• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Static and Dynamic Analysis of Laminated Thick and Thin Plates and Shells by a Very Simple Displacement-based 3-D Hexahedral Element with Over-Integration

    2015-12-13 06:46:36QifengFanYapingZhangLeitingDongShuLiSatyaAtluri
    Computers Materials&Continua 2015年8期

    Qifeng Fan,Yaping Zhang,Leiting Dong,3,Shu Li,Satya N.Atluri

    Static and Dynamic Analysis of Laminated Thick and Thin Plates and Shells by a Very Simple Displacement-based 3-D Hexahedral Element with Over-Integration

    Qifeng Fan1,Yaping Zhang2,Leiting Dong1,3,Shu Li1,Satya N.Atluri4

    A very simple displacement-based hexahedral 32-node element(denoted as DPH32),with over-integration in the thickness direction,is developed in this paper for static and dynamic analyses of laminated composite plates and shells.In contrast to higher-order or layer-wise higher-order plate and shell theories which are widely popularized in the current literature,the proposed method does not develop specif i c theories of plates and shells with postulated kinematic assumptions,but simply uses the theory of 3-D solid mechanics and the widely-available solid elements.Over-integration is used to evaluate the element stiffness matrices of laminated structures with an arbitrary number of laminae,while only one element is used in the thickness direction without increasing the number of degrees of freedom.A stress-recovery approach is used to compute the distribution of transverse stresses by considering the equations of 3D elasticity.Comprehensive numerical results are presented for static,free vibration,and transient analyses of different laminated plates and shells,which agree well with existing solutions in the published literature,or solutions of very-expensive 3D models by commercial FEM codes.It is clearly shown that the proposed methodology can accurately and efficiently predict the structural and dynamical behavior of laminated composite plates and shells in a very simple and cost-effective manner.

    laminated structure,plates and shells,hexahedral 32-node element,higher order theory,over-integration.

    1 Introduction

    Laminated composite structures are extensively used in aerospace,automobile,marine and other industrial f i elds,primarily due to their high strength-to-mass ratio,high stiffness-to-mass ratio,and their capability to be tailored according to given requirements.In-depth understandings of their mechanical behaviors are generally needed for the design and maintenance of such engineering structures.However,as full or large scale experimental tests are usually time-expensive and monetarilyexpensive,it is necessary to develop accurate and eff i cient numerical models which are capable of predicting their static and dynamical behaviors.

    A very large number of laminate theories can be found in the literature,which are mostly derived from equations of 3D elasticity by making various assumptions of the kinematics in the thickness direction.These theories involve expanding the displacement f i eld in a power-series in the thickness direction of the entire laminate[“higher-order theories”]or in the thickness direction of each lamina in the laminate[“l(fā)ayer-wise higher-order theories”].Using these assumptions,a new set of generalized displacements,strains,and stresses are defined,and a new set of governing equilibrium,compatibility,and constitutive equations are derived.The simplest one is the classical laminate theory(CLT)which is based on the wellknown Love-Kirchoff assumption[Timoshenko and Woinowsky(1959)].Straight lines normal to the mid-surface are assumed to remain straight and normal to the mid-surface after deformation.To take into account the effects of transverse shear deformation,the first-order shear deformation theory(FSDT)[Reissner(1945)and Mindlin(1951)]relaxes the Love-Kirchoff assumption,so that transverse straight lines do not necessarily remain normal to the mid-surface after deformation.CLT and FSDT are widely popularized in commercial FEM packages such as Ansys,Abaqus,Nastran,etc.But for very thick composite laminates,CLT and FSDT usually underestimate the def l ections and overestimates natural frequencies.

    Many higher-order shear deformation theories(HSDT)were later proposed,see[Lo,Christensen and Wu(1977);Reddy(1984);Pandya and Kant(1988);Reddy and Robbins(1994)]for example.These high-order theories mostly adapt various third-order assumptions of in-plane displacements,def i ne additional generalized variables that have ambiguous physical meanings,and derive very complex and tedious governing differential equations of plate and shells.In a similar way the layer-wise theories are developed by making assumptions of displacements in each layer,see[Di Sciuva(1985),Toledano and Murakami(1987),Carrera(2003)].Displacements in each layer or lamina are assumed to be either linear,quadratic,higher-order,trigonometric,or to be other continuous functions in layer-wise/zigzag theories of plates and shells.However,having additional degrees of freedoms for each lamina makes layer-wise theories highly expensive for realistic laminate structures that have a very large number of layers.

    In order to derive higher-order or layer-wise theories of plates and shells,kinematic assumptions are substituted into the principle of potential energy of 3D elasticity.

    By exploring the stationarity conditions,very complex governing differential equations in terms of newly def i ned generalized displacements,strains and stresses can be derived,see[Reddy(2004)]for example.However,such complex differential equations cannot be directly solved.One usually goes back to derive a variational principle from these governing differential equations,and to develop corresponding f i nite element models to solve the problem numerically.In this sense,defining the many generalized displacements,strains,stresses,and deriving the complex higher-order or layer-wise theories and differential equations seems unnecessary.One can directly use the variational principle of 3D elasticity to develop finite elements for the modeling of plates and shells.Moreover,it is difficult for end-users to completely understand all the newly-defined FEM DOFs in higher-order theories which have ambiguous physical meanings,which becomes very problematic when boundary conditions have to be enforced correctly by end-users.

    In an entirely different way,[Dong,El-Gizawy,Juhany,Atluri(2014b,c)]directly developed quadrilateral 4-node,and hexagonal 8-node f i nite element models,for laminated structures based on the theory of 2-D and 3-D solid mechanics,respectively.Because traditional displacement-based lowest order elements suffer from shear locking,a technique of locking-alleviation was used by independently assuming non-locking element strains.Over-integration was also adapted in the thickness direction to accurately evaluate the stiffness matrix of FG and laminated elements.Similar work on smart composite structures was also presented in[Ray,Dong and Atluri(2015)].However,for very thick laminated structures with only a few layers,it is difficult to obtain accurate results by using only one linear finite element in the thickness direction.

    In this study,using the standard 3-D solid mechanics,a displacement-based hexahedral 32-node element(denoted as DPH32),with over-integration in the thickness direction,is developed for static and dynamic analysis of laminated composite plates and shells with an arbitrary number of layers.A stress-recovery approach is used to compute the distribution of transverse stresses by considering the equations of 3D elasticity.It is shown that,without using any higher-order shear deformation theories or layer-wise theories,the present method can accurately and efficiently predict the static and dynamical behaviors of laminated thick as well as thin composite plates and shells,even if only one element is used in the thickness direction.In the following sections,details of the proposed methodology are described and numerical examples with different boundary conditions are provided to verify its accuracy when compared with existing solutions in published literature,and finite element solutions from the commercial code MSC/Nastran.

    Figure 1:A 32-node hexahedral element in ξ,η,ζ coordinates

    2 Algorithmic Formulation

    As illustrated in Fig.1,a 32-node hexahedral element is formed with 8 corner nodes and 24 side nodes.Facilitated by the standard isoparametric concept,the shape functions of the 32-node hexahedron can be defined as follows:

    For corner nodes:

    Displacements within the element are interpolated by using nodal shape functions:

    The strains within the element can be obtained by differentiating Eq.(5)with respect to Cartesian coordinates:

    where L is a linear differential operator.

    The element stiffness matrix and mass matrix are thus computed by:

    After assembling all the element mass and stiffness matrices into the global ones,static,free vibration,or transient analyses of the structure can be done following standard numerical procedures,see[Atluri(2005)].

    In this study,N-layer laminated plates and shells are studied by using such 32-node hexagonal elements.As discussed in[Dong,EI-Gizawy,Juhany and Atluri(2014b,c)],the technique of“over integration”is needed to accurately evaluate the element stiffness and mass matrices of laminated elements.In order to take care of the different material properties of each lamina,a layer-wise Gauss quadrature in the thickness direction is adapted in this study.In this way,we consider another variable ?kas the natural coordinate in the thickness direction of any(kth)individual layer,which can be related to the natural coordinate ? of the whole element in the thickness direction as follows:

    whereh,hk,hk+1represent the thickness of the plate/shell,and coordinates in the thickness direction at the bottom and the top surfaces of any layer of lamina.

    Thus the elemental stiffness and mass matrix are to be evaluated as:

    whereDkand ρkare elastic stiffness and density of thekthlayer respectively.

    The transverse normal and shear stresses are computed by using a stress-recovery approach considering the equilibrium equations of 3D linear elasticity.For the laminated plates,the distribution of transverse stresses can be obtained by numerically evaluating:

    wherez=z0denote the lower surface of the plate.

    For cylindrical shells,the distribution of transverse stresses can also be evaluated,by numerically solving the following 3 differential equations:

    In Eq.(11),the left hand-side involves stress components to be recovered,and the right-hand side are directly evaluated from the solutions of DPH32.Each equation is a first-order single-variable ODE,which can be solved with a variety of computational methods,see[Dong,Alotaibi,Mohiuddine and Atluri(2014a)].In this study,simple collocation of Eq.(11)is implemented at a variety of points along the thickness direction.Combined with the traction free condition at the inner surface of the cylindrical shell,stress components σrθ,σrz,σrrcan be efficiently recovered from the computed in-plane normal and shear stresses.

    3 Numerical Examples

    In this section,several typical problems of laminated composite plates and shells have been analyzed.The geometry and reference system for the laminated plate and shell can be seen in Fig.2 and Fig.3 respectively.The following boundary conditions have been used.

    Simply supported boundary condition(S):

    Figure 2:Geometry and reference system for the laminated plate.

    Figure 3:Geometry and reference system for the laminated shell.

    3.1 Static analysis

    3.1.1A simply-supported 4-ply([0/90]s)laminated plate subjected to a sinusoidal distributed lateral load

    The first example considers a simply-supported thick-section symmetrical 4-ply([0/90]s)laminated plate subjected to a sinusoidal distributed lateral load:

    The plate is square witha=b=100mm,and the total plate thickness ish=10mm.Each layer is made of Graphite–Epoxy T300/934 with the same thickness.The orthotropic material has the following mechanical properties:

    Figure 4:Finite element model for the 4-ply laminated plate(a/h=10)by(a)Nastran and(b)present DPH32 elements.

    We solve this problem using a uniform 10×10 mesh with DPH32 elements,as well as using Nastran by meshing each layer of the laminate.We can see the difference of meshes between the Nastran model and the DPH32 model in Fig 4.It takes about half an hour to obtain the numerical results by using the 200,000 nodes Nastran model on a regular PC with i7 CPU.On the contrary,the DPH32 model has only 1364 nodes and takes about 20 seconds of computational time,although an unoptimized MatLab code is used in this study.Computed in-plane and out-of-plane stresses are shown in Figs.5–6,from which we can see that the two methods give similar results although the computation time differs by two orders of magnitudes.

    3.1.2A simply-supported 50-ply([0/90]25)laminated plate subjected to a uniform lateral load

    In this subsection,we consider a thick-section unsymmetrical 50-ply([0/90]25)laminated plate.The plate is square witha=b=10 inches,and the thickness of the plate ish=1 inch.The material parameters are as follows:vLT=0.25,vTT=0.25,

    Figure 5:Computed σxx,σyyat x=y=45 mm,and computed σxz,σyzat x=y=10 mm,for the symmetrical 4-ply thick-section laminated plate(a/h=10),with DPH32.

    Figure 6:Computed σxx,σyyat x=y=45 mm,and computed σxz,σyzat x=y=10 mm,for the symmetrical 4-ply thick-section laminated plate(a/h=10),with Nastran.

    whereLdenotes the f i ber’s direction andTdenotes the transverse direction.

    The laminated plate is simply-supported at each edge.And it is subjected to a uniform lateral loadq=1 psi.

    We solve this problem using a uniform 10×10 mesh with DPH32 elements.Computed in-plane and out-of-plane stresses by present DPH32 elements and Nastran are shown in Figs.7–8.It is observed that the present DPH32 solutions agree well with the Nastran solutions.Because of the necessity of meshing each of the 50 layers of laminae for Nastran,it takes about 2.5 hours of computational time and about 1.5 million DOFs in Nastran.However,the present DPH32 only requires 1364 nodes and about 20 seconds of computational time.

    Figure 7:Computed σxx,σyyat x=y=4.5 inches,and computed σxz,σyzat x=y=1 inch,for the unsymmetrical 50-ply thick-section laminated plate(a/h=10),with DPH32.

    A different plate with a very-high aspect ratio is also considered in this subsection.The same material properties,the same 50-ply([0/90]25)laminate,and the same boundary conditions and loads are adopted.However,the laminated plate has an aspect ratio of 1000 witha=b=1000 inches andh=1 inch.We also solve this problem with 10×10 DPH32 elements.The computed stresses by present method and by CEH8 elements[Dong,El-Gizawy,Juhany and Atluri(2014b)]are shown in Figs.9–10.Very good agreement is observed.This demonstrates that the present method can deal with the problems of both thick and thin plates,without having to resorting to theories of plates and shells.

    3.2 Free vibration analysis

    3.2.1Modal analysis of a thick-section 10-ply[0/90]5laminated square plate

    The free vibration of a thick-section 10-ply([0°/90°]5)laminated plate is analyzed in this subsection.The plate is square witha=b=100 mm,and the thickness ish=10 mm.The material properties are the same as those in the first example.Four different boundary conditions(BCs)are enforced.They are SSSS(simply supported at each edge),CFFF(clamped atx=0 and free atx=a,y=0,b),CSCS(clamped atx=0,aand simply supported aty=0,b)and CSFS(clamped atx=0,free atx=a,and simply supported aty=0,b).

    Figure 8:Computed σxx,σyyat x=y=4.5 inches,and computed σxz,σyzat x=y=1 inch,for the unsymmetrical 50-ply thick-section laminated plate(a/h=10),with Nastran,see[Dong,El-Gizawy,Juhany and Atluri(2014b)].

    Figure 9:Computed σxx,σyyat x=y=450 inches,and computed σxz,σyzat x=y=100 inches,for the thin-section laminated plate(a/h=1000),with DPH32.

    Figure 10:Computed σxx,σyyat x=y=450 inches,and computed σxz,σyzat x=y=100 inches,for the thin-section laminated plate(a/h=1000),with CEH8.

    Figure 11:Finite element model for the 10-ply laminated plate(a/h=10)by(a)Nastran with 400,000 elements and(b)present DPH32 with 100 elements.

    Figure 12:First six non-dimensional frequency parameters and their corresponding mode shapes of a SSSS square laminated plate by(a)Nastran and(b)present DPH32 elements.

    Figure 13:First six non-dimensional frequency parameters and their corresponding mode shapes of a CFFF Square laminated plate by(a)Nastran and(b)present DPH32 elements.

    We solve these problems using a uniform 10×10 mesh with DPH32 elements,as well as using Nastran.Comparison between the meshes of the DPH32 model and the Nastran model is given in Fig 11.The non-dimensional frequenciesused for comparison of numerical results.The first six mode shapes,for each case,are depicted in Figs.12–15 in which the correspondent nondimensional frequency is reported below each mode shape within the reference Nastran solution.Very good agreement is observed for all the computations,and the difference of the frequency parameters does not exceed 0.57%for the worst case.In the meantime,the present DPH32 elements require about 200 times less computational time as compared to Nastran.

    Figure 14:First six non-dimensional frequency parameters and their corresponding mode shapes of a CSCS Square laminated plate by(a)Nastran and(b)present DPH32 elements.

    3.2.2Modal analysis a thick-section 10-ply[0/90]5laminated shell

    In this subsection,we consider a thick-section 10-ply([0°/90°]5)laminated shell.Each layer of the laminate is composed of the same Graphite-Epoxy T300/934 material whose material parameters are given in the first example.The depth and thickness of the cylindrical shell area=100 mm andh=10 mm respectively.The arc length of the shell is 100 mm and its corresponding angular span is π/3.We investigate four different boundary conditions which are SSSS(simply supported at each edge),CFFF(clamped atx=0 and free atx=a,y=0,b),CSCS(clamped atx=0,aand simply supported aty=0,b)and CSFS(clamped atx=0,free atx=a,and simply supported aty=0,b).

    We solve these problems using a uniform 10×10 mesh with DPH32 elements,as well as using Nastran.Comparison between the meshes by present DPH32 ele-ments and by Nastran is given in Fig 16.Computed non-dimensional frequencies and corresponding mode shapes by DPH32 and Nastran are given in Figs.17–20 respectively.Very good agreement is observed for all the results,and the difference of the non-dimensional frequencies does not exceed 0.60%for the worst case.

    3.3 Transient dynamic response of laminated plates

    Figure 15:First six non-dimensional frequency parameters and their corresponding mode shapes of a CSFS Square laminated plate by(a)Nastran and(b)present DPH32 elements.

    Figure 17:First six non-dimensional frequency parameters and their corresponding mode shapes of a SSSS laminated shell by(a)Nastran and(b)present DPH32 elements.

    In this section,we study the transient dynamic responses of a simply-supported symmetrical 4-ply([0/90]s)laminated square plate subjected to a uniform pressure(step load)of magnitude 1kPa at timet=0.The geometry and material properties are same as the f i rst example.The same DPH32 FEM model with a uniform 10×10 mesh is also used to compute the global nodal force vector,mass matrix and stiffness matrix.Newmark beta method is used to evaluate the time-domain numerical integration.Direct transient response by Nastran is also used to obtain the results of displacements,velocities and stresses in each element.The vertical displacements and normal stresses by DPH32 elements and by Nastran are presented in Fig.21–22.It is clearly shown that the results obtained by the present method are in good agreement with numerical results using Nastran.In the meantime,small global matrices derived from the present method significantly improve the computational efficiency.

    Figure 18:First six non-dimensional frequency parameters and their corresponding mode shapes of a CFFF laminated shell by(a)Nastran and(b)present DPH32 elements.

    Figure 19:First six non-dimensional frequency parameters and their corresponding mode shapes of a CSCS laminated shell by(a)Nastran and(b)present DPH32 elements.

    We also consider the same laminated plate subjected to a time-dependent sinusoidal pressure shown in Fig.23.The problem is solved by present DPH32 elements and by Nastran separately.The vertical displacements and normal stresses computed by DPH32 elements and by Nastran are presented in Fig.24–25.Very good agreement is also observed.

    4 Conclusion

    In this paper,a very simple displacement-based hexahedral 32-node element(denoted as DPH32),with over-integration in the thickness direction,is developed for static and dynamic analysis of laminated composite plates and shells.In contrast to the many thousands of papers which are higher-order or layer-wise theories of plates and shells,the present method saves the trouble of developing specif i c theories of plates and shells,but simply use the 32-node 3D solid element which is already mature in most FEM packages.Over-integration is used to evaluate the stiffness matrices of laminated structures with an arbitrary number of laminae when only one element is used in the thickness direction,without increasing the number of degrees of freedom.A stress-recovery approach is used to compute the distribu-tion of transverse stresses by considering the equations of 3D elasticity.Comprehensive numerical results are presented for various laminated plates and shells with different boundary conditions.It is clearly shown that the proposed methodology can accurately and efficiently predict the static and dynamical behaviors of laminated composite plates and shells in a very simple manner,with very economical computational time as well as analysis time.

    Figure 20:First six non-dimensional frequency parameters and their corresponding mode shapes of a CSFS laminated shell by(a)Nastran and(b)present DPH32 elements.

    Figure 21:Vertical displacement response of the laminated plate(a/h=10)by(a)Nas-tran and(b)the present DPH32 elements.

    Figure 22:Normal stress response of the laminated plate(a/h=10)by(a)Nastran and(b)the present DPH32 elements.

    Figure 23:The applied time-dependent sinusoidal pressure

    Figure 24:Vertical displacement response of the laminated plate(a/h=10)by(a)Nas-tran and(b)the present DPH32 elements.

    Figure 25:Normal stress response of the laminated plate(a/h=10)by(a)Nastran and(b)the present DPH32 elements.

    Acknowledgement: This research is supported by the Mechanics Section,Vehicle Technology Division,of the US Army Research Labs.The first author acknowledges the financial support by the National High Technology Research and Development Program of China(863 Program,grant No.2012AA112201).The support of National Natural Science Foundation of China(grant No.11502069)and Natural Science Foundation of Jiangsu Province(grant No.BK20140838)is also thankfully acknowledged.

    Atluri,S.N.(2005):Methods of Computer Modeling in Engineering and the Sciences,Tech Science Press.

    Di Sciuva,M.(1985):Development of an anisotropic,multilayered,sheardeformable rectangular plate element.Computers&structures,vol.21(4),pp.789-796.

    Carrera,E.(2003):Historical review of zig-zag theories for multilayered plates and shells.Applied Mechanics Reviews,vol.56,issue 3,pp.287-308.

    Dong,L.;Alotaibi,A.;Mohiuddine,S.A.;Atluri,S.N.(2014a):Computational methods in engineering:a variety of primal&mixed methods,with global&local interpolations,for well-posed or ill-Posed BCs.CMES:Computer Modeling in Engineering&Sciences,vol.99,no.1,pp.1-85.

    Dong,L.;El-Gizawy,A.S.;Juhany,K.A.;Atluri,S.N.(2014b):A simple locking-alleviated 4-node mixed-collocation f i nite element with over-integration,for homogeneous or functionally-graded or thick-section laminated composite beams.CMC:Computers,Materials&Continua,vol.40,issue 1,pp.49-77.

    Dong,L.;El-Gizawy,A.S.;Juhany,K.A.;Atluri,S.N.(2014c):A simple locking-alleviated 3D 8-Node mixed-collocationC0f i nite element with overintegration,for functionally-graded and laminated thick-section plates and shells,with&without z-pins.CMC:Computers,Materials&Continua,vol.41,issue 3,pp.163-192.

    Lo,K.H.;Christensen,R.M.;Wu,E.M.(1977):A high-order theory of plate deformation—part 2:laminated plates.Journal of Applied Mechanics,vol.44,issue 4,pp.669-676.

    Mindlin,R.D.(1951):Inf l uence of rotatory inertia and shear on flexural motions of isotropic,elastic plates.Journal of Applied Mechanics,vol.18,pp.31-38.

    Pandya,B.N.;Kant,T.(1988):Finite element analysis of laminated composite plates using a higher-order displacement model.Composites Science and Technology,vol.32,pp.137-155.

    Ray,R.M.;Dong,L.;Atluri,S.N.(2015):Simple Efficient Smart Finite Elements for the Analysis of Smart Composite Beams.CMC:Computers,Materials&Continua,vol.47,issue 2,pp.65-99.

    Reddy,J.N.(1984):A simple higher-order theory for laminated composite plates.Journal of Applied Mechanics,vol.51,issue 4,pp.745-752.

    Reddy,J.N.;Robbins,D.H.(1994):Theories and computational models for composite laminates.Applied Mechanics Reviews,vol.47,issue 6,pp.147-169.

    Reddy,J.N.(2004):Mechanics of laminated composite plates and shells:theory and analysis,CRC press.

    Reissner,E.(1945):The effect of transverse shear deformation on the bending of elastic plates.Journal of Applied Mechanics,vol.12,pp.69-77.

    Timoshenko,S.;Woinowsky-Krieger,S.(1959):Theory of Plates and Shells.McGraw hill,New York.

    Toledano,A.;Murakami,H.(1987):A composite plate theory for arbitrary laminate configurations.Journal of applied mechanics,vol.54(1),pp.181-189.

    1School of Aeronautic Science and Engineering,Beihang University,China

    2Taizhou Polytechnic College,China

    3Corresponding Author,Email:dong.leiting@gmail.com

    4Department of Mechanical Engineering,Texas Tech University,USA

    女人高潮潮喷娇喘18禁视频| 欧美久久黑人一区二区| 一本—道久久a久久精品蜜桃钙片| 亚洲人成电影观看| 欧美av亚洲av综合av国产av| 男人添女人高潮全过程视频| www.999成人在线观看| 天天影视国产精品| 一区二区日韩欧美中文字幕| 精品人妻熟女毛片av久久网站| 男女免费视频国产| e午夜精品久久久久久久| 少妇人妻久久综合中文| 日本av手机在线免费观看| 超碰成人久久| 亚洲国产精品国产精品| 亚洲,欧美精品.| 国产伦理片在线播放av一区| 亚洲国产欧美一区二区综合| 色综合欧美亚洲国产小说| 精品久久久精品久久久| 国产亚洲av片在线观看秒播厂| 看十八女毛片水多多多| 免费人妻精品一区二区三区视频| 国产视频首页在线观看| 婷婷色av中文字幕| 91精品三级在线观看| 国产成人影院久久av| 午夜久久久在线观看| 日韩免费高清中文字幕av| 亚洲av在线观看美女高潮| 午夜福利,免费看| 色网站视频免费| 欧美成狂野欧美在线观看| 免费女性裸体啪啪无遮挡网站| 精品福利永久在线观看| 午夜激情久久久久久久| 一本综合久久免费| 黄色 视频免费看| 日韩欧美一区视频在线观看| 欧美精品一区二区大全| 久久久精品国产亚洲av高清涩受| 9色porny在线观看| 亚洲熟女毛片儿| 男女午夜视频在线观看| 久久久欧美国产精品| 国产av精品麻豆| 波多野结衣一区麻豆| 欧美中文综合在线视频| 精品久久久精品久久久| 亚洲av成人不卡在线观看播放网 | 天天躁日日躁夜夜躁夜夜| 国产亚洲一区二区精品| 一区二区日韩欧美中文字幕| 人成视频在线观看免费观看| 国产亚洲欧美精品永久| 不卡av一区二区三区| 午夜精品国产一区二区电影| 在线天堂中文资源库| 日韩人妻精品一区2区三区| 日韩人妻精品一区2区三区| 亚洲国产av新网站| 久久综合国产亚洲精品| 97人妻天天添夜夜摸| 涩涩av久久男人的天堂| 老司机影院毛片| 美女高潮到喷水免费观看| 欧美黄色片欧美黄色片| 亚洲国产日韩一区二区| 国产成人影院久久av| 2018国产大陆天天弄谢| 亚洲精品av麻豆狂野| 又紧又爽又黄一区二区| 久久精品熟女亚洲av麻豆精品| 人体艺术视频欧美日本| 菩萨蛮人人尽说江南好唐韦庄| 久久影院123| 美女国产高潮福利片在线看| 精品亚洲成国产av| 少妇裸体淫交视频免费看高清 | 建设人人有责人人尽责人人享有的| 搡老岳熟女国产| 老司机影院毛片| 免费在线观看黄色视频的| 黄色a级毛片大全视频| 下体分泌物呈黄色| 精品国产一区二区三区四区第35| 亚洲av日韩在线播放| 欧美黄色淫秽网站| 一本大道久久a久久精品| 黑人巨大精品欧美一区二区蜜桃| 九草在线视频观看| 日本午夜av视频| 亚洲av成人精品一二三区| av国产精品久久久久影院| 建设人人有责人人尽责人人享有的| 午夜免费观看性视频| 国产亚洲精品久久久久5区| 日韩一卡2卡3卡4卡2021年| 一区二区三区四区激情视频| 欧美 日韩 精品 国产| 久久毛片免费看一区二区三区| cao死你这个sao货| 中文字幕最新亚洲高清| 欧美日韩黄片免| 久久久欧美国产精品| 国产精品 国内视频| av又黄又爽大尺度在线免费看| 亚洲国产最新在线播放| 日韩一本色道免费dvd| av网站在线播放免费| 婷婷色综合www| 精品人妻1区二区| 亚洲成色77777| 国产欧美日韩综合在线一区二区| 亚洲国产欧美网| 丝瓜视频免费看黄片| 久久鲁丝午夜福利片| 亚洲熟女精品中文字幕| 啦啦啦视频在线资源免费观看| 午夜视频精品福利| 大陆偷拍与自拍| 少妇人妻 视频| 午夜福利视频精品| 99久久人妻综合| 国产一区二区激情短视频 | 久久久国产精品麻豆| 69精品国产乱码久久久| 看免费av毛片| 99久久人妻综合| 久久国产精品男人的天堂亚洲| 成在线人永久免费视频| 亚洲一卡2卡3卡4卡5卡精品中文| 精品高清国产在线一区| 性色av一级| 蜜桃在线观看..| 亚洲中文av在线| 日本色播在线视频| 一区二区三区四区激情视频| www.自偷自拍.com| 欧美激情高清一区二区三区| 一本—道久久a久久精品蜜桃钙片| 午夜福利影视在线免费观看| 日韩电影二区| 久久性视频一级片| 丁香六月欧美| 自线自在国产av| 人人妻人人澡人人爽人人夜夜| 久久免费观看电影| 两个人看的免费小视频| 亚洲精品国产区一区二| 免费高清在线观看日韩| 午夜av观看不卡| 国产一区二区 视频在线| 黄网站色视频无遮挡免费观看| 亚洲av美国av| 日本wwww免费看| netflix在线观看网站| 午夜免费成人在线视频| 国产女主播在线喷水免费视频网站| 免费久久久久久久精品成人欧美视频| 国产精品久久久久久精品电影小说| 国产免费又黄又爽又色| 免费看十八禁软件| 日本av手机在线免费观看| 亚洲成人免费电影在线观看 | 一边亲一边摸免费视频| 亚洲中文字幕日韩| 在线精品无人区一区二区三| 人成视频在线观看免费观看| av福利片在线| 一区二区三区四区激情视频| 国产精品久久久av美女十八| 香蕉国产在线看| 亚洲国产欧美网| 国产淫语在线视频| 人人妻人人澡人人看| 色婷婷久久久亚洲欧美| 美女高潮到喷水免费观看| 777米奇影视久久| 午夜两性在线视频| 黄频高清免费视频| 欧美日韩视频高清一区二区三区二| 老熟女久久久| 两性夫妻黄色片| 欧美日韩国产mv在线观看视频| 人妻 亚洲 视频| 一区在线观看完整版| 我要看黄色一级片免费的| 蜜桃在线观看..| 菩萨蛮人人尽说江南好唐韦庄| 欧美日韩av久久| 精品人妻熟女毛片av久久网站| 国产成人欧美在线观看 | 国产成人av教育| 男人爽女人下面视频在线观看| 中文字幕人妻丝袜一区二区| 日韩中文字幕视频在线看片| 纯流量卡能插随身wifi吗| 精品免费久久久久久久清纯 | 叶爱在线成人免费视频播放| 校园人妻丝袜中文字幕| h视频一区二区三区| 观看av在线不卡| 日本欧美国产在线视频| 国产精品一区二区在线观看99| 熟女少妇亚洲综合色aaa.| 欧美 日韩 精品 国产| 最近最新中文字幕大全免费视频 | 国产伦人伦偷精品视频| 少妇猛男粗大的猛烈进出视频| 美女中出高潮动态图| 成人黄色视频免费在线看| 一区二区三区乱码不卡18| 国产又色又爽无遮挡免| 一本色道久久久久久精品综合| 侵犯人妻中文字幕一二三四区| 久久精品人人爽人人爽视色| 青青草视频在线视频观看| 97在线人人人人妻| 亚洲天堂av无毛| 午夜福利影视在线免费观看| 国产三级黄色录像| 国产高清videossex| 亚洲精品一区蜜桃| 久久免费观看电影| 免费日韩欧美在线观看| 国产精品九九99| 国产激情久久老熟女| 嫩草影视91久久| 日韩av在线免费看完整版不卡| 男男h啪啪无遮挡| 久久久精品免费免费高清| 国产一区二区在线观看av| 又紧又爽又黄一区二区| 亚洲欧美精品自产自拍| 精品一区二区三区av网在线观看 | 色婷婷久久久亚洲欧美| 国产一区二区激情短视频 | 99热全是精品| 亚洲av欧美aⅴ国产| 真人做人爱边吃奶动态| 午夜免费观看性视频| 少妇人妻 视频| 麻豆乱淫一区二区| 男女之事视频高清在线观看 | 狂野欧美激情性bbbbbb| 色94色欧美一区二区| 亚洲欧洲精品一区二区精品久久久| 日本五十路高清| 国产黄频视频在线观看| 亚洲欧美中文字幕日韩二区| 女人久久www免费人成看片| 亚洲综合色网址| 中文字幕制服av| 老鸭窝网址在线观看| 91精品国产国语对白视频| 欧美变态另类bdsm刘玥| 午夜激情久久久久久久| av在线老鸭窝| 亚洲伊人久久精品综合| 在线亚洲精品国产二区图片欧美| 91国产中文字幕| 女性被躁到高潮视频| 国产免费现黄频在线看| 高潮久久久久久久久久久不卡| 国产真人三级小视频在线观看| 免费在线观看黄色视频的| 国产精品一区二区精品视频观看| 精品免费久久久久久久清纯 | 欧美激情高清一区二区三区| 日日夜夜操网爽| 午夜福利一区二区在线看| 一级毛片 在线播放| 亚洲精品中文字幕在线视频| 大香蕉久久成人网| 一级黄片播放器| 在线看a的网站| 精品少妇内射三级| 国产精品.久久久| av天堂久久9| 青春草视频在线免费观看| 又大又黄又爽视频免费| 免费在线观看影片大全网站 | 国产精品久久久久成人av| 成年人免费黄色播放视频| 丰满人妻熟妇乱又伦精品不卡| videos熟女内射| 精品国产乱码久久久久久小说| 午夜两性在线视频| 这个男人来自地球电影免费观看| 黄色视频在线播放观看不卡| 男女免费视频国产| 欧美国产精品va在线观看不卡| 久久久国产精品麻豆| 天堂8中文在线网| av欧美777| 国产97色在线日韩免费| 人人妻,人人澡人人爽秒播 | 免费在线观看影片大全网站 | 美女国产高潮福利片在线看| 国产成人精品久久久久久| 9191精品国产免费久久| 国产高清不卡午夜福利| 亚洲中文日韩欧美视频| 亚洲中文av在线| 91老司机精品| 少妇被粗大的猛进出69影院| 国产成人啪精品午夜网站| 国产一区有黄有色的免费视频| 午夜老司机福利片| 好男人电影高清在线观看| 波多野结衣一区麻豆| 国产精品国产三级国产专区5o| 国产欧美亚洲国产| 18禁裸乳无遮挡动漫免费视频| 久久久精品区二区三区| 日韩人妻精品一区2区三区| 超碰成人久久| 男女免费视频国产| 精品少妇久久久久久888优播| 丝袜喷水一区| 亚洲国产av新网站| 人人妻,人人澡人人爽秒播 | 丝袜在线中文字幕| 波多野结衣一区麻豆| 天堂俺去俺来也www色官网| 久久久久久久久久久久大奶| 日韩 亚洲 欧美在线| 亚洲七黄色美女视频| 国产免费一区二区三区四区乱码| 十八禁网站网址无遮挡| 看免费av毛片| 大香蕉久久网| 高潮久久久久久久久久久不卡| 黄片小视频在线播放| 久久久精品94久久精品| 赤兔流量卡办理| 国产亚洲午夜精品一区二区久久| 考比视频在线观看| 欧美大码av| 考比视频在线观看| 国产视频首页在线观看| 免费在线观看完整版高清| 黑人猛操日本美女一级片| 亚洲精品久久成人aⅴ小说| 一级片'在线观看视频| av在线老鸭窝| 啦啦啦在线观看免费高清www| 日本91视频免费播放| 一级毛片 在线播放| 女人高潮潮喷娇喘18禁视频| 一本色道久久久久久精品综合| 新久久久久国产一级毛片| 亚洲av成人精品一二三区| 久久人人97超碰香蕉20202| 亚洲天堂av无毛| 亚洲精品国产区一区二| 99精品久久久久人妻精品| 美女视频免费永久观看网站| 观看av在线不卡| 女人被躁到高潮嗷嗷叫费观| 99热国产这里只有精品6| 热re99久久精品国产66热6| 国产成人影院久久av| 午夜两性在线视频| 亚洲色图 男人天堂 中文字幕| 韩国高清视频一区二区三区| 久9热在线精品视频| 亚洲精品国产区一区二| 日韩伦理黄色片| 亚洲专区中文字幕在线| 一区二区av电影网| 精品人妻一区二区三区麻豆| 成年女人毛片免费观看观看9 | 99热国产这里只有精品6| 中文字幕制服av| 日本一区二区免费在线视频| 久久精品国产a三级三级三级| 黄色片一级片一级黄色片| 男人舔女人的私密视频| e午夜精品久久久久久久| 国产日韩欧美亚洲二区| 久久久久视频综合| 国产精品香港三级国产av潘金莲 | 一二三四社区在线视频社区8| 久久99热这里只频精品6学生| 一二三四社区在线视频社区8| xxxhd国产人妻xxx| 成人免费观看视频高清| 午夜福利影视在线免费观看| 永久免费av网站大全| 美女国产高潮福利片在线看| 丝袜人妻中文字幕| 免费在线观看影片大全网站 | 激情视频va一区二区三区| 两性夫妻黄色片| 免费在线观看影片大全网站 | 一边摸一边做爽爽视频免费| 久久99精品国语久久久| 蜜桃国产av成人99| 午夜老司机福利片| 欧美精品高潮呻吟av久久| 亚洲精品乱久久久久久| 国产主播在线观看一区二区 | 性高湖久久久久久久久免费观看| 亚洲情色 制服丝袜| 欧美97在线视频| 两人在一起打扑克的视频| 午夜精品国产一区二区电影| 国产精品偷伦视频观看了| 热99国产精品久久久久久7| 亚洲国产精品999| av网站在线播放免费| 老熟女久久久| 成人手机av| 欧美精品啪啪一区二区三区 | 女人被躁到高潮嗷嗷叫费观| 免费观看人在逋| 欧美久久黑人一区二区| 国产成人欧美| 成年人黄色毛片网站| 夜夜骑夜夜射夜夜干| av有码第一页| 18禁裸乳无遮挡动漫免费视频| 亚洲欧美精品综合一区二区三区| 国产精品九九99| 成人影院久久| 精品人妻1区二区| 久久精品亚洲av国产电影网| 欧美精品啪啪一区二区三区 | 亚洲少妇的诱惑av| 如日韩欧美国产精品一区二区三区| 亚洲精品日本国产第一区| 国产免费现黄频在线看| 国产高清videossex| 丁香六月天网| 亚洲一卡2卡3卡4卡5卡精品中文| 曰老女人黄片| 男女之事视频高清在线观看 | 国产亚洲精品第一综合不卡| 免费人妻精品一区二区三区视频| 一二三四在线观看免费中文在| 亚洲欧美一区二区三区黑人| 成年人午夜在线观看视频| 日韩人妻精品一区2区三区| cao死你这个sao货| 无限看片的www在线观看| 捣出白浆h1v1| 啦啦啦视频在线资源免费观看| 精品国产一区二区三区久久久樱花| 亚洲 欧美一区二区三区| 亚洲第一青青草原| 久久精品久久精品一区二区三区| 久久国产精品大桥未久av| 欧美国产精品va在线观看不卡| 亚洲精品自拍成人| 纯流量卡能插随身wifi吗| 日韩大片免费观看网站| 另类亚洲欧美激情| 国产成人免费无遮挡视频| 99国产综合亚洲精品| 老司机影院成人| 欧美日韩成人在线一区二区| 欧美+亚洲+日韩+国产| 日韩中文字幕视频在线看片| 熟女av电影| 91精品伊人久久大香线蕉| 国产成人精品久久久久久| 一边摸一边做爽爽视频免费| bbb黄色大片| 免费黄频网站在线观看国产| 国产高清国产精品国产三级| 女人久久www免费人成看片| 欧美人与性动交α欧美软件| 国产成人影院久久av| 999久久久国产精品视频| 可以免费在线观看a视频的电影网站| 成人午夜精彩视频在线观看| 久久青草综合色| 亚洲九九香蕉| 秋霞在线观看毛片| 国产国语露脸激情在线看| 亚洲欧美色中文字幕在线| 丰满人妻熟妇乱又伦精品不卡| 亚洲精品美女久久av网站| 亚洲精品国产av成人精品| 久久天躁狠狠躁夜夜2o2o | 国产一区亚洲一区在线观看| 亚洲国产精品999| 国产免费一区二区三区四区乱码| 久久免费观看电影| 天天躁夜夜躁狠狠躁躁| 一边亲一边摸免费视频| 亚洲国产日韩一区二区| 欧美精品啪啪一区二区三区 | 女人精品久久久久毛片| 热99久久久久精品小说推荐| 欧美日韩视频高清一区二区三区二| 国产高清不卡午夜福利| 一级黄片播放器| 日本wwww免费看| 久热这里只有精品99| 啦啦啦在线免费观看视频4| 中文字幕另类日韩欧美亚洲嫩草| 午夜两性在线视频| av片东京热男人的天堂| 国产av一区二区精品久久| 啦啦啦视频在线资源免费观看| 亚洲av日韩在线播放| 婷婷色av中文字幕| 一本—道久久a久久精品蜜桃钙片| 久久天堂一区二区三区四区| 99国产精品99久久久久| 日韩人妻精品一区2区三区| 三上悠亚av全集在线观看| 久久久国产一区二区| 亚洲久久久国产精品| 我要看黄色一级片免费的| 大香蕉久久成人网| 亚洲成人免费av在线播放| 亚洲欧洲精品一区二区精品久久久| 国产在线免费精品| 黄色视频在线播放观看不卡| 又大又黄又爽视频免费| 午夜福利一区二区在线看| 精品高清国产在线一区| 天天躁夜夜躁狠狠久久av| 每晚都被弄得嗷嗷叫到高潮| 午夜激情久久久久久久| 黄色视频不卡| 男人爽女人下面视频在线观看| 婷婷色综合大香蕉| 在线观看免费视频网站a站| 啦啦啦视频在线资源免费观看| 男女下面插进去视频免费观看| 国产无遮挡羞羞视频在线观看| 日本vs欧美在线观看视频| 91麻豆精品激情在线观看国产 | av在线老鸭窝| 黄色怎么调成土黄色| 久久人妻福利社区极品人妻图片 | 日本wwww免费看| 少妇被粗大的猛进出69影院| av国产久精品久网站免费入址| 久久天躁狠狠躁夜夜2o2o | 夫妻午夜视频| 夫妻性生交免费视频一级片| 国产日韩欧美视频二区| 国产成人免费观看mmmm| 深夜精品福利| 在线 av 中文字幕| 国产极品粉嫩免费观看在线| 国产精品久久久人人做人人爽| 丝袜美足系列| 嫁个100分男人电影在线观看 | 国产精品免费大片| 亚洲第一青青草原| 中文字幕av电影在线播放| 高清黄色对白视频在线免费看| 中文字幕亚洲精品专区| 国产97色在线日韩免费| 久久亚洲精品不卡| 国产成人av激情在线播放| 日本a在线网址| 纯流量卡能插随身wifi吗| svipshipincom国产片| 天天添夜夜摸| 超碰97精品在线观看| 一级片'在线观看视频| 日韩熟女老妇一区二区性免费视频| 久热爱精品视频在线9| e午夜精品久久久久久久| 男女床上黄色一级片免费看| 国产片特级美女逼逼视频| 亚洲av成人精品一二三区| 欧美老熟妇乱子伦牲交| 婷婷色综合www| 婷婷色综合大香蕉| 国产主播在线观看一区二区 | 免费看十八禁软件| 久久久国产欧美日韩av| 亚洲 欧美一区二区三区| a级毛片在线看网站| 亚洲图色成人| 久久人人爽av亚洲精品天堂| 国产福利在线免费观看视频| 国产爽快片一区二区三区| 国产精品欧美亚洲77777| 人体艺术视频欧美日本| 国产无遮挡羞羞视频在线观看| 一级片'在线观看视频| 国产精品一区二区在线观看99| 日韩中文字幕欧美一区二区 | www.999成人在线观看| 欧美日韩av久久| av片东京热男人的天堂| 一二三四社区在线视频社区8| 黄色视频在线播放观看不卡| 亚洲av男天堂| 国产欧美亚洲国产| 99热全是精品| 啦啦啦在线观看免费高清www| 90打野战视频偷拍视频| 久久精品久久久久久久性| 国产男女内射视频| 国产精品一区二区在线观看99| 啦啦啦啦在线视频资源| 久久久国产一区二区| 国产av精品麻豆| 免费在线观看影片大全网站 | 久久国产精品男人的天堂亚洲| 91精品伊人久久大香线蕉| 久久九九热精品免费| 午夜免费观看性视频|