi-ta, which was about 1 042 bp.Primers Pi-bdomF/Pi-bdomR were designed according to Fjellstrom et al.[21]to specifically amplify DNA fragment of blast resistance gene Pi-b,which was about 365 bp; primers Lys145F/Lys145R were designed according to Liu et al.[12]to specifically amplify DNA fragment of blast susceptibility gene pi-b, which was about 803 bp. All the primers were synthesized by Shanghai Invitrogen Biotechnology Co., Ltd. The names, sequences and expected amplified fragment sizes of these primers were shown in Table 1.

    Table 1 Names,sequences and expected amplified fragment sizes of primers used for multiplex PCR

    Multiplex PCR and electrophoresis

    The total multiplex PCR reaction volume was 20 μl, containing l × PCR buffer (1.5 mmol/L MgCl2), 200 μmol/L dNTPs, 1.25 U of Taq DNA polymerase [GenScript (Nanjing) Co.,Ltd.], 100-150 ng of template DNA and proper amounts of primers.Multiplex PCR was performed using Tprofessional thermal cycler. The PCR amplification was started with initial denaturation at 95 ℃for 3 min, followed by 6 cycles of denaturation at 94 ℃for 1 min, annealing at 55 ℃for 1 min and extension at 72 ℃for 1 min,and 32 cycles of denaturation at 94 ℃for 1 min, annealing at 55 ℃for 50 s and extension at 72 ℃for 30 s; the amplification was completed by holding the reaction mixture at 72 ℃for 6 min to allow complete extension of PCR products. PCR products were added with 2 μl of loading buffer; 10 μl of the mixture was separated by electrophoresis on 1.5% agarose gel containing ethidium bromide in 1× TAE buffer under 120 V for 45 min. The electrophoresis results were observed and photographed under an ultraviolet light. In order to ensure the stability and reliability of the results, each material was amplified for more than three times.

    Results and Analysis

    Establishment of multiplex PCR systems

    Genomic DNA of 22 rice varieties harboring known blast resistance and susceptibility genes was extracted as the template for gradient PCR using specific primers of four genes, to identify the appropriate annealing temperature range of each pair of primers.Primers with the same annealing temperature and great differences in amplified fragments were selected for multiplex PCR to further detect experimental materials harboring known genes. After identifying the consistent annealing temperature of four primers for system establishment, the original primers, dNTPs and DNA polymerase were prepared into multiplex PCR systems for PCR amplification and electrophoresis assay. Subsequently,combined with the amplification results of control materials, the amount of primers,extension time and number of cycles were optimized. Equal concentration of primers was added into the system firstly, and the amount was adjusted according to the amplification results: the amount of primers with weak amplification was increased,while that with strong amplification was reduced. The extension time of weak amplification was extended appropriately. Finally, in two multiplex PCR systems, each primer could amplify clear specific fragments from control materials harboring target genes(loci),but no specific bands were amplified from control materials harboring no target genes (loci). The established multiplex PCR systems were described as below.

    Multiplex PCR system for the detection of blast resistance genes Pi-ta and Pi-b The multiplex PCR system for detection of blast resistance genes Pi-ta and Pi-b involves primers YL155/YL87 and Pi-bdomF/Pi-bdomR. Using genomic DNA of 12 rice varieties (lines) harboring known genes as the template, PCR amplification and electrophoresis of corresponding loci were performed. The concentration ratio of primers, extension time and number of cycles in multiplex PCR system I were adjusted repeatedly to constantly optimize the system. Ultimately, the total multiplex PCR reaction volume was 20 μl, containing 2.0 μl of DNA template (approximately 20 ng/μl), 2.0 μl of 10 ×PCR buffer (25 mmol/L), 2.0 μl of dNTPs(2.5 mmol/L),and 0.8-1.2 μl of each of primers (10 μmol/L); ddH2O was added to a final volume of 20 μl.

    As shown in Fig.1, among 12 rice varieties detected with multiplex PCR system I, the same fragments were amplified from ten materials such as Nanjing 44 and Nanjing 45 as blast resistant control Jia 33,which were 1042 bp and 365 bp, respectively; however,no target bands were amplified from blast susceptible control Lijiangxintuanheigu, which was exactly the same as the results of conventional single mark detection by Shi et al.[15]and Yang et al.[22], indicating that these materials all harbor blast resistance genes Pi-ta and Pi-b.

    Multiplex PCR system for the detection of blast susceptibility genes pi-ta and pi-b Similarly, the multiplex PCR system for detection of blast susceptibility genes pi-ta and pi-b involves primers YL183/YL87 and Lys145F/Lys145R.Based on repeated system optimization, multiplex PCR system II was established. The total multiplex PCR reaction volume was 20 μl, containing 2.0 μl of DNA template(approximately 20 ng/μl),2.0 μl of 10×PCR buffer (25 mmol/L), 2.0 μl of dNTPs(2.5 mmol/L),and 0.8-1.2 μl of each of primers (10 μmol/L); ddH2O was added to a final volume of 20 μl.

    As shown in Fig.2, among 12 rice varieties detected with multiplex PCR system II, the same fragments were amplified from ten materials such as Xudao 3 and Xudao 4 as blast susceptible control Lijiangxintuanheigu,which were 1042 bp and 803 bp, respectively; however, no target bands were amplified from blast resistant control Jia 33, which was exactly thesame as the results of conventional single mark detection by Yang et al.[22]and He et al.(to be published),indicating that these materials all harbor blast susceptibility genes pi-ta and pi-b.

    Table 2 Distribution of blast resistance genes(Pi-ta and Pi-b)and susceptibility genes(pi-ta and pi-b)in 336 japonica rice lines

    Detection of blast resistance genes in high generation rice lines using multiplex PCR systems

    By using two established multiplex PCR systems, blast resistance genes (Pi-ta and Pi-b)and blast susceptibility genes (pi-ta and pi-b) were detected in 336 high generation breeding materials bred independently by Jiangsu Academy of Agricultural Sciences. According to the results,among 336 experimental materials,119 rice varieties harbor only blast resistance gene Pi-ta, accounting for 35.42%of the total number of experimental materials; 319 rice varieties harbor only blast resistance gene Pi-b, accounting for 94.94% of the total number of experimental materials; 1 042 bp and 365 bp specific fragments of blast resistance genes were amplified from 112 rice varieties(33.33%), which were consistent with that amplified from blast resistant control Jia 33, indicating that these varieties all harbor blast resistance genes Pi-ta and Pi-b; 1 042 bp and 803 bp specific fragments of blast susceptibility genes were amplified from 10 materials (3.0%), which were consistent with that amplified from blast susceptible control Lijiangxintuanheigu, indicating that these varieties all harbor blast susceptibility genes pi-ta and pi-b; 1 042 bp specific fragment of blast resistance gene and 803 bp specific fragment of blast susceptibility gene were amplified from seven materials (2.1%),indicating that these varieties harbor blast resistance gene Pi-ta and blast susceptibility gene pi-b;1 042 bp specific fragment of blast susceptibility gene and 365 bp specific fragment of blast resistance gene were amplified from 207 materials(61.61%),indicating that these varieties harbor blast susceptibility gene pi-ta and blast resistance gene Pi-b (Table 2). The above detection results were exactly the same as that of conventional single mark detection by He et al.(to be published). The detection results of blast resistance and susceptibility genes in different rice varieties were shown in Fig.3 and Fig.4.

    According to the above analysis,rice varieties harboring two blast resistance genes account for a small proportion of high generation breeding materials; the distribution frequency of blast resistance gene Pi-b is significantly higher than that of blast resistance gene Pi-ta.

    Discussion

    Advantages of multiplex PCR systems in detection of blast resistance genes Pi-ta and Pi-b

    The development of molecular biology greatly promotes the process of genetic research of blast resistance. A large number of mapped rice blast resistance genes lay a solid foundation for breeding blast resistant rice with MAS technologies.Developing an efficient method that is not subject to restrictions of seasons or sample types to detect resistance genes in rice at early growth stage is conducive to accelerating the progress of genetic improvement of blast resistant rice.Conventional blast resistance genotyping depends on disease resistance identification and phenotypic selection, with long breeding cycle,low selection efficiency, heavy workload, complicated operation and other shortcomings.Molecular marker techniques can detect any tissues of plants,and the sampling is not subject to restrictions of growing seasons or sample types,with relatively simple operation. Compared with single mark detection method,multiplex PCR can detect several target genes simultaneously with low cost, simple operation, high efficiency and other advantages, which is suitable for molecular-assisted selection and breeding. Compared with single PCR detection systems established previously,the multiplex PCR systems established in the present study involve more sites with better specificity and sensitivity, higher detection efficiency, which is more suitable for screening and molecular breeding of rice resources harboring blast resistance genes Pi-ta and Pi-b.

    Distribution of blast resistance genes Pi-ta and Pi-b in high generation rice varieties (lines) and suggestions for breeding blast resistant rice

    Previous studies have shown that Pi-ta and Pi-b genes exhibited high resistance to Magnaporthe grisea strains in Jiangsu, Yunnan, Jilin and other regions[23-26]. In this study, molecular detection results show that the distribution frequency of Pi-ta and Pi-b genes in different rice varieties varies significantly; the distribution frequency of Pi-b is remarkably higher than that of Pi-ta. Analysis results of the blast resistance of rice varieties harboring only Pi-ta or Pi-b indicate that the incidence of rice varieties harboring only Pi-b is significantly higher than that of rice varieties harboring only Pi-ta;Magnaporthe grisea strains demonstrate high race specificity. In subsequent breeding of blast resistant rice,the constitution of resistance genes in existing rice varieties should be improved to polymerize blast resistance genes at various loci into the same variety, thereby breeding new varieties with excellent blast resistance.

    Suggestions for establishment of multiplex PCR systems

    The experimental design for multiple PCR is more complex than single PCR with great technical difficulties.Therefore, in the establishment of multiplex PCR systems, the main components and reaction conditions should be optimized repeatedly[27]. According to practical experience,the efficiency of multiplex PCR systems may be improved with the following approaches. Firstly, multiplex PCR systems can be combined using genetic markers with large differences in the amplified products,thus ensuring easy and accurate distinguishing of the results by agarose gel electrophoresis.Secondly, in multiplex PCR, annealing temperature is one of the most important factors to be adjusted.Commonly,the annealing temperature is selected based on the melting temperature of the primers, but the results are not necessarily consistent with the expectations. The simplest way is to amplify single gene by gradient PCR with each primer, thereby identifying the optimal annealing temperature that is appropriate for multiple PCR amplification of each target gene. In multiplex PCR systems with no consistent annealing temperature, touch-down PCR can be employed. Thirdly, in the establishment of multiple PCR systems, the amount of primers with weak amplification should be increased, while that with strong amplification should be reduced. By continuously adjusting the relative amounts of primers, sufficient PCR products can be amplified with each primer ultimately. Although primer selection is the most critical factor determining the success of multiplex PCR, DNA template, chemical reagents (PCR buffer, Mg2+, Taq DNA polymerase and dNTPs) and instruments (PCR amplifier and electrophoresis apparatus) can also affect the results of multiple PCR.Therefore,in the initial period, reagents produced by different companies and PCR amplifiers with different types can be used to determine the optimal multiplex PCR system and procedures; after that, consistent instruments and reagents should be used in subsequent research. Moreover, each primer should be diluted and preserved in aliquots without mixing. Other reagents such as dNTPs should be preserved at 4 ℃ without repeated freezing and thawing. Compared with conventional single mark detection,multiplex PCR exhibits significantly reduced reagent costs and remarkably shortened detection time. The multiplex PCR systems for detection of blast resistance genes can be combined with field resistance identification for breeding blast resistant rice,thus effectively enhancing the efficiency of blast resistance improvement of rice.

    Conclusion

    In this study, two multiplex PCR systems were established for detection of blast resistance genes (Pi-ta and Pi-b) and blast susceptibility genes (pi-ta and pi-b), which led to stable and reliable identification results with low costs and could be applied in rice parent evaluation and marker-assisted selection to polymerize multiple genes for blast resistance in hybrid breeding. Among 336 high generation breeding materials detected with these two multiplex PCR systems, 112 rice varieties harbor blast resistance genes Pi-ta and Pi-b; seven rice varieties harbor only blast resistance gene Pi-ta; 207 varieties harbor only blast resistance gene Pi-b; 10 varieties harbor blast susceptibility genes pi-ta and pi-b.

    [1]ZHENG Z (鄭釗),CHEN YQ (陳由強(qiáng)),ZHANG JF (張建福), et al. Mapping cloning of rice blast resistance genes and their application(水稻稻瘟病抗性基因的定位、 克隆及應(yīng)用)[J]. Mol Plant Breed (分子植物育種), 2009, 7: 385-392.

    [2]SHEN Y(沈瑛),ZHU PL(朱培良),YUAN XP (袁筱萍), et al. Genetic diversity of Magnaporthe grisea in China(中國(guó)稻瘟病菌的遺傳多樣性)[J].Acta Phytopathol Sin(植物病理學(xué)報(bào)),1993,23:309-313.

    [3]HITTALMANI S, PARCO A, MEW TV,et al. Fine mapping and DNA markerassisted pyramiding of the three major genes for blast resistance in rice [J].Theor Appl Genet, 2000, 100: 1121-1128.

    [4]ZHAI C, LIN F, DONG ZQ, et al. The isolation and characterization of Pik, a rice blast resistance gene which emerged after rice domestication[J]. New Phytologist,2011,189:321-334.

    [5]HAYASHI N, INOUE H, KATO T, et al.Durable panicle blast resistance gene Pb1 encodes an atypical CC-NBS-LRR protein and was generated by acquiring a promoter through local genome duplication[J].Plant J,2010,64:498-510.

    [6]OKUYAMA Y, KANZAKI H, ABE A, et al. A multifaceted genomics approach allows the isolation of the rice Pia-blast resistance gene consisting of two adjacent NBS-LRR protein genes [J]. Plant J,2011,66:467-479.

    [7]YUAN B,ZHAI C,WANG WJ,et al.The Pik-p resistance to Magnaporthe oryzae in rice is mediated by a pair of closely linked CC-NBS-LRR genes [J]. Theor Appl Genet,2011,122:1017-1028.

    [8]TAKAHASHI A,HAYASHI N,MIYAO A,et al. Unique features of the rice blast resistance Pish locus revealed by large scale ret retrotransposon-tagging [J].BMC Plant Biol,2010,10:175.

    [9]WANG ZX, YANO M, YAMANOUCHI U,et al.The Pi-b gene for rice blast resistance belongs to the nucleotide binding and leucine rich repeat class of plant resistance genes [J].Plant J, 1999, 19:55-64.

    [10]BRYAN GT, WU KS, FARRALL L, et al. A single amino acid difference distinguishes resistant and susceptible alleles of the rice blast resistance gene Pi-ta [J]. Plant Cell, 2000, 12: 2033-2045.

    [11]WANG Z, JIA Y, RUTGER JN, et al.Rapid survey for presence of a blast resistance gene Pi-ta in rice cultivars using the dominant DNA markers derived from portions of the Pi-ta gene[J].Plant Breed,2007,126:36-42.

    [12]LIU Y(劉洋), XU PZ(徐培洲), ZHANG HY(張紅宇),et al.Marker-assisted selection and application of blast resistant gene Pi-b in rice(水稻抗稻瘟病Pi-b基因的分子標(biāo)記輔助選擇與應(yīng)用) [J].Sci Agric Sin(中國(guó)農(nóng)業(yè)科學(xué)),2008,41:9-14.

    [13]LI JB(李進(jìn)斌),WANG T(王甜),XU MH(許明輝).Identification of Pi-ta and Pib genes for rice blast resistance of rice landraces from Yunnan Province(云南地方稻種抗稻瘟病基因Pi-ta 和Pi-b 的鑒定)[J].Chin J Rice Sci(中國(guó)水稻科學(xué)),2012,26:593-599.

    [14]LIU HZ(劉華招), LIU Y(劉延), LIU HL(劉化龍),et al.Distribution of two blast resistance genes Pi-b and Pi-ta in major rice cultivars in Heilongjiang Province in China (黑龍江省種植品種中稻瘟病抗性基因Pi-b 和Pi-ta 的分布)[J].J.Northeast Agric Univ (東北農(nóng)業(yè)大學(xué)學(xué)報(bào)),2011,42(1):27-31.

    [15]SHI K(時(shí)克),LEI CL(雷財(cái)林),CHENG ZJ (程治軍), et al. Distribution of two blast resistance genes Pi-ta and Pi-b in major rice cultivars in China (稻瘟病抗性基因Pi-ta 和Pi-b 在我國(guó)水稻主栽品種中的分布)[J]. J Plant Genet Resour (植物遺傳資源學(xué)報(bào)), 2009, 10:21-26.

    [16]MA W, ZHANG W, GALE KR. Multiplex-PCR typing of high molecular weight glutenin alleles in wheat [J]. Euphytica,2003,134:51-60.

    [17]NAKAMURA T, VRINTEN P, SAITO M, et al. Rapid classification of partial waxy wheat using PCR-based markers[J].Genome,2002,45:1150-1156.

    [18]DAI XJ (戴小軍),YANG YZ (楊遠(yuǎn)柱),ZHOU L (周亮), et al. Distribution research of blast resistance genes Pi-ta,Pi-b, Pi-9 and Pikm in blast-resistant rice resources(抗稻瘟病水稻資源抗性基因Pi-ta、Pi-b、Pi-9 以及Pikm 的分布研究)[J].Life Sci Res(生命科學(xué)研究),2012,16:340-344.

    [19]LI W,LEI CL,CHENG ZJ,et al.Identification of SSR markers for a broadspectrum blast resistance gene Pi20(t)for marker-assisted breeding [J]. Mol Breed,2008,22:141-149.

    [20]WANG ZH (王忠華),JIA YL (賈育林),WU DX ( 吳殿星), et al, Molecular marker-assisted selection of the rice blast resistance gene Pi-ta (水稻抗稻瘟病基因Pi-ta 的分子標(biāo)記輔助選擇)[J]. Acta Agron Sin (作物學(xué)報(bào)), 2004,30:1259-1265.

    [21]FJELLSTROM R, CONAWAY-BORMANS CA, MCCLUNG AM, et al. Development of DNA markers suitable for marker assisted selection of three Pi genes conferring resistance to multiple Pyricularia grlsea pathotypes [J]. Crop Sci,2004,44:1790-1798.

    [22]YANG J (楊杰), YANG JH (楊金歡),WANG J (王軍), et al. Distribution of two blast resistant genes Pi-ta and Pib in landrace rice in China(稻瘟病抗病基因Pi-ta 和Pi-b 在中國(guó)水稻地方品種中的分布)[J].Acta Agric Boreali-Sin(華北農(nóng)學(xué)報(bào)),2011,26(3):1-6.

    [23]LI JB(李進(jìn)斌),LI CY(李成云),CHEN Y(陳艷), et al. Utilization value of twenty-two blast resistance genes in Yunnan(二十二個(gè)抗稻瘟病基因在云南的利用價(jià)值評(píng)價(jià)) [J].Acta Phytophy Sin(植物保護(hù)學(xué)報(bào)),2005,6:113-119.

    [24]WANG GZ(王國(guó)珍), RU QH(茹慶華),GAO LY (高立原), et al. Studies on genes for resistance blast fungus in Ningxia region(日本水稻抗瘟基因?qū)幭牡疚敛【目剐匝芯?[J].Acta Agric Bori-Occide Sin(西北農(nóng)業(yè)學(xué)報(bào)),1997,6(3):1-4.

    [25]LU F(陸凡),CHEN ZY(陳志誼),LIU YF(劉永鋒), et al. Analysis of population virulences of Magnaporthe grisea in Jiangsu Province (江蘇省稻瘟病菌毒性的群體結(jié)構(gòu)分析)[J].Acta Phytophy Sin (植物保護(hù)學(xué)報(bào)), 2002, 29: 289-294.

    [26]REN JP (任金平),GUO XL (郭曉莉),ZHENG M (鄭民), et al. Studies on pathogenic spectrum of rice varieties with Magnaporth grisea in Jilin Province (吉林省稻瘟病菌對(duì)水稻品種的致病譜研究) [J]. J Jilin Agric Sci(吉林農(nóng)業(yè)科學(xué)),2006,31(6):35-37.

    [27]LIU ZB, GAO QR, WANG RX, et al.Application of multiplex PCR to studies on plant biology [J]. Mol Plant Breed,2005,3:261-268.

    猜你喜歡
    植物保護(hù)稻瘟病抗性
    植物保護(hù):不珍稀才了不起
    基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候選基因
    一個(gè)控制超強(qiáng)電離輻射抗性開(kāi)關(guān)基因的研究進(jìn)展
    植物保護(hù)中含噠嗪結(jié)構(gòu)化合物的應(yīng)用
    海南大學(xué)植物保護(hù)學(xué)院
    甲基對(duì)硫磷抗性菌的篩選及特性研究
    不同藥劑防治苗稻瘟病、葉稻瘟病效果試驗(yàn)研究
    甜玉米常見(jiàn)病害的抗性鑒定及防治
    生物綠肥在稻瘟病防治中的應(yīng)用與示范
    用于黃瓜白粉病抗性鑒定的InDel標(biāo)記
    免费在线观看亚洲国产| 欧美日本中文国产一区发布| 99国产极品粉嫩在线观看| 久久国产精品影院| 女同久久另类99精品国产91| 亚洲国产欧美日韩在线播放| 日本免费一区二区三区高清不卡 | 亚洲av电影在线进入| 久久久久久国产a免费观看| 欧美日韩中文字幕国产精品一区二区三区 | 夜夜看夜夜爽夜夜摸| 亚洲国产欧美日韩在线播放| 欧美日本亚洲视频在线播放| 精品一品国产午夜福利视频| 一个人观看的视频www高清免费观看 | 中文字幕精品免费在线观看视频| 村上凉子中文字幕在线| 国产一区二区三区在线臀色熟女| e午夜精品久久久久久久| 99国产精品99久久久久| 日韩精品青青久久久久久| 亚洲精品美女久久久久99蜜臀| 视频在线观看一区二区三区| 在线播放国产精品三级| 久久香蕉精品热| 欧美黑人精品巨大| 中国美女看黄片| 国产精品久久电影中文字幕| 亚洲国产精品合色在线| 亚洲国产精品sss在线观看| 淫秽高清视频在线观看| bbb黄色大片| 国产精品久久电影中文字幕| 亚洲熟女毛片儿| 久久精品国产亚洲av香蕉五月| av视频在线观看入口| 最新在线观看一区二区三区| 天天一区二区日本电影三级 | 亚洲欧洲精品一区二区精品久久久| 757午夜福利合集在线观看| 欧美日本亚洲视频在线播放| 亚洲av熟女| 老司机午夜福利在线观看视频| 黑人操中国人逼视频| 亚洲成人久久性| 美女高潮喷水抽搐中文字幕| 精品欧美国产一区二区三| 精品第一国产精品| 老汉色∧v一级毛片| 日本 av在线| 久久精品国产亚洲av高清一级| 操美女的视频在线观看| 国产精品亚洲美女久久久| 久久欧美精品欧美久久欧美| 午夜福利免费观看在线| 亚洲第一欧美日韩一区二区三区| 精品福利观看| 亚洲精品久久成人aⅴ小说| 国产成人精品久久二区二区91| www国产在线视频色| 国产免费男女视频| 最好的美女福利视频网| 狠狠狠狠99中文字幕| 精品午夜福利视频在线观看一区| 曰老女人黄片| 亚洲男人天堂网一区| 国产亚洲av嫩草精品影院| 最近最新中文字幕大全电影3 | 黑人巨大精品欧美一区二区蜜桃| 亚洲欧美一区二区三区黑人| 午夜成年电影在线免费观看| 国产午夜福利久久久久久| 岛国视频午夜一区免费看| 两性夫妻黄色片| 91老司机精品| www.自偷自拍.com| 日本精品一区二区三区蜜桃| 久久中文看片网| 精品午夜福利视频在线观看一区| av超薄肉色丝袜交足视频| 日韩av在线大香蕉| 丝袜人妻中文字幕| 可以在线观看的亚洲视频| 国产精品野战在线观看| 最好的美女福利视频网| av超薄肉色丝袜交足视频| 伦理电影免费视频| 日韩免费av在线播放| 美女高潮到喷水免费观看| bbb黄色大片| 91在线观看av| 久久婷婷人人爽人人干人人爱 | 一边摸一边抽搐一进一出视频| 中文字幕人成人乱码亚洲影| 黄片大片在线免费观看| 男男h啪啪无遮挡| 日韩欧美国产一区二区入口| 人成视频在线观看免费观看| 欧美国产日韩亚洲一区| 悠悠久久av| 国产三级黄色录像| 午夜福利成人在线免费观看| 身体一侧抽搐| 亚洲九九香蕉| 精品久久蜜臀av无| 黑人巨大精品欧美一区二区mp4| 精品乱码久久久久久99久播| 久久久精品国产亚洲av高清涩受| 国产免费男女视频| 午夜福利,免费看| 麻豆国产av国片精品| 91精品国产国语对白视频| 波多野结衣高清无吗| 国产精品av久久久久免费| 中文字幕色久视频| 亚洲五月色婷婷综合| 亚洲第一青青草原| tocl精华| 亚洲av片天天在线观看| 两个人免费观看高清视频| 91国产中文字幕| 欧美最黄视频在线播放免费| 国产一区在线观看成人免费| 欧美成狂野欧美在线观看| 可以在线观看毛片的网站| av中文乱码字幕在线| 18禁美女被吸乳视频| 国产激情久久老熟女| 精品少妇一区二区三区视频日本电影| 亚洲av日韩精品久久久久久密| 操美女的视频在线观看| 在线观看免费视频日本深夜| 久久久精品欧美日韩精品| 可以免费在线观看a视频的电影网站| 国语自产精品视频在线第100页| 黄片小视频在线播放| 69精品国产乱码久久久| 在线十欧美十亚洲十日本专区| 亚洲视频免费观看视频| 一区在线观看完整版| 亚洲国产欧美网| 日韩 欧美 亚洲 中文字幕| 一边摸一边抽搐一进一小说| 99久久99久久久精品蜜桃| 国产xxxxx性猛交| 午夜福利在线观看吧| 黄色a级毛片大全视频| 男人舔女人的私密视频| 啪啪无遮挡十八禁网站| 看黄色毛片网站| 亚洲国产毛片av蜜桃av| 两性夫妻黄色片| 国产成人精品久久二区二区免费| 在线观看一区二区三区| 国产国语露脸激情在线看| 天天一区二区日本电影三级 | 99久久99久久久精品蜜桃| 精品国产一区二区三区四区第35| 国产欧美日韩综合在线一区二区| 在线观看66精品国产| 亚洲熟妇熟女久久| 亚洲avbb在线观看| 亚洲 国产 在线| 男女之事视频高清在线观看| 午夜免费鲁丝| 中文字幕人成人乱码亚洲影| 女警被强在线播放| 一边摸一边做爽爽视频免费| 久久久久久免费高清国产稀缺| 欧美日本中文国产一区发布| 校园春色视频在线观看| 乱人伦中国视频| 99国产精品一区二区蜜桃av| 精品卡一卡二卡四卡免费| 99re在线观看精品视频| 操出白浆在线播放| 在线观看免费视频日本深夜| 精品免费久久久久久久清纯| 丁香六月欧美| 国产免费av片在线观看野外av| 亚洲一码二码三码区别大吗| 国产成人一区二区三区免费视频网站| 欧美最黄视频在线播放免费| 变态另类成人亚洲欧美熟女 | 极品教师在线免费播放| 欧美乱妇无乱码| 国产人伦9x9x在线观看| 在线观看免费视频日本深夜| 露出奶头的视频| 日本三级黄在线观看| 亚洲国产欧美日韩在线播放| 亚洲av第一区精品v没综合| 国产在线精品亚洲第一网站| av天堂在线播放| 日本 欧美在线| 日日夜夜操网爽| 久久国产精品男人的天堂亚洲| 国产精华一区二区三区| 女性被躁到高潮视频| 深夜精品福利| 精品日产1卡2卡| 亚洲国产欧美日韩在线播放| 18美女黄网站色大片免费观看| 成人精品一区二区免费| 精品乱码久久久久久99久播| 国产精品亚洲av一区麻豆| 精品国产亚洲在线| 久久中文字幕一级| 脱女人内裤的视频| 亚洲激情在线av| 精品无人区乱码1区二区| 一级a爱视频在线免费观看| 久久香蕉国产精品| 正在播放国产对白刺激| 色在线成人网| 欧美日韩福利视频一区二区| 老熟妇乱子伦视频在线观看| 91av网站免费观看| 亚洲精品av麻豆狂野| 亚洲精品久久成人aⅴ小说| 女警被强在线播放| 国产99白浆流出| а√天堂www在线а√下载| 日韩大尺度精品在线看网址 | 亚洲欧美日韩高清在线视频| 亚洲精品久久成人aⅴ小说| 国产国语露脸激情在线看| 久久国产精品影院| 国产成人精品无人区| 久久青草综合色| 一级a爱片免费观看的视频| 波多野结衣一区麻豆| 老司机深夜福利视频在线观看| 国产成年人精品一区二区| 91麻豆av在线| 乱人伦中国视频| 嫁个100分男人电影在线观看| 一本综合久久免费| 90打野战视频偷拍视频| 国内精品久久久久精免费| 国产精品一区二区免费欧美| 国产真人三级小视频在线观看| tocl精华| 日韩中文字幕欧美一区二区| 久久久久久久精品吃奶| 又黄又粗又硬又大视频| 琪琪午夜伦伦电影理论片6080| www.精华液| 韩国精品一区二区三区| 中文字幕人妻熟女乱码| 欧美日韩黄片免| 99国产精品一区二区蜜桃av| 搞女人的毛片| 国产av精品麻豆| 50天的宝宝边吃奶边哭怎么回事| 亚洲精品久久成人aⅴ小说| 性少妇av在线| 国产高清视频在线播放一区| 男人的好看免费观看在线视频 | 久久国产亚洲av麻豆专区| 国产高清激情床上av| av片东京热男人的天堂| 此物有八面人人有两片| 99在线视频只有这里精品首页| 国产精品一区二区精品视频观看| 黄色视频,在线免费观看| 国内精品久久久久精免费| 亚洲精品久久成人aⅴ小说| 日本撒尿小便嘘嘘汇集6| 日韩中文字幕欧美一区二区| 午夜福利在线观看吧| 无限看片的www在线观看| 国产精品九九99| 久久午夜综合久久蜜桃| 在线观看免费视频网站a站| 两人在一起打扑克的视频| 亚洲一区二区三区色噜噜| 久久亚洲真实| 欧美国产精品va在线观看不卡| 亚洲精品国产精品久久久不卡| 日本三级黄在线观看| 久久国产乱子伦精品免费另类| av福利片在线| 12—13女人毛片做爰片一| 在线观看午夜福利视频| 免费在线观看黄色视频的| 久久精品亚洲熟妇少妇任你| 久久久精品欧美日韩精品| 级片在线观看| 久久精品aⅴ一区二区三区四区| 欧美色欧美亚洲另类二区 | 夜夜夜夜夜久久久久| 国产一区二区三区视频了| 老鸭窝网址在线观看| 国产免费男女视频| 日本免费a在线| 久久 成人 亚洲| 精品人妻在线不人妻| 精品久久蜜臀av无| 国产成人系列免费观看| 精品一区二区三区四区五区乱码| 日本免费一区二区三区高清不卡 | 国产亚洲精品第一综合不卡| 操美女的视频在线观看| 免费看a级黄色片| 一进一出抽搐动态| 午夜福利高清视频| 久久久国产成人免费| 亚洲三区欧美一区| 色播亚洲综合网| 又黄又粗又硬又大视频| 午夜亚洲福利在线播放| 韩国av一区二区三区四区| 琪琪午夜伦伦电影理论片6080| 50天的宝宝边吃奶边哭怎么回事| 天堂动漫精品| 国产在线精品亚洲第一网站| 亚洲成av片中文字幕在线观看| 国产精品 欧美亚洲| 狂野欧美激情性xxxx| 老司机靠b影院| 久久久久九九精品影院| 中文亚洲av片在线观看爽| 人成视频在线观看免费观看| 老司机在亚洲福利影院| 色精品久久人妻99蜜桃| 亚洲欧美日韩另类电影网站| 午夜福利在线观看吧| 手机成人av网站| 国产一区二区三区在线臀色熟女| netflix在线观看网站| av有码第一页| 成人18禁高潮啪啪吃奶动态图| 日韩欧美一区二区三区在线观看| 亚洲国产精品久久男人天堂| 国产精品久久久久久精品电影 | 老司机在亚洲福利影院| 中亚洲国语对白在线视频| 曰老女人黄片| 亚洲国产精品成人综合色| 一本大道久久a久久精品| 90打野战视频偷拍视频| 99久久99久久久精品蜜桃| 亚洲av日韩精品久久久久久密| 最新美女视频免费是黄的| 国产精品久久久久久精品电影 | 精品不卡国产一区二区三区| 18美女黄网站色大片免费观看| 精品福利观看| 在线观看午夜福利视频| 激情视频va一区二区三区| 嫁个100分男人电影在线观看| 侵犯人妻中文字幕一二三四区| 久久久久久久精品吃奶| 国产精品1区2区在线观看.| 一个人观看的视频www高清免费观看 | 97人妻精品一区二区三区麻豆 | 久久国产精品人妻蜜桃| 88av欧美| 可以在线观看毛片的网站| 欧美日本中文国产一区发布| 真人做人爱边吃奶动态| 大陆偷拍与自拍| 亚洲国产日韩欧美精品在线观看 | 国产成人av教育| 国产高清视频在线播放一区| 免费在线观看黄色视频的| 午夜精品国产一区二区电影| 人人妻人人澡人人看| 亚洲精品中文字幕在线视频| 在线观看日韩欧美| 久久人人97超碰香蕉20202| 亚洲人成电影免费在线| 精品电影一区二区在线| 国产精品美女特级片免费视频播放器 | 一夜夜www| 亚洲va日本ⅴa欧美va伊人久久| 极品教师在线免费播放| 又黄又粗又硬又大视频| 久久精品国产亚洲av高清一级| 又黄又粗又硬又大视频| 满18在线观看网站| 国产精品1区2区在线观看.| 最近最新免费中文字幕在线| 黑人巨大精品欧美一区二区mp4| 日韩大码丰满熟妇| 精品一区二区三区视频在线观看免费| 一区二区三区精品91| 国产一级毛片七仙女欲春2 | 窝窝影院91人妻| av有码第一页| 亚洲一区二区三区不卡视频| 亚洲av熟女| 精品福利观看| 国产亚洲av嫩草精品影院| 色哟哟哟哟哟哟| 久久久国产成人免费| 日韩免费av在线播放| 国产成人一区二区三区免费视频网站| 亚洲自拍偷在线| 成年女人毛片免费观看观看9| 日韩 欧美 亚洲 中文字幕| 美女扒开内裤让男人捅视频| 欧美激情 高清一区二区三区| 国产日韩一区二区三区精品不卡| 日韩三级视频一区二区三区| 咕卡用的链子| cao死你这个sao货| 亚洲成人免费电影在线观看| 国产欧美日韩一区二区精品| 乱人伦中国视频| 在线av久久热| 精品人妻在线不人妻| 制服人妻中文乱码| 亚洲精品国产精品久久久不卡| 成人精品一区二区免费| 欧美日韩乱码在线| 亚洲av五月六月丁香网| 禁无遮挡网站| www.自偷自拍.com| 精品欧美一区二区三区在线| 亚洲视频免费观看视频| 国产激情欧美一区二区| 国内毛片毛片毛片毛片毛片| 国产精品国产高清国产av| 久久精品91无色码中文字幕| 老汉色∧v一级毛片| 99久久国产精品久久久| 在线视频色国产色| www.熟女人妻精品国产| 99精品欧美一区二区三区四区| 一级毛片精品| 久久中文字幕人妻熟女| 成人国产综合亚洲| 禁无遮挡网站| 国产精品久久久久久亚洲av鲁大| 老司机福利观看| 久久亚洲精品不卡| 欧美久久黑人一区二区| 在线天堂中文资源库| 一区二区三区国产精品乱码| 一夜夜www| 国产精品免费视频内射| 欧美人与性动交α欧美精品济南到| 韩国精品一区二区三区| 午夜福利成人在线免费观看| 亚洲国产日韩欧美精品在线观看 | 狂野欧美激情性xxxx| 国产主播在线观看一区二区| 国内精品久久久久精免费| 亚洲无线在线观看| 色老头精品视频在线观看| a在线观看视频网站| 免费在线观看影片大全网站| 十分钟在线观看高清视频www| 巨乳人妻的诱惑在线观看| 欧美中文综合在线视频| 亚洲男人天堂网一区| 99国产精品99久久久久| 国产成人精品久久二区二区91| 亚洲欧美激情在线| 热99re8久久精品国产| 搡老岳熟女国产| 正在播放国产对白刺激| 视频区欧美日本亚洲| 又黄又粗又硬又大视频| 18禁裸乳无遮挡免费网站照片 | 丁香欧美五月| 国产aⅴ精品一区二区三区波| 一二三四社区在线视频社区8| 亚洲午夜理论影院| 男女下面插进去视频免费观看| 亚洲熟女毛片儿| 黄色片一级片一级黄色片| 日本欧美视频一区| 亚洲在线自拍视频| 欧美日韩亚洲综合一区二区三区_| 777久久人妻少妇嫩草av网站| 精品欧美国产一区二区三| 日本五十路高清| 精品久久久久久成人av| 男女床上黄色一级片免费看| 美国免费a级毛片| 日本 欧美在线| 99久久久亚洲精品蜜臀av| 日韩一卡2卡3卡4卡2021年| 男女下面进入的视频免费午夜 | 美国免费a级毛片| 色精品久久人妻99蜜桃| 精品电影一区二区在线| 校园春色视频在线观看| 天堂√8在线中文| 又黄又粗又硬又大视频| 国产精华一区二区三区| 人人妻人人澡欧美一区二区 | 亚洲中文av在线| 久久精品亚洲熟妇少妇任你| 给我免费播放毛片高清在线观看| 午夜影院日韩av| 亚洲精品国产色婷婷电影| 久久久久久国产a免费观看| 欧美精品啪啪一区二区三区| 禁无遮挡网站| 村上凉子中文字幕在线| 国产蜜桃级精品一区二区三区| 啦啦啦观看免费观看视频高清 | 日韩中文字幕欧美一区二区| aaaaa片日本免费| 男女下面进入的视频免费午夜 | 熟妇人妻久久中文字幕3abv| 大香蕉久久成人网| 久久久国产欧美日韩av| xxx96com| 免费观看人在逋| 午夜两性在线视频| 亚洲免费av在线视频| 国产91精品成人一区二区三区| 久久久久久久久中文| 日日干狠狠操夜夜爽| 999精品在线视频| 久久草成人影院| 免费在线观看完整版高清| 精品久久久久久久人妻蜜臀av | 中文字幕av电影在线播放| 国产av精品麻豆| 欧美精品亚洲一区二区| 中文字幕人妻熟女乱码| 巨乳人妻的诱惑在线观看| 我的亚洲天堂| 性色av乱码一区二区三区2| 妹子高潮喷水视频| 国产区一区二久久| 18禁国产床啪视频网站| 亚洲一区二区三区不卡视频| 久久九九热精品免费| 涩涩av久久男人的天堂| 中文字幕最新亚洲高清| 免费高清在线观看日韩| 国产精品亚洲一级av第二区| 国内精品久久久久久久电影| 18禁国产床啪视频网站| 成人永久免费在线观看视频| 欧美成狂野欧美在线观看| 美女大奶头视频| 怎么达到女性高潮| 免费高清在线观看日韩| 欧美性长视频在线观看| 国产亚洲欧美在线一区二区| 久久久精品欧美日韩精品| 免费在线观看日本一区| 美女高潮喷水抽搐中文字幕| 久久午夜综合久久蜜桃| 久热这里只有精品99| 午夜久久久在线观看| 一级a爱片免费观看的视频| 欧美日韩福利视频一区二区| 久久久久亚洲av毛片大全| 97超级碰碰碰精品色视频在线观看| 国产成人系列免费观看| 亚洲色图综合在线观看| 啪啪无遮挡十八禁网站| 人人妻,人人澡人人爽秒播| 国产片内射在线| 欧美日韩亚洲综合一区二区三区_| 在线观看www视频免费| 性欧美人与动物交配| 十八禁网站免费在线| 天天一区二区日本电影三级 | 国产一区二区三区视频了| 老司机福利观看| 国产亚洲欧美在线一区二区| 亚洲五月色婷婷综合| 首页视频小说图片口味搜索| 天堂√8在线中文| 国产乱人伦免费视频| 美女 人体艺术 gogo| 宅男免费午夜| 欧美精品啪啪一区二区三区| 国产国语露脸激情在线看| 1024香蕉在线观看| 欧美性长视频在线观看| 国产极品粉嫩免费观看在线| 久久天堂一区二区三区四区| 搞女人的毛片| 可以在线观看的亚洲视频| 国产精品久久久久久精品电影 | 国产又爽黄色视频| 真人做人爱边吃奶动态| 久久久久九九精品影院| 啦啦啦免费观看视频1| 成人精品一区二区免费| 大香蕉久久成人网| 男人舔女人下体高潮全视频| 国产人伦9x9x在线观看| 日韩三级视频一区二区三区| 精品久久久精品久久久| 黑丝袜美女国产一区| 午夜日韩欧美国产| 久久中文字幕人妻熟女| 欧美乱色亚洲激情| 两个人视频免费观看高清| 亚洲中文字幕日韩| 一级作爱视频免费观看| 久久狼人影院| 精品国产国语对白av| 精品欧美国产一区二区三| 婷婷六月久久综合丁香| 亚洲午夜理论影院| 真人一进一出gif抽搐免费| 男女做爰动态图高潮gif福利片 | 久久精品影院6| 一二三四在线观看免费中文在| 国产精品亚洲av一区麻豆| av有码第一页| 精品国产亚洲在线|