• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    DES Simulation of Flow Field of Propeller Tip Vortex

    2015-12-12 08:52:12SHILipanXIONGYingSUNHaitao
    船舶力學(xué) 2015年6期

    SHI Li-pan,XIONG Ying,SUN Hai-tao

    (1 Dept.of Naval Architecture,Naval University of Engineering,Wuhan 430033,China;2 College of Basic Education for Commanding Officers,National University of Defense Technology,Changsha 410072,China)

    0 Introduction

    The tip vortex is a complicated three-dimensional viscous flow phenomenon which will be formed if the propeller is rotating in the flow field.With the velocity of flow field in the vicinity of the tip vortex core region increasing,the pressure of the core decreases significantly.The tip vortex cavitation will occur in the center of the vortex,if the pressure drops below the saturated vapor pressure.Tip vortex cavitation is of major concern in the design stage of propellers since it is an important source of noise.In order to avoid or control the tip vortex cavitation,flow field of the propeller needs to be simulated by numerical method.So it is very important and significant to study the state of the propeller blade wake flow field.

    The experimental investigation of the propeller wake plays an important role in the performance analysis of ship propulsion.The characters of the tip vortex and wake structure are measured by using advanced flow visualization and non-intrusive measurement techniques traditionally.As the Laser Doppler Velocimetry has great advantages of velocity direction recognition and good frequency response of a non-intrusive probe,it is widely used in the measurements of the propeller wake flow.Min[1]and Hsiao[2]studied the tip vortex evolution by using the LDV.Jessup[3-4]and Dong[5]carried out extensive experiments for the DTRC 4119 using a LDV system in a water tunnel and substantial measured data on the flow field in the wake.Comparison of the experimental data between the LDV and PIV was made by Li[6-7].These data were all used to compare with the numerical results.

    Numerical computations based on the Navier-Stockes equation have been used to predict the detail flow structure of the propeller flow field.Tang and Dong[8]made a simulation of the flow field around the propeller by using RANS method combined with the non-staggered grid system.Their study shows that the method used to predict the viscous flow around the propeller not only qualitatively but also quantitatively.Stanier[9]investigated the blade wake flow feature of the DTRC 4119 by RANS method.The open water performance and the predicted velocities show good agreement with the measurements,but significant scale effect had been detected between the model and full scale propellers.Turnock[10]enhanced an existing 2D vortex identification algorithm to track the helical path of the tip vortex generated by a marine propeller DTRC4119.With a suitably mesh concentrated about the tip vortex core,significant improvements had been demonstrated to predict the vortex tracking.Bulten[11]found that the choice of RANS turbulence model extended a limited effect on the computation results.But local mesh refinement method enables a deep analysis of the flow phenomena in the tip vortex.LES with a rotating mesh has been applied for the simulation of the flow around a propeller.Compared the calculated data with extensive PIV and LDV measurements,Bensow[12]found that the numerical results without the refined mesh had deteriorated significantly at approximately one propeller diameter downstream of the propeller.Roberto Muscari[13]overcame the over predicted eddy of the simulation and made a success to capture the flow detail of propeller E779A accurately.

    To save the computational resource and precisely capture the tip vortex structure,the DES method is employed in the simulation of the flow field around the DTRC 4119.Present result demonstrates the capability of the DES method to handle the propeller flows through the comparison between calculation results and experimental data.

    1 Numerical model

    1.1 Turbulence modeling

    The propeller blade wake flow is one of the most complicated flow field in naval hydrodynamic.The blade inflow varies significantly as the propeller rotates.It contains the intense vortex sheet which travels downstream and exerts great effect on the wake flow.In this paper,the DES based on the SA model is adopted to the simulation to improve the precision and reduce the resource of the computation.DES method is the mixer of the LES and the RANS.For the flow close to the wall,the RANS model is used.The LES model is employed for the flow away from the wall.

    The governing equation here can be written as below:

    The DES based on the SA model is adopted.As a one-equation turbulence model,the SA model can solve a transport equation of turbulent eddy viscosity.The switch between RANS and LES in the original DES-SA model is achieved by replacing the explicit length scale.

    In formula(5),dRANSrepresents the wall distancelength scale of the grid size,in which Δx,Δy,Δz represent the grid size in three direction respectively,the model constant CDES=0.65.

    1.2 Geometry and computation grid

    The simulation was performed for David Taylor propeller 4119,which is a three-blade propeller with 12 inch diameter.Since the hub and the blade root are complicated,some geometry simplifications are made for the numerical study.The root fillets and a root trailing edge cut-out are ignored.In order to improve the quality of the grids,propeller blades are assumed to be mounted on an infinite constant-radius hub/shaft cylinder.The computational domain is established and is shown in Fig.1,in which the inlet boundary is located 4 propeller radius upstream and the outlet boundary is 10 radius downstream of the propeller disk plane.The radius of the computational domain is chosen as 4 times greater than the propeller radius.

    Fig.1 The computation domain

    To create an appropriate structure grid inside the domain,the combination of H-type grid and O-type grid block structure is applied.Finally,the grid with a total of 5.4 million cells is created for the current domain.The first grid spacing is specified as 2.5×10-5of the diameter of the propeller on the blade surface.In that case,the y+is between 1 and 10 in the first grid on all blade surfaces.As the velocity gradient of the vortex core is great,to minimum discrete er-ror of the mesh,at least 15 points are used in the across direction of the vortex core.

    1.3 Boundary conditions

    All the boundary conditions are specified in an implicit manner.The boundary conditions are as follows:velocity boundary is used both at the inlet and the outer radial surfaces;the noslip condition is applied on the blade and shaft/hub surface;static pressure outlet is adopted.The turbulence intensity is chosen as 5%and eddy viscosity ratio is 10 at the inlet.

    In the present study,the numerical computations are carried out at five different advance coefficients J=U0/nD=0.5,0.7,0.833,0.9,1.1,here U0is the axial velocity,n is the propeller rotating speed and D is the propeller diameter.J=0.833 is the design condition.The advance ratios above correspond to different Reynold numbers,which are from 1.37×106to 1.43×106,the Reynold numbers are based on the propeller blade chord length at 0.7R section and the vector sum velocity of the inflow velocity and the rotational component.

    2 Numerical simulation

    Before the analysis the detailed flow around the propeller,the numerical method should be validated firstly.The numerical results here are systematic compared with the experimental data measured by Jessup(1989)[3]to validate current numerical method.

    2.1 Validation of the open water performance

    Validation of the open water performance is one of the most important things in the simulation of the flow around the propeller.The first step is comparison of the non-dimension parameters with the experimental data.

    The non-dimension parameters of propeller are described as:

    Fig.2 The open water performance of the propeller

    where T is the thrust of the propeller,QPis the torque of the propeller,ρ is the fluid density,n is the propeller rotational speed,D is the diameter of propeller,J is the advance ratios,Ktis the thrust coefficient and Kqis the torque coefficient of the propeller,respectively.

    From the comparison in Fig.2,it is seen that the DES method predicts the measured results fairly well for all advance ratios,especially at the designing point of the propeller.The error is less than 4%compared with the experimental results,which means that this method is reliable to predict the open water performance of propeller.

    2.2 Analysis of the blade surface pressure distribution

    The measurement of the pressure distribution is accomplished by Jessup using LDV method.Figs.3-5 illustrate the pressure distributions of Propeller DTRC4119 at the 0.3,0.7 and 0.9 radius respectively.

    Fig.3 The pressure distribution at r/R=0.3

    Fig.4 The pressure distribution at r/R=0.7

    The pressure coefficient is defined by the 22nd International Towing Tank Conference Propulsion Committee.

    In which Vx=U0,p is the pressure on the blade section,p0is the reference pressure,n is the rotating speed of the propeller.

    The DES methods predict the measured results fairly well in general.All the numerical datashows a very good agreement with the experimental data over most of the chord.However the numerical result has a sight difference in the measurement results near the leading edge.The greatest discrepancy between predictions and measurement occurs at the 0.3 radius,which may be due to model geometry simplification of the hub.

    2.3 Analysis of the flow field of the propeller

    The accurate prediction of the flow field around the propeller is the basis for the simulation of the tip vortex cavitation and is useful to get the coherent of the tip vortex and its development.

    Based on the detail flow field near the tip of propeller,the velocity and pressure distribution can be simulated exactly.And the flow field plays an important role in the prediction of the propeller exciting force.Results of the axial velocity distribution downstream of propeller are shown in Fig.6.The measurement planes are located at a distance between r/R=0.25 and r/R=1.0 with an increase of 0.125r/R.In the x direction,the axial velocity decreases as the flow travel downstream.The phase of the axial velocity varies with the propeller if the wake travel downstream,and the amplitude decrease if travel downstream.

    Fig.6 Variation of axial velocity downstream of the propeller

    Fig.5 The pressure distribution at r/R=0.9

    Fig.7 is the results of the velocity distribution downstream of the propeller.The measurement plane is located at a distance of 0.328R downstream of the propeller disc plane.The data shown in Fig.7 is measured at the radius of r/R=0.7.The velocity in the axial direction is over predicted by the CFD calculations,but the error is reasonable.Meanwhile,agreement between the measurement and the calculation is satisfactory.

    In order to do further research detail for the flow field,the counters of axial velocity at the plane of x/R=0.328 are illustrated in Fig.8.Agreement between the measurements and calculations is quite good for all radius except those near the hub,which is due to the geometrized simplification of the hub and cap by a cylinder.The accuracy of the prediction of the flow field in the vortex core so far is in good agreement with the measurements.

    Fig.7 Comparison of measured and calculated velocity field components downstream of the propeller for radius r/R=0.7,x/R=0.328

    Fig.8 The counters of the axial velocity at the plane of x/R=0.328

    2.4 Analysis of the propeller tip vortex

    In the simulation process,it is very important to identify the shape and the location of the tip vortex of propeller.Here,the positive second invariant‘Q’is introduced to define the propeller tip vortex.The definition of Q can be written as below.

    in which,S and Ω are the symmetric and anti-symmetric components of the ▽u respectively.

    In present paper,the Iso-surface of the‘Q’represents the tip vortex of the propeller shown as Fig.9,in which the counter of the pressure was identified on the tip vortex surface.Compared with the RANS method,the DES result indicates that the present tip vortex can keep its strength and travel downstream for a long distance.That is to mean that the DES method can avoid the over-predicting of eddy viscosity along the vortex core,which is suitable for predicting the downstream-field structure of the propeller.

    Fig.9 Iso-surface plot of constant vorticity

    In the simulation of tip vortex,the location of vortex core is one of the most important factors.Fig.10 illustrates the location of the tip vortex core with the experimental and simulated results in the radial direction.It is easy to conclude that present numerical result fits well with the experimental data in the condition x/R≤0.1.For the downstream of the tip vortex,the radius of the numerical result is a little greater than the experimental data.Such difference may be induced by the ignoring hub effects.In general,the discrepancy of the vortex core location in the radial direction is less than 3%compared with the experimental and simulated results,which shows the great application prospect of DES in the prediction problem of tip vortex location.

    Fig.10 Radial location of tip vortex

    3 Conclusions

    Based on the Detached Eddy Simulation method(DES),the flow field around the propeller numbered as DTRC 4119 was simulated numerically and the hydrodynamic performance of this propeller is summarized.Compared with the experimental results,some numerical conclusions can be drawn as follows.

    (1)In order to reduce the discrete error induced by the grid,the mesh refinement was adopted in the process of performance simulation for the tip vortex core by DES,which contributes to avoid the over-predicting of the eddy viscosity along the vortex core and to keep the tip vortex travel downstream longer with the stable strength.Additionally,this numerical method can locate the vortex core location with fewer grids exactly.In the radial direction,the error of the vortex core’s location is less than 3%compared to the experimental results.Present method is applicable to predict the formation and location of the tip vortex.

    (2)The calculation results indicate that DES numerical method can exactly predict the velocity distribution in tip vortex flow field.However,the pressure distribution in the inner radius is greater than the experimental results.Such discrepancy may be related to the simplification of the hub model.

    [1]Min K S.Numerical and experimental method for prediction of fluid point velocities around propeller blades[R].MIT Department of Ocean Engineering Report No.78-12,1978.

    [2]Hoshino T,Oshima A.Measurement of flow field around propeller by using a 3-component Laser Doppler Velocimeter[J].Mitsubishi Heavy Industries Technical Review,1987,24(1):46-53.

    [3]Jessup S.An experimental investigation of viscous aspects of propeller blade flow[D].Washington:The Catholic University of America,1989.

    [4]Chesnakas C,Jessup S.Experimental characterization of propeller tip flow[C]//Twenty-Second Symposium on Naval Hydrodynamic.Washington DC,1998:156-170.

    [5]Dong S T,Xu X D.LDV Benchmark measurements of flow around a propeller[C].The 20th Intertioanl Tower Tank Conference,1993.

    [6]Li G N.LDV measurements of propeller trailing vortex[J].Journal of Experiments in Fluid Mechanics,2010,24(10):75-79.

    [7]Li G N,Zhang J,Chen Z S,et al.Propeller trailing vortex analysis based on PIV experimental data[J].Journal of Ship Mechanics,2011,15(10):1110-1114.

    [8]Tang D H,Dong S T.Numerical prediction and physical analysis of the viscous flow around a marine propeller[J].Journal of Hydrodynamic A,1997,12(4):426-436.

    [9]Stanier M.The application of RANS code to investigate propeller scale effects[C]//The Twenty-second Symposium on Naval Hydrodynamics.Washington,USA,1998.

    [10]Turnock S R,Pashias C,Rogers E.Flow feature identification for capture of propeller tip vortex evolution[C]//The Twenty-sixth Symposium on Naval Hydrodynamics.Rome,Italy,2006.

    [11]Bulten N,OpreaA I.Evaluation of McCormick’s rule for propeller tip cavitation inception based on CFD results[C]//Sixth International Symposium on Cavitation.Wageningen,2006.

    [12]Bensow R E,Liefvendahl M,Wikstr?m N.Propeller near wake analysis using LES with a rotating mesh[C]//The Twentysixth Symposium on Naval Hydrodynamics.Rome,Italy,2006.

    [13]Muscari R,MascioA D.Detached Eddy Simulation of the flow behind an isolated propeller[C]//Third International Symposium on Marine Propulsors.Launceston,Australia,2013.

    [14]Jinhee J,Fazle H.On the identification of a vortex[J].Journal of Fluid Mechanics,1995,285:69-94.

    [15]Shi L P,Xiong Y,Sun H T.Numerrical simulation of propeller tipvortex flowfield[C]//2013 Symposium on Naval Hydrodynamics.Xian,China,2013.

    免费观看人在逋| 男女边摸边吃奶| 99久久精品国产亚洲精品| 成人18禁高潮啪啪吃奶动态图| 脱女人内裤的视频| 美女国产高潮福利片在线看| 少妇精品久久久久久久| 亚洲精品美女久久久久99蜜臀| 亚洲国产精品一区二区三区在线| 一区在线观看完整版| √禁漫天堂资源中文www| 亚洲精品国产av成人精品| 国产无遮挡羞羞视频在线观看| 亚洲精品久久成人aⅴ小说| 国产男女超爽视频在线观看| tocl精华| 国产一区二区 视频在线| 欧美性长视频在线观看| 涩涩av久久男人的天堂| 国产亚洲欧美在线一区二区| 精品熟女少妇八av免费久了| 成人影院久久| 老司机在亚洲福利影院| 欧美精品高潮呻吟av久久| videosex国产| 日本wwww免费看| 日本av手机在线免费观看| 秋霞在线观看毛片| 国产av一区二区精品久久| 高清黄色对白视频在线免费看| 日韩一卡2卡3卡4卡2021年| 50天的宝宝边吃奶边哭怎么回事| 亚洲欧美激情在线| 国产精品国产av在线观看| 大型av网站在线播放| e午夜精品久久久久久久| 窝窝影院91人妻| 啦啦啦啦在线视频资源| 亚洲久久久国产精品| 亚洲精品日韩在线中文字幕| 欧美少妇被猛烈插入视频| 在线十欧美十亚洲十日本专区| 国产野战对白在线观看| 免费观看人在逋| 国产区一区二久久| 亚洲欧美清纯卡通| 新久久久久国产一级毛片| 成人亚洲精品一区在线观看| 人人妻人人澡人人看| 一区二区三区四区激情视频| 亚洲国产欧美日韩在线播放| 捣出白浆h1v1| 精品国产乱码久久久久久小说| 淫妇啪啪啪对白视频 | 国产精品久久久av美女十八| 亚洲熟女精品中文字幕| 一级毛片女人18水好多| 免费在线观看影片大全网站| 亚洲精品国产精品久久久不卡| 欧美精品一区二区免费开放| 黄色a级毛片大全视频| 国产精品一二三区在线看| 18禁国产床啪视频网站| 欧美日韩成人在线一区二区| √禁漫天堂资源中文www| 成年人午夜在线观看视频| 巨乳人妻的诱惑在线观看| 免费观看人在逋| 亚洲精品乱久久久久久| 国产精品熟女久久久久浪| 国产精品麻豆人妻色哟哟久久| 欧美日本中文国产一区发布| 亚洲色图 男人天堂 中文字幕| 国产高清国产精品国产三级| 建设人人有责人人尽责人人享有的| 国产精品国产av在线观看| 亚洲精品日韩在线中文字幕| 黄片播放在线免费| 老司机靠b影院| 男女床上黄色一级片免费看| 最黄视频免费看| 亚洲精品久久午夜乱码| 不卡一级毛片| 亚洲精品粉嫩美女一区| 日韩一卡2卡3卡4卡2021年| 9191精品国产免费久久| 精品亚洲成国产av| 亚洲av日韩在线播放| 一级片'在线观看视频| av不卡在线播放| 亚洲欧美色中文字幕在线| 男女免费视频国产| 成人三级做爰电影| 秋霞在线观看毛片| 国产一区二区三区综合在线观看| 免费在线观看黄色视频的| 国精品久久久久久国模美| 国产一级毛片在线| 国产一区二区三区在线臀色熟女 | 日韩精品免费视频一区二区三区| 一级片免费观看大全| 国产亚洲午夜精品一区二区久久| 欧美成人午夜精品| 日本黄色日本黄色录像| 国产麻豆69| 亚洲av成人一区二区三| 亚洲国产毛片av蜜桃av| 亚洲精华国产精华精| 欧美大码av| 欧美日韩黄片免| 黄色视频不卡| 国产97色在线日韩免费| 狂野欧美激情性bbbbbb| 国产精品二区激情视频| 亚洲国产av新网站| 99国产精品一区二区三区| 一区二区日韩欧美中文字幕| 在线观看免费日韩欧美大片| 国精品久久久久久国模美| 嫩草影视91久久| 国产av精品麻豆| 欧美黄色淫秽网站| 欧美日韩av久久| 另类亚洲欧美激情| 精品国产乱码久久久久久小说| 亚洲av成人一区二区三| 精品视频人人做人人爽| 欧美日韩成人在线一区二区| 精品卡一卡二卡四卡免费| 极品少妇高潮喷水抽搐| 美女大奶头黄色视频| 久久影院123| 亚洲精品中文字幕在线视频| 99国产综合亚洲精品| 狂野欧美激情性xxxx| 亚洲午夜精品一区,二区,三区| 日韩欧美一区二区三区在线观看 | 亚洲第一青青草原| 操出白浆在线播放| 国产成+人综合+亚洲专区| 午夜影院在线不卡| 免费高清在线观看视频在线观看| 免费一级毛片在线播放高清视频 | 精品国产乱码久久久久久男人| 老司机午夜福利在线观看视频 | 午夜精品国产一区二区电影| 日韩欧美免费精品| 免费av中文字幕在线| 国产精品一二三区在线看| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲国产精品999| 欧美人与性动交α欧美精品济南到| 中文字幕高清在线视频| 天天影视国产精品| 亚洲一区二区三区欧美精品| 亚洲色图综合在线观看| 美女中出高潮动态图| a在线观看视频网站| 色视频在线一区二区三区| www.自偷自拍.com| 天天操日日干夜夜撸| 搡老乐熟女国产| 国产成人欧美| 免费观看av网站的网址| 欧美久久黑人一区二区| av线在线观看网站| 视频在线观看一区二区三区| 少妇猛男粗大的猛烈进出视频| 国产亚洲精品第一综合不卡| 日韩人妻精品一区2区三区| 日本av手机在线免费观看| av在线app专区| 亚洲精品中文字幕一二三四区 | 亚洲精品国产区一区二| 午夜福利在线免费观看网站| 法律面前人人平等表现在哪些方面 | 日本精品一区二区三区蜜桃| 日韩制服骚丝袜av| 在线 av 中文字幕| 久久久水蜜桃国产精品网| 操美女的视频在线观看| 美女国产高潮福利片在线看| 欧美日韩福利视频一区二区| 欧美乱码精品一区二区三区| 精品人妻在线不人妻| 两性夫妻黄色片| 欧美日韩国产mv在线观看视频| 久久久精品免费免费高清| 国产欧美日韩一区二区精品| 欧美人与性动交α欧美软件| 精品乱码久久久久久99久播| 精品久久蜜臀av无| 性色av一级| 色94色欧美一区二区| 夜夜夜夜夜久久久久| 成年人午夜在线观看视频| 美女高潮喷水抽搐中文字幕| av又黄又爽大尺度在线免费看| 建设人人有责人人尽责人人享有的| 天天添夜夜摸| av天堂久久9| 久久久久久久国产电影| 交换朋友夫妻互换小说| 久久国产亚洲av麻豆专区| 国产真人三级小视频在线观看| a在线观看视频网站| 丝袜美足系列| 亚洲国产精品999| 桃花免费在线播放| 亚洲中文字幕日韩| 中文字幕另类日韩欧美亚洲嫩草| 制服人妻中文乱码| 日本91视频免费播放| 亚洲精品久久久久久婷婷小说| 国产成人免费无遮挡视频| 日韩 欧美 亚洲 中文字幕| 男人操女人黄网站| 色老头精品视频在线观看| 老汉色av国产亚洲站长工具| 高清av免费在线| 蜜桃国产av成人99| 国产伦人伦偷精品视频| 高潮久久久久久久久久久不卡| 在线观看人妻少妇| 欧美日韩成人在线一区二区| 午夜福利影视在线免费观看| 中文字幕人妻丝袜一区二区| 亚洲avbb在线观看| 欧美+亚洲+日韩+国产| 最近最新免费中文字幕在线| 精品久久久精品久久久| 亚洲精品久久成人aⅴ小说| 交换朋友夫妻互换小说| 黄色a级毛片大全视频| 啦啦啦免费观看视频1| 后天国语完整版免费观看| 一本综合久久免费| 99国产精品免费福利视频| 桃花免费在线播放| 久久久久久人人人人人| 最近最新中文字幕大全免费视频| 91精品国产国语对白视频| 久久狼人影院| 国产精品秋霞免费鲁丝片| 欧美日韩精品网址| 成年美女黄网站色视频大全免费| 国产av国产精品国产| 精品国产一区二区三区四区第35| 国产麻豆69| 国产精品国产三级国产专区5o| 90打野战视频偷拍视频| 成人18禁高潮啪啪吃奶动态图| 国产成人系列免费观看| 日本wwww免费看| 国产日韩欧美视频二区| 狠狠狠狠99中文字幕| 精品国产乱子伦一区二区三区 | 青春草亚洲视频在线观看| 精品人妻1区二区| 又大又爽又粗| 美女国产高潮福利片在线看| 国产亚洲精品久久久久5区| 男女国产视频网站| 伊人久久大香线蕉亚洲五| 伊人亚洲综合成人网| 中文字幕高清在线视频| 十八禁网站免费在线| 婷婷丁香在线五月| 成人国产一区最新在线观看| 亚洲一码二码三码区别大吗| 大片免费播放器 马上看| 欧美午夜高清在线| 美女扒开内裤让男人捅视频| 久久久国产欧美日韩av| 热99re8久久精品国产| 麻豆乱淫一区二区| 国产精品久久久久久人妻精品电影 | 搡老熟女国产l中国老女人| av视频免费观看在线观看| 99久久精品国产亚洲精品| 国产无遮挡羞羞视频在线观看| 欧美在线一区亚洲| 欧美乱码精品一区二区三区| 国产精品一区二区在线观看99| 精品一区在线观看国产| avwww免费| 色婷婷av一区二区三区视频| 国产欧美日韩一区二区三区在线| 亚洲精品久久久久久婷婷小说| 不卡av一区二区三区| 国产三级黄色录像| 久久国产精品人妻蜜桃| 精品视频人人做人人爽| 可以免费在线观看a视频的电影网站| 欧美 日韩 精品 国产| 亚洲国产欧美一区二区综合| 亚洲精品国产av成人精品| 日韩三级视频一区二区三区| 久久综合国产亚洲精品| 久久精品国产亚洲av香蕉五月 | 日本av免费视频播放| 色婷婷久久久亚洲欧美| 精品国产一区二区三区久久久樱花| 一级毛片电影观看| 91成人精品电影| 两性夫妻黄色片| 97人妻天天添夜夜摸| 欧美激情高清一区二区三区| 丰满少妇做爰视频| 天天添夜夜摸| 99九九在线精品视频| 亚洲精品美女久久av网站| 成人影院久久| 宅男免费午夜| 大片电影免费在线观看免费| 新久久久久国产一级毛片| 女警被强在线播放| 亚洲国产欧美日韩在线播放| 国产成人影院久久av| 色老头精品视频在线观看| 99国产综合亚洲精品| 亚洲精品av麻豆狂野| 欧美午夜高清在线| 中国国产av一级| 日韩 欧美 亚洲 中文字幕| 99热网站在线观看| 91成人精品电影| 三级毛片av免费| 热re99久久精品国产66热6| 亚洲精品中文字幕一二三四区 | 亚洲欧美色中文字幕在线| 热99re8久久精品国产| 不卡一级毛片| 国产一区二区三区av在线| 亚洲欧美激情在线| 久久久久国内视频| 一级a爱视频在线免费观看| 欧美xxⅹ黑人| 亚洲专区字幕在线| 国产精品自产拍在线观看55亚洲 | 国产高清国产精品国产三级| 久久久欧美国产精品| 欧美日韩亚洲国产一区二区在线观看 | 精品少妇内射三级| 在线天堂中文资源库| 搡老乐熟女国产| 精品视频人人做人人爽| 午夜成年电影在线免费观看| 一区福利在线观看| 大码成人一级视频| 好男人电影高清在线观看| 久久精品亚洲av国产电影网| 麻豆乱淫一区二区| 最新的欧美精品一区二区| 侵犯人妻中文字幕一二三四区| 男女免费视频国产| 曰老女人黄片| 国产精品久久久久久人妻精品电影 | 欧美精品亚洲一区二区| 国产精品久久久久久人妻精品电影 | 免费日韩欧美在线观看| 黄频高清免费视频| 老司机亚洲免费影院| 国产精品av久久久久免费| 91精品国产国语对白视频| 美女高潮到喷水免费观看| 啦啦啦中文免费视频观看日本| 国产精品二区激情视频| 淫妇啪啪啪对白视频 | 精品一区在线观看国产| 蜜桃在线观看..| 中国国产av一级| 亚洲视频免费观看视频| 9色porny在线观看| www.av在线官网国产| xxxhd国产人妻xxx| av有码第一页| 王馨瑶露胸无遮挡在线观看| 午夜福利在线免费观看网站| 国产亚洲精品一区二区www | 色94色欧美一区二区| 91精品国产国语对白视频| 国产精品九九99| 日日摸夜夜添夜夜添小说| 啦啦啦 在线观看视频| 黄色a级毛片大全视频| 人人妻人人爽人人添夜夜欢视频| 国产精品一区二区免费欧美 | 国产成+人综合+亚洲专区| 欧美日韩亚洲综合一区二区三区_| 一本综合久久免费| 亚洲国产精品一区二区三区在线| 亚洲午夜精品一区,二区,三区| 久久久久久久久久久久大奶| av免费在线观看网站| 人成视频在线观看免费观看| 少妇 在线观看| 日韩人妻精品一区2区三区| 国产精品99久久99久久久不卡| 亚洲av欧美aⅴ国产| 亚洲一区中文字幕在线| 亚洲黑人精品在线| 国产精品一二三区在线看| 青草久久国产| 国产一级毛片在线| 精品一区二区三区四区五区乱码| 久久久国产欧美日韩av| 午夜激情久久久久久久| 欧美变态另类bdsm刘玥| 91大片在线观看| 亚洲男人天堂网一区| 天堂8中文在线网| 深夜精品福利| 免费在线观看日本一区| 成人亚洲精品一区在线观看| 国产在视频线精品| 亚洲精品中文字幕一二三四区 | 国产精品久久久人人做人人爽| 法律面前人人平等表现在哪些方面 | 女人精品久久久久毛片| 亚洲国产毛片av蜜桃av| 亚洲欧洲日产国产| 99re6热这里在线精品视频| 50天的宝宝边吃奶边哭怎么回事| 五月开心婷婷网| 精品卡一卡二卡四卡免费| 99国产综合亚洲精品| 国产精品久久久久成人av| 在线看a的网站| 777久久人妻少妇嫩草av网站| 亚洲精品自拍成人| 日韩中文字幕欧美一区二区| bbb黄色大片| 新久久久久国产一级毛片| 中文精品一卡2卡3卡4更新| 亚洲国产看品久久| 多毛熟女@视频| 高清视频免费观看一区二区| 国产成人a∨麻豆精品| 午夜福利在线免费观看网站| 久久久久网色| 超色免费av| 热re99久久精品国产66热6| bbb黄色大片| 亚洲一码二码三码区别大吗| 国产亚洲精品一区二区www | 成在线人永久免费视频| 在线 av 中文字幕| 成人手机av| 每晚都被弄得嗷嗷叫到高潮| 久久这里只有精品19| 丝袜喷水一区| 欧美另类一区| 久久中文看片网| 久久 成人 亚洲| 午夜福利在线免费观看网站| 国产老妇伦熟女老妇高清| 汤姆久久久久久久影院中文字幕| 亚洲精品国产区一区二| 日本vs欧美在线观看视频| 搡老岳熟女国产| 国产精品免费大片| 99re6热这里在线精品视频| 精品国产国语对白av| 国产免费福利视频在线观看| 一级黄色大片毛片| 国产国语露脸激情在线看| 日本五十路高清| 一级片'在线观看视频| 精品乱码久久久久久99久播| 中文字幕高清在线视频| 亚洲av日韩在线播放| 欧美成人午夜精品| 黄色片一级片一级黄色片| 国产日韩欧美亚洲二区| 夫妻午夜视频| 在线天堂中文资源库| 夜夜骑夜夜射夜夜干| 日韩人妻精品一区2区三区| 妹子高潮喷水视频| av片东京热男人的天堂| 久久狼人影院| 亚洲欧美日韩高清在线视频 | 首页视频小说图片口味搜索| avwww免费| 91老司机精品| 精品国产乱码久久久久久男人| 黄色视频在线播放观看不卡| 麻豆国产av国片精品| 久久精品国产a三级三级三级| 首页视频小说图片口味搜索| 欧美午夜高清在线| 91精品伊人久久大香线蕉| 大型av网站在线播放| 一区二区三区激情视频| 久久久精品国产亚洲av高清涩受| 青春草视频在线免费观看| 9色porny在线观看| 最近中文字幕2019免费版| 一二三四在线观看免费中文在| 麻豆国产av国片精品| 天天躁狠狠躁夜夜躁狠狠躁| av天堂久久9| 日韩熟女老妇一区二区性免费视频| 五月天丁香电影| 久久九九热精品免费| 日韩制服丝袜自拍偷拍| 欧美国产精品一级二级三级| 捣出白浆h1v1| 亚洲va日本ⅴa欧美va伊人久久 | 少妇 在线观看| 操出白浆在线播放| av欧美777| 一级毛片女人18水好多| 久久人妻熟女aⅴ| 久久人人爽人人片av| 视频区图区小说| 美女中出高潮动态图| xxxhd国产人妻xxx| 欧美xxⅹ黑人| 不卡一级毛片| 777米奇影视久久| 深夜精品福利| 一本大道久久a久久精品| 国产精品偷伦视频观看了| 欧美+亚洲+日韩+国产| 可以免费在线观看a视频的电影网站| 久久久欧美国产精品| 亚洲av成人一区二区三| 最近最新免费中文字幕在线| 日韩欧美国产一区二区入口| 国产精品 欧美亚洲| 日韩,欧美,国产一区二区三区| 超碰成人久久| 在线观看免费日韩欧美大片| 一个人免费看片子| 搡老乐熟女国产| 国产精品av久久久久免费| 精品少妇一区二区三区视频日本电影| 精品国产一区二区久久| 蜜桃在线观看..| 国产免费一区二区三区四区乱码| 久久天躁狠狠躁夜夜2o2o| 亚洲av成人不卡在线观看播放网 | 亚洲精品美女久久av网站| 超碰成人久久| 成人黄色视频免费在线看| 丝袜喷水一区| 精品一区二区三区av网在线观看 | 欧美精品一区二区大全| 国产成人欧美| 成人三级做爰电影| 女人久久www免费人成看片| 亚洲国产精品成人久久小说| 黄色片一级片一级黄色片| 久久精品aⅴ一区二区三区四区| 啦啦啦视频在线资源免费观看| 亚洲国产欧美一区二区综合| 嫩草影视91久久| 欧美另类亚洲清纯唯美| 国产又色又爽无遮挡免| 国产成人av激情在线播放| 99国产综合亚洲精品| 水蜜桃什么品种好| 亚洲一区二区三区欧美精品| 久久人人97超碰香蕉20202| 可以免费在线观看a视频的电影网站| 久久亚洲精品不卡| 黄色怎么调成土黄色| 免费女性裸体啪啪无遮挡网站| 97精品久久久久久久久久精品| 欧美日韩视频精品一区| 午夜福利视频在线观看免费| 青春草亚洲视频在线观看| 亚洲av日韩精品久久久久久密| 国产在视频线精品| 黄片大片在线免费观看| 国产在线一区二区三区精| 人妻久久中文字幕网| 久久天堂一区二区三区四区| 我的亚洲天堂| 黄色视频,在线免费观看| 水蜜桃什么品种好| 99香蕉大伊视频| tube8黄色片| 一级片'在线观看视频| 美女高潮喷水抽搐中文字幕| 国产精品熟女久久久久浪| 久久性视频一级片| 丝袜在线中文字幕| 色综合欧美亚洲国产小说| 亚洲久久久国产精品| 日韩免费高清中文字幕av| 久久精品亚洲av国产电影网| 乱人伦中国视频| 久久ye,这里只有精品| 黄色视频不卡| 欧美激情久久久久久爽电影 | 亚洲,欧美精品.| 日本av手机在线免费观看| 纵有疾风起免费观看全集完整版| 老司机靠b影院| 夫妻午夜视频| 中文字幕另类日韩欧美亚洲嫩草| 老汉色∧v一级毛片| 亚洲avbb在线观看| 精品久久久久久久毛片微露脸 | a级毛片在线看网站| 男女午夜视频在线观看| 高潮久久久久久久久久久不卡| 日韩人妻精品一区2区三区| videos熟女内射| 精品少妇久久久久久888优播| 亚洲av欧美aⅴ国产| 十八禁高潮呻吟视频|