• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Macro Element Method to Improve Computational Efficiency in Large-scaled Nonlinear Analysis

    2015-12-12 05:45:06HuanWangWeifengYuanandFeiJia
    Computers Materials&Continua 2015年7期

    Huan Wang,Weifeng Yuanand Fei Jia

    A Macro Element Method to Improve Computational Efficiency in Large-scaled Nonlinear Analysis

    Huan Wang1,Weifeng Yuan2,3and Fei Jia2

    Compared with dealing with a linear system,solving a nonlinear system equation in numerical simulation requires generally more CPU time since iterative approach is usually used in the latter.To cut down the computing cost,a direct way is to reduce the degree of freedoms(DOF)of the problem under investigation.However,this kind of treatment may result in poorer accuracy.In this manuscript,a macro element method is proposed to improve computational efficiency in large-scaled nonlinear analysis.When this concept is incorporated into finite element analysis(FEA),all the members in the linear zones of a structure can be grouped into just one macro element.By using weak member approach,the stiffness matrix of this macro element can be evaluated through unit force method.Numerical examples prove that the proposed macro element method can increase the computational efficiency significantly without obvious negative influence on accuracy.

    Macro element,nonlinear,computational efficiency.

    1 Introduction

    FEA is an important numerical tool to analyze various problems.It is well known that the computing cost in a FEA modelling is dependant on the number of degree of freedoms(DOF)in the FEA model under investigation.In numerical simulations,some algorithms including multi-domain method[Miao,Chen,Wang and Zhu(2014)]and static condensation method[Eom,Ahn,Baek,Kim and Na(2007)]are usually employed to achieve DOF reduction.In a large-scaled problem,a direct way to improve the computational efficiency is to limit the number of elements.However,some important details of the structural response may be sacrificed sincefewer elements may cause poorer accuracy[Lin and Donaldson(1969);Finnveden(1994)].Alternatively,superelement method is also widely used in FEA analyses for various problems[Lukasiewics(1987);Song(2004);Birgersson,Finnvedenand Nilsson(2005);Dong,Atluri(2012),(2013)].The original idea of superelement was introduced by aerospace engineers in the early 1960s to carry out a first-level breakdown of complex systems such as an entire airplane[Przemieniecki(1968)].Briefly,the basic concept of superelement method is to treat structural members as a continuous body and then discretize this body into superelements defined as any cluster of contiguous elements[Cao(1992);Jiang and Olson(1994)].In this way,each superelement may consist of different types of members which may have various shapes,materials properties and boundary conditions.

    As a hallmark of practical application,superelement technique was incorporated into NASTRAN in the 1970s.The capability of superelement method was then tested and further developed[Zemer(1979);Jacobsen(1983)].Because of the most attractive advantage to significantly improve the computational efficiency,superelement method has been employed to analyze various problems in recent years.In summary,the problem characteristics which are suitable for the application of superelement can be summarized into three distinguishing features,viz.iterative computational tasks,localized nonlinearity and a large number of finite elements in the numerical models for applications in dynamics.At present,the methods to construct superelements are usually based on substructure and static condensation techniques[Wilson(1979);Chen and Pan(1988)].However,inconvenience may be caused in the conventional superelement techniques.For instance,to apply static condensation,many nodes in the mesh have to be renumbered,or the rows and the columns in the stiffness matrix have to be swapped to make the DOF associated with the superelement to lie in the upper left sub-matrix in the system stiffness matrix.Therefore,a macro element method based on superelement concept is proposed in this manuscript to overcome the limitations of the conventional superelement formulation.To implement this approach,an entire structure has to be divided into several linear and nonlinear zones according to the requirement of numerical investigation and the behavior of the structure.The main novelties of the proposed approach include(i):the algorithm is very simple to implemented,and(ii):the whole members in all linear zones can be grouped into just one super element,even in the case that the linear zones are not connected.

    2 Methodology

    2.1 Concept

    Fig.1 shows a linear elastic system which contains two nodes A and B.Three load cases are discussed below:

    Case 1:in Fig.1(a),a force p1is applied at node A along direction x1.At node B,the displacement vector induced by p1is denoted by[u11u21]T.

    Case 2:in Fig.1(b),a force p2is applied at node A along direction x2.At node B,the displacement vector induced by p2is denoted by[u12u22]T.

    Case 3:In Fig.1(c),two arbitrary forces,P1and P2are applied at node A simultaneously.At node B,the displacement vector induced by P1and P2is denoted by[U1U2]T.

    According to the theory of linear system,[U1U2]T,the displacement vector in Case 3 can be evaluated based on Case 1 and Case 2.

    Taking the forces at node A as input and the displacements at node B as output,Eq.1 can be used to describe the linear system.

    Figure 1:Illustration of force-displacement relationship in a linear elastic system.

    From Case 1 and Case 2,one obtains:

    Therefore,for Case 3,U1and U2can be carried out:

    where KKK performs as a stiffness matrix.

    From Eq.1 to Eq.6,one finds that KKK can be obtained by unit force method.

    2.2 Derivation

    In Fig.2(a),a structure with restraints(i=1,2,3,···,mL)and1,2,3,···,mN)is subjected to external loadsand1,2,3,···,nN).For finite element modelling,the structural domain is normally discretized into a cluster of elements,each element contains several nodes.Without loss of generality,it is assumed that there are five nodes on the boundary between the linear and nonlinear zones.In the linear zone,there is a typical node R that has NDDOF.The following four steps describe how to group the entire linear zone into a macro element.

    1)Focus on the simulant structure of the original one

    Fig.2(b)is the simulant structure of the one in Fig.2(a).Compared with the original structure,the simulant structure is under the same loadings and restraints.However,the nonlinear zone in Fig.2(a)is replaced by the overlapped zone in Fig.2(b).The overlapped zone consists of two parts,viz.the virtual weak part and the original nonlinear zone.The virtual weak part is the same as the original nonlinear zone in geometry,but the members in the virtual weak part are assumed to be elastic,with very low elastic modulus.

    Figure 2:The procedure to group the linear zone into a macro element.

    2)Define a macro element

    The original nonlinear zone andNPPPl(l=1,2,3,···,nN)are all removed from Fig.2(b)to create Fig.2(c).In Fig.2(c),the linear zone and the virtual weak part form a fictitious linear structure.The system equation of a FEA model for the fictitious structure can be expressed by Eq.7:

    In this equation,the subscript“f”denotes “ fictitious”. KKKfis the global stiffness matrix of the fictitious structure. UUUfand PPPfare the displacement and force vectors,respectively.Since the entire fictitious structure is elastic,Eq.7 is a linear equation.It should be noted that the entire fictitious structure restrained byLCiandNCi(i=1,2,3,···,m)performs as a stable linear system.Therefore,one can treat this structure as a continuous elastic body and convert it into a macro element.It should be noted that both the linear zone and the virtual weak part are modelled by a cluster of node-based elements in a numerical model.However,only six nodes are selected to form the macro element.The six nodes include R,the reference node,and the five joints shared by the linear and the virtual weak parts(Fig.2(d)).3)Evaluate the stiffness matrix of the macro element.

    As mentioned,the macro element contains six nodes.Each node has NDDOF in the original FEA model for the fictitious structure.However,in the macro element,the DOF of the reference node R is set to 1 due to its special role.Each of the other five nodes still has NDDOF.Hence,the total DOF of the macro element is 5ND+1.Denoted by KKKm,the stiffness matrix of the macro element should satisfy the following equation:

    In Eq.8,the subscript“m”represents “macro”. UUUmand PPPmare the displacement and force vectors,respectively.They are all(5ND+1)×1 vectors. KKKmis a(5ND+1)×(5ND+1)matrix.Based on Eq.7, KKKmcan be evaluated using unit force method.

    Firstly,?for convenience,define a load case L0which indicates that..are applied to the macro element simultaneously.The scalar coefficient λ is used to adjust the magnitudes of the forces.In this study,it is recommended that λ=The superscript of L0denotes the load case number.Fromare all ND×1 vectors.In the superscript,the letter in front of the comma indicates the identitywhile the number behind the comma is for load case.For instance,means the displacement vector at node 3 due to load case L0.Similarly,the displacement at node R induced by L0is denoted byIn this study,the reason why R is selected to be “the reference node”is thathas a nonzero component.Without loss of generality,it is assumed that this nonzerothese forces are represented symbolically by a single unit force,which is applied at node R along the direction of thevectors at the five joints induced bySecondly,a unit load is applied along the first DOF direction at node 1 to create the load case L1.The correspondingjoints can be obtained.They are defined to berespectively.Similarly,a unit force is applied to nodethe load case L2and obtain the correspondingRepeat this procedure till a unit force is applied to node 5procedure,a typical load case Lkis created and(k=1,5ND)can be calculated using Eq.7.Thirdly,considering all the load casesand the corresponding displacements,one can obtain:

    where K K Kmis a(5ND+1)×(5ND+1)matrix.

    As shown in Fig.2(e),the macro element and the nonlinear zone form a simplified structure.The macro element contains six nodes,viz.node R and nodes 1~5.In this structure,the real external loadsLPPPj(j=1,2,3,···,n)are replaced by a fictitious force with a magnitude λ acting at node R while the boundary conditions in the linear zone are ignored since their effects have been considered in the stiffness matrix of the macro element.In the nonlinear zone,both the original boundary conditions and the external loads remain unchanged.Since the stiffness matrix of macro element is known,the global stiffness matrix of the simplified structure can be assembled easily using conventional FEA approach.

    It should be noted that the structure shown in Fig.2(e)represents a nonlinear system.Compared with that of the original structure(Fig.2(a)),the DOF of the fictitious structure(Fig.2(e))is much less,so the computational cost for the original structure can be reduced.However,it must be mentioned that the numerical result based on Fig.2(e)is an approximation to that obtained from Fig.2(a).Theoretically,from the energy point of view,the difference between the two kinds of results can be limited by setting the stiffness of the weak part very small.

    3 Examples

    3.1 Demonstration of constructing a macro element

    As shown in Fig.3,a very simple plane frame is taken as an example to demonstrate the procedure of constructing a macro element.The frame is evenly divided into 20 2-node two-dimensional beam elements.Each node of a beam element has three DOF,viz.two translations and one rotation.Two pointed forces and a bending moment are applied at nodes 3,9 and 21,respectively.It is assumed that in such a structure,the elements between node 6 and node 21 are within a nonlinear zone,while those elements between node 1 and node 11 are in a linear zone.This example shows how the elements in the linear zone are merged into a macro element.

    Based on the model shown in Fig.4,both linear and nonlinear analyses can be conducted using conventional FEA algorithms.The DOF of the macro element is 4,so the total DOF of the modified FEA model is 34,which is much less than 63,the DOF of the original model.Therefore,by macro element method,the computational efficiency can be improved.

    In this example,the dimension of the cross-section of each beam is set to 0.05×0.05.The Young’s modulus and the Poisson’s ratio are 1×106and 0.3,respectively.The loads applied to the original frame are P1=P2=1 and P3=0.1.The deformation of the frame is calculated by the present macro element method and the conventional FEA,through generalized displacement approach.During the analyses,both λ and P3increase gradually and the load-displacement curves are depicted in Fig.5.The analysis stops when the load factor is up to 40.

    Figure 3:A two-dimensional frame subjected to external forces.

    Figure 4:A two-dimensional frame with a macro element.

    From Fig.5 it can be seen that the results obtained by the two methods have very good agreement.However,as the load factor increases,the variation between the two types of results becomes larger.This is because the nonlinearity behaviour of the beam members involved in the macro element becomes obvious when the load factor is large enough.Actually,such a situation conflicts with the basic assumption of the linearity in the macro element method.

    3.2 Investigation on the computational efficiency

    A two-storey steel frame is described in Fig. 6.The dimension of the cross-section of each member is set to be 0.1m×0.1m.Without macro element, the entire structureis divided into 40 3-dimensional 3-node fibre-beam elements[Spacone, Filippouand Taucer (1996)]. Each beam cross-section is divided into 100 segments.The loads applied on the original frame is P0 = 100kN. The material properties are as follows.

    Figure 5:Comparison between two kinds of load-displacement curve.

    Fig.6 also shows that the first storey of the original structure is grouped into a macro element.Since the two storeys have only two joints,viz.nodes B and C,the macro element consists of three nodes.Without loss of generality,node A is selected to be the reference node.For this example,two types of nonlinear simulation for the original and simplified FEA models are conducted on a Pentium Dual-Core PC(CPU E6700@3.20GHz),based on the generalized displacement approach.During the analyses,both geometrical and material nonlinearities are taken into account.The maximum number of the steps for load increment is set to be 1000.The numerical test proves that the computational efficiency can be improved significantly by using the proposed macro element method.The CPU time consumed in the analysis with macro element is only 25%(2771ms vs.11095ms)of that used in the analysis without macro element.Further comparison is depicted in Fig.7.It is observed that the deflection at node M increases as the external load becomes larger.The two load-deflection curves are very close which means that the result obtained by the proposed macro element method is accurate if the members grouped into the macro element do not in the first place behave nonlinearly,or the extent of nonlinear response is limited.

    Figure 6:A two-storey frame is analyzed using macro element method.

    Figure 7:Comparison between the displacements at node M.

    4 Conclusions

    This paper proposes a macro element method to simply nonlinear FEA analysis.Using the present method,the DOF of a large-scaled structure can be reduced significantly.Through the definition of virtual weak part,the structural members in the linear zones can be grouped into just one macro element regardless whether the linear zones are connected or not.Numerical examples demonstrate the construction of a macro element and verify the correctness of the proposed method.It can be concluded that the macro element method is easy to be implemented and it has great potential in the simulation of large-scaled complex structures.It must be mentioned that the two examples given in this paper are all geometrical nonlinearity problems.However,the formulation presented in this study is applicable to material nonlinearity problems as well.Unlike that of a conventional FEA model,the stiffness matrix of a macro element may not be symmetric.This may cause additional requirement for CPU time.On the other hand,the overall calculation may still be much more efficient since the total DOF of the original FEA model can be reduced significantly by the current macro element method.

    Acknowledgement: This work is sponsored by Southwest University of Science and Technology,through the fundings(i)Modelling of Dynamical Complex System(12xz7105)and(ii)DDA-BEM Coupling for Metal Cutting(13zxzk05).The support from SWUST is acknowledged by the authors.

    Birgersson,F.;Finnveden,S.;Nilsson,S.M.(2005):A spectral super element for modelling of plate vibration,part 1:General Theory.Journal of Sound and Viberation,vol.287,no.1-2,pp.297-314.

    Cao,Z.Y.(1992):Super element method for complex structure analysis.Mechanics and Practice,vol.14,no.4,pp.10-14.

    Chen,S.H.;Pan,H.H.(1988):Guyan reduction.Communications in Applied Numerical Methods,vol.4,no.4,pp.549-556.

    Dong,L.;Atluri,S.N.(2012):SGBEM(using non-hyper-singular traction BIE),and super elements,for non-collinear fatigue-growth analyses of cracks in stiffened panels with composite-patch repairs.CMES:Computer Modeling in Engineering&Sciences,vol.89,no.5,pp.415-456.

    Dong,L.;Atluri,S.N.(2013):Fracture&fatigue analyses:SGBEM-FEM or XFEM?Part 1:2D structures.CMES:Computer Modeling in Engineering&Sciences,vol.90,no.2,pp.91-146.

    Eom,K.;Ahn,J.;Baek,S.;Kim,J.;Na,S.(2007):Robust reduction method for biomolecules modeling.CMC:Computers,Materials&Continua,vol.6,no.1,pp.35-42.

    Finnveden,S.(1994):Exact spectral finite element analysis of stationary vibrations in rail way car structure.Acta Acustica,vol.2,pp.461-482.

    Jacobsen,K.P.(1983):Fully integrated superelements:a database approach to finite element analysis.Computers and Structures,vol.16,no.1-4,pp.307-315.

    Jiang,J.;Olson,M.D.(1994):Nonlinear analysis of orthogonally stiffened cylindrical shells by a super element approach.Finite Elements in Analysis and Design,vol.18,pp.99-110.

    Lin,Y.K.;Donaldson,B.K.(1969):A brief survey of transfer matrix techniques with special reference of aircraft panels.Journal of Sound and Vibration,vol.10,pp.103-143.

    Lukasiewics,S.A.(1987):Geometrical super-elements for elasto-plastic shells with large deformation.Finite Elements in Analysis and Design,vol.3,pp.199-211.

    Miao,Y.;Chen,Z.;Wang,Q.;Zhu,H.(2014):Mechanical analysis of 3D composite materials by hybrid boundary node method.CMC:Computers,Materials&Continua,vol.43,no.1,pp.49-73.

    Przemieniecki,J.S.(1968):Theory of Matrix Structural Analysis,Mc Graw-Hill Publication,New York.

    Song,C.(2004):A super-element for crack analysis in the time domain.International Journal for Numerical Methods in Engineering,vol.61,no.8,pp.1332-1357.

    Spacone,E.;Filippou,F.C.;Taucer,F.F.(1996):Fibre beam-column model for non-linear analysis of r/c frames:part I.formulation.Earthquake Engineering and Structural Dynamics,vol.25,no.7,pp.711-725.

    Wilson,E.L.(1979):The static condensation algorithm.International Journal for Numerical Methods in Engineering,vol.8,no.1,pp.198-203.

    Zemer,D.T.(1979):Implementation of superelement analysis at the production level.Proceeding of the MSC/NASTRAN Users’Conference,Munich,Germany.

    1School of Applied Technology,Southwest University of Science and Technology,China.

    2School of Manufacturing Science and Engineering,Southwest University of Science and Technology,China.

    3Corresponding author.E-mail:yuanweifeng@swust.edu.cn

    99久久久亚洲精品蜜臀av| 国产亚洲av嫩草精品影院| 欧美日本视频| 少妇人妻精品综合一区二区 | 99精品在免费线老司机午夜| 日韩高清综合在线| 麻豆国产97在线/欧美| 欧美一区二区精品小视频在线| 亚洲在线观看片| 色视频www国产| 成人无遮挡网站| 欧美性感艳星| 久久婷婷人人爽人人干人人爱| 精品国产亚洲在线| 亚洲av中文字字幕乱码综合| 非洲黑人性xxxx精品又粗又长| 国产一区二区三区在线臀色熟女| 国产精品综合久久久久久久免费| 国产成人a区在线观看| 午夜福利在线观看吧| 88av欧美| 夜夜看夜夜爽夜夜摸| 99久久99久久久精品蜜桃| 欧美中文日本在线观看视频| 男插女下体视频免费在线播放| av欧美777| 变态另类成人亚洲欧美熟女| 国产精品野战在线观看| 国产成人a区在线观看| 毛片一级片免费看久久久久 | 久久午夜亚洲精品久久| 欧美bdsm另类| 国产精品亚洲美女久久久| 在线播放国产精品三级| 深爱激情五月婷婷| 精品福利观看| 麻豆一二三区av精品| 日日夜夜操网爽| 麻豆一二三区av精品| 亚洲欧美日韩东京热| 精品不卡国产一区二区三区| 国产精品综合久久久久久久免费| 99久久久亚洲精品蜜臀av| 两个人的视频大全免费| 中文亚洲av片在线观看爽| 中文亚洲av片在线观看爽| 久久国产精品影院| 欧美日韩黄片免| 精品一区二区三区视频在线观看免费| 亚洲在线观看片| 亚洲最大成人手机在线| 亚洲成人中文字幕在线播放| 日日夜夜操网爽| 女人十人毛片免费观看3o分钟| 一区二区三区激情视频| 午夜福利成人在线免费观看| 精品久久久久久久久av| 国产成人福利小说| 一区二区三区激情视频| 国产乱人视频| 一级a爱片免费观看的视频| 精品午夜福利在线看| 亚洲最大成人av| 欧美zozozo另类| 亚洲av免费高清在线观看| 国产精品美女特级片免费视频播放器| 最新在线观看一区二区三区| 国产精品久久久久久久久免 | 欧美中文日本在线观看视频| 成年女人毛片免费观看观看9| 校园春色视频在线观看| 在线免费观看不下载黄p国产 | 欧美成狂野欧美在线观看| 久久久国产成人免费| 麻豆av噜噜一区二区三区| 国产69精品久久久久777片| 色av中文字幕| 九色国产91popny在线| 欧美一级a爱片免费观看看| 精品久久久久久久久久免费视频| 欧美国产日韩亚洲一区| 亚洲不卡免费看| 欧美中文日本在线观看视频| 男人的好看免费观看在线视频| 午夜亚洲福利在线播放| 欧美性猛交黑人性爽| 美女黄网站色视频| 色噜噜av男人的天堂激情| 国产不卡一卡二| 最好的美女福利视频网| 亚洲精品亚洲一区二区| 国产精品综合久久久久久久免费| 自拍偷自拍亚洲精品老妇| 国产三级中文精品| 国产黄片美女视频| 在线播放无遮挡| 亚洲av中文字字幕乱码综合| 亚洲人成网站在线播| 亚洲人成电影免费在线| 嫩草影院入口| 乱人视频在线观看| 五月玫瑰六月丁香| 久久精品国产清高在天天线| av在线观看视频网站免费| 夜夜看夜夜爽夜夜摸| 免费无遮挡裸体视频| 在线国产一区二区在线| 最近最新中文字幕大全电影3| 久久久国产成人精品二区| 真人一进一出gif抽搐免费| 色精品久久人妻99蜜桃| 亚洲av一区综合| 露出奶头的视频| avwww免费| 久久精品国产清高在天天线| 精品午夜福利在线看| 亚洲av电影在线进入| 欧美在线一区亚洲| 欧美一区二区亚洲| 亚洲国产欧美人成| 九九热线精品视视频播放| 亚洲狠狠婷婷综合久久图片| 欧美成人a在线观看| 国产真实乱freesex| 国产精品久久久久久久久免 | 免费人成在线观看视频色| 人妻丰满熟妇av一区二区三区| 国产色婷婷99| 日韩国内少妇激情av| 中文亚洲av片在线观看爽| 人人妻,人人澡人人爽秒播| 精品久久久久久,| 国产精品久久久久久久电影| 日韩国内少妇激情av| 人妻丰满熟妇av一区二区三区| 免费在线观看日本一区| 亚洲色图av天堂| 91久久精品电影网| 亚洲综合色惰| 欧美日韩中文字幕国产精品一区二区三区| 在线观看美女被高潮喷水网站 | 在线看三级毛片| 国产单亲对白刺激| 免费在线观看成人毛片| 成熟少妇高潮喷水视频| 欧美潮喷喷水| 在线观看66精品国产| 久久精品久久久久久噜噜老黄 | 中文字幕av在线有码专区| 久久精品国产亚洲av涩爱 | 大型黄色视频在线免费观看| 精品国产三级普通话版| 亚洲精品粉嫩美女一区| 久久精品综合一区二区三区| 嫩草影院精品99| 国产高清有码在线观看视频| 日韩欧美精品免费久久 | 免费无遮挡裸体视频| 12—13女人毛片做爰片一| 欧美日本亚洲视频在线播放| 97超视频在线观看视频| 一夜夜www| 一个人免费在线观看电影| 国产精品精品国产色婷婷| 精品午夜福利在线看| 中文字幕熟女人妻在线| 男人的好看免费观看在线视频| 亚洲欧美激情综合另类| 国产又黄又爽又无遮挡在线| 久久久久免费精品人妻一区二区| 日日摸夜夜添夜夜添av毛片 | 亚洲不卡免费看| 欧美国产日韩亚洲一区| 日本在线视频免费播放| 精品人妻一区二区三区麻豆 | 国产午夜福利久久久久久| 麻豆成人av在线观看| 国产免费一级a男人的天堂| 欧美日本亚洲视频在线播放| 好男人电影高清在线观看| 亚洲 欧美 日韩 在线 免费| 国产老妇女一区| 亚洲经典国产精华液单 | 欧美日韩中文字幕国产精品一区二区三区| 五月玫瑰六月丁香| 一二三四社区在线视频社区8| 亚洲av成人av| 亚洲熟妇熟女久久| 色哟哟·www| 亚洲最大成人av| av在线天堂中文字幕| 两个人视频免费观看高清| 男女视频在线观看网站免费| 国产欧美日韩一区二区精品| 99久久精品国产亚洲精品| 啦啦啦韩国在线观看视频| 精品福利观看| 91av网一区二区| 国产成人福利小说| 九九热线精品视视频播放| 我要看日韩黄色一级片| 久久久久久国产a免费观看| 观看美女的网站| 精品欧美国产一区二区三| 亚洲不卡免费看| 亚洲av中文字字幕乱码综合| 免费看光身美女| ponron亚洲| 久久精品国产清高在天天线| 亚洲av一区综合| 欧美日韩福利视频一区二区| 高清在线国产一区| 日日夜夜操网爽| 国产在线男女| 亚洲国产日韩欧美精品在线观看| 日韩国内少妇激情av| 国产高清视频在线播放一区| 国产精品久久久久久精品电影| 俄罗斯特黄特色一大片| 国产精品嫩草影院av在线观看 | 色吧在线观看| 99热只有精品国产| 精品久久久久久久久av| 夜夜爽天天搞| 1024手机看黄色片| 99久国产av精品| 亚洲在线观看片| 国产乱人伦免费视频| 亚洲精品在线观看二区| 少妇丰满av| 精品久久久久久久久av| 在线观看午夜福利视频| 亚洲成a人片在线一区二区| 蜜桃亚洲精品一区二区三区| 国内精品久久久久精免费| 欧美最新免费一区二区三区 | 一夜夜www| 无人区码免费观看不卡| 最近最新中文字幕大全电影3| 欧美绝顶高潮抽搐喷水| 在线a可以看的网站| 日本黄色视频三级网站网址| 国产真实伦视频高清在线观看 | 欧美黄色片欧美黄色片| 精品免费久久久久久久清纯| 天天躁日日操中文字幕| 国产美女午夜福利| av在线老鸭窝| 757午夜福利合集在线观看| 亚洲一区二区三区色噜噜| 日韩人妻高清精品专区| 中文字幕人成人乱码亚洲影| 亚洲精品色激情综合| 国内毛片毛片毛片毛片毛片| 一区二区三区免费毛片| 国产真实乱freesex| 直男gayav资源| 99国产精品一区二区三区| 波多野结衣高清无吗| 精品午夜福利在线看| 美女xxoo啪啪120秒动态图 | 亚洲欧美日韩高清在线视频| 麻豆一二三区av精品| 欧美乱色亚洲激情| 一级黄色大片毛片| 成人特级黄色片久久久久久久| 久久精品人妻少妇| 日韩中字成人| 亚州av有码| 99国产综合亚洲精品| 亚洲精华国产精华精| 狂野欧美白嫩少妇大欣赏| 亚洲人成网站在线播| 窝窝影院91人妻| 国产精品乱码一区二三区的特点| 国产精品久久久久久久电影| 婷婷精品国产亚洲av在线| 男女做爰动态图高潮gif福利片| 国产欧美日韩精品亚洲av| 欧美成人性av电影在线观看| 日韩欧美精品免费久久 | 日韩欧美在线乱码| 欧美高清成人免费视频www| 久久香蕉精品热| av国产免费在线观看| 日韩中文字幕欧美一区二区| 热99在线观看视频| 嫩草影院精品99| 国产亚洲精品久久久com| 亚洲三级黄色毛片| 国产高清视频在线播放一区| 一二三四社区在线视频社区8| 免费看美女性在线毛片视频| 成人无遮挡网站| 性欧美人与动物交配| 成人一区二区视频在线观看| 亚洲第一区二区三区不卡| 国产私拍福利视频在线观看| 一区二区三区免费毛片| 天堂影院成人在线观看| 一本综合久久免费| 亚洲第一区二区三区不卡| 九九久久精品国产亚洲av麻豆| 国产高清有码在线观看视频| 中文字幕免费在线视频6| 免费无遮挡裸体视频| 黄片小视频在线播放| 国产精品美女特级片免费视频播放器| 免费观看精品视频网站| 黄色配什么色好看| 日本黄大片高清| 搡老岳熟女国产| 亚洲性夜色夜夜综合| 欧美xxxx性猛交bbbb| 国产精品亚洲美女久久久| 午夜a级毛片| 中国美女看黄片| 午夜久久久久精精品| 精品一区二区三区人妻视频| 我的女老师完整版在线观看| 嫩草影院新地址| 三级毛片av免费| 男女那种视频在线观看| 成人国产综合亚洲| 日本五十路高清| 久久精品综合一区二区三区| 欧美xxxx性猛交bbbb| 国产精品不卡视频一区二区 | 十八禁人妻一区二区| 国产av一区在线观看免费| 99国产精品一区二区三区| 神马国产精品三级电影在线观看| 精品久久国产蜜桃| 欧美成狂野欧美在线观看| 真实男女啪啪啪动态图| 久久国产精品影院| 日韩成人在线观看一区二区三区| 亚洲七黄色美女视频| 午夜福利成人在线免费观看| 一个人看的www免费观看视频| 热99在线观看视频| 亚洲狠狠婷婷综合久久图片| 亚洲国产色片| 成年女人毛片免费观看观看9| 日韩欧美在线乱码| 精品人妻视频免费看| 嫩草影院新地址| 欧洲精品卡2卡3卡4卡5卡区| 757午夜福利合集在线观看| 大型黄色视频在线免费观看| 国产精品免费一区二区三区在线| 欧美zozozo另类| 特大巨黑吊av在线直播| 国产免费男女视频| 亚洲美女黄片视频| 久久久久久大精品| 国产精品美女特级片免费视频播放器| 亚洲人成网站高清观看| 一区二区三区激情视频| av国产免费在线观看| 欧美激情在线99| 最近最新中文字幕大全电影3| 国产亚洲精品久久久久久毛片| 美女大奶头视频| 欧美性猛交黑人性爽| 99精品久久久久人妻精品| 久久人妻av系列| 99国产精品一区二区三区| 日韩成人在线观看一区二区三区| 一区二区三区免费毛片| 日韩欧美在线二视频| 国产精品乱码一区二三区的特点| 午夜福利在线在线| 久久久久久久午夜电影| 国产淫片久久久久久久久 | 日韩欧美在线乱码| 在线观看av片永久免费下载| 国产黄a三级三级三级人| 欧美成狂野欧美在线观看| 国产aⅴ精品一区二区三区波| 欧美最新免费一区二区三区 | 俄罗斯特黄特色一大片| 非洲黑人性xxxx精品又粗又长| 欧美潮喷喷水| 一区二区三区高清视频在线| 国产精品乱码一区二三区的特点| 亚洲精品一区av在线观看| 欧美日韩中文字幕国产精品一区二区三区| 欧美xxxx性猛交bbbb| 国产激情偷乱视频一区二区| 91av网一区二区| 日韩欧美精品免费久久 | 五月玫瑰六月丁香| 欧美丝袜亚洲另类 | 黄色丝袜av网址大全| 一个人看的www免费观看视频| 国产蜜桃级精品一区二区三区| 午夜老司机福利剧场| 国产探花在线观看一区二区| 国产野战对白在线观看| 亚洲五月天丁香| 免费人成在线观看视频色| 亚洲精品一区av在线观看| 久久久久久大精品| 日本撒尿小便嘘嘘汇集6| 欧美乱色亚洲激情| 亚洲av美国av| 久久精品国产99精品国产亚洲性色| 国产一级毛片七仙女欲春2| 欧美日韩中文字幕国产精品一区二区三区| 精品午夜福利视频在线观看一区| 亚洲中文字幕一区二区三区有码在线看| 露出奶头的视频| 两人在一起打扑克的视频| 欧美日本视频| 欧美又色又爽又黄视频| 亚洲性夜色夜夜综合| 精品无人区乱码1区二区| 伦理电影大哥的女人| 亚洲国产欧美人成| 真实男女啪啪啪动态图| 一级a爱片免费观看的视频| 在现免费观看毛片| 久久久久国产精品人妻aⅴ院| 一二三四社区在线视频社区8| 欧美极品一区二区三区四区| 亚洲中文字幕一区二区三区有码在线看| 精品乱码久久久久久99久播| 成年人黄色毛片网站| 国产精品野战在线观看| 麻豆久久精品国产亚洲av| 久久精品影院6| 在线免费观看不下载黄p国产 | 国产激情偷乱视频一区二区| 亚洲成人中文字幕在线播放| 男人和女人高潮做爰伦理| 好看av亚洲va欧美ⅴa在| 12—13女人毛片做爰片一| 亚洲成人精品中文字幕电影| av在线天堂中文字幕| 欧美极品一区二区三区四区| 身体一侧抽搐| 亚洲av第一区精品v没综合| 欧美一级a爱片免费观看看| 日本与韩国留学比较| 亚洲精品影视一区二区三区av| 国产综合懂色| 亚洲专区中文字幕在线| 嫩草影院新地址| 一本精品99久久精品77| 国产高潮美女av| 国产伦人伦偷精品视频| 99久久成人亚洲精品观看| 欧美日韩黄片免| 国产精品精品国产色婷婷| 内地一区二区视频在线| av在线蜜桃| 亚洲av第一区精品v没综合| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | av在线观看视频网站免费| 精品欧美国产一区二区三| 婷婷亚洲欧美| 美女xxoo啪啪120秒动态图 | 国内揄拍国产精品人妻在线| 男插女下体视频免费在线播放| av专区在线播放| 亚洲国产精品sss在线观看| 午夜福利在线观看吧| 国产精品电影一区二区三区| 2021天堂中文幕一二区在线观| 丝袜美腿在线中文| 亚洲av成人精品一区久久| 男人舔奶头视频| 免费搜索国产男女视频| 日日夜夜操网爽| 久久精品国产自在天天线| 给我免费播放毛片高清在线观看| 99久久99久久久精品蜜桃| 久久婷婷人人爽人人干人人爱| 成人性生交大片免费视频hd| 久久久久国产精品人妻aⅴ院| 亚洲熟妇中文字幕五十中出| 首页视频小说图片口味搜索| 国产精品亚洲一级av第二区| 欧美日韩中文字幕国产精品一区二区三区| 人妻久久中文字幕网| 悠悠久久av| 丝袜美腿在线中文| 国产欧美日韩精品一区二区| 亚洲精品色激情综合| 在线播放国产精品三级| 色噜噜av男人的天堂激情| 国产真实乱freesex| 又黄又爽又免费观看的视频| 亚洲,欧美精品.| 又爽又黄无遮挡网站| 三级男女做爰猛烈吃奶摸视频| 亚洲国产欧美人成| 久久伊人香网站| 国产三级中文精品| 一边摸一边抽搐一进一小说| 亚洲成av人片在线播放无| 色吧在线观看| 如何舔出高潮| 中文字幕av成人在线电影| 97热精品久久久久久| 国产免费男女视频| 国产精品女同一区二区软件 | 国产色婷婷99| 丰满人妻一区二区三区视频av| 一卡2卡三卡四卡精品乱码亚洲| 此物有八面人人有两片| 桃红色精品国产亚洲av| 一个人看视频在线观看www免费| 少妇被粗大猛烈的视频| 日韩高清综合在线| 少妇高潮的动态图| 岛国在线免费视频观看| 亚洲va日本ⅴa欧美va伊人久久| 免费观看人在逋| 欧美绝顶高潮抽搐喷水| 国产伦人伦偷精品视频| 91九色精品人成在线观看| or卡值多少钱| 午夜视频国产福利| 亚洲内射少妇av| 午夜久久久久精精品| 日韩中字成人| 国产亚洲欧美98| 91字幕亚洲| 午夜精品久久久久久毛片777| 全区人妻精品视频| 欧美在线一区亚洲| 搞女人的毛片| 亚洲av一区综合| 日日夜夜操网爽| 男女做爰动态图高潮gif福利片| aaaaa片日本免费| 成人av一区二区三区在线看| 亚洲精品影视一区二区三区av| 91九色精品人成在线观看| 天堂动漫精品| 尤物成人国产欧美一区二区三区| av在线蜜桃| 最近在线观看免费完整版| 欧美日韩黄片免| 国产精华一区二区三区| 国产亚洲精品久久久久久毛片| a在线观看视频网站| 国产老妇女一区| 一边摸一边抽搐一进一小说| 亚洲国产精品合色在线| 国内毛片毛片毛片毛片毛片| 国产av麻豆久久久久久久| 亚洲自偷自拍三级| 久久人妻av系列| 久久久久久久久大av| 日本三级黄在线观看| 久久这里只有精品中国| 色综合欧美亚洲国产小说| 国产精品久久久久久亚洲av鲁大| 一进一出抽搐动态| 中文字幕av成人在线电影| 很黄的视频免费| 99国产极品粉嫩在线观看| 最新在线观看一区二区三区| 色在线成人网| 99久国产av精品| 国产一区二区在线观看日韩| 蜜桃亚洲精品一区二区三区| 国产男靠女视频免费网站| 一级黄片播放器| 婷婷精品国产亚洲av在线| 国产亚洲欧美98| 美女免费视频网站| 婷婷丁香在线五月| 欧美bdsm另类| 欧美成人免费av一区二区三区| 日韩欧美精品v在线| 99久久精品国产亚洲精品| 最好的美女福利视频网| 欧美丝袜亚洲另类 | 亚洲一区二区三区色噜噜| 简卡轻食公司| 久久欧美精品欧美久久欧美| 成年免费大片在线观看| 久久国产乱子伦精品免费另类| 久久99热6这里只有精品| 国产精品影院久久| 国内精品久久久久久久电影| 好男人电影高清在线观看| 国产麻豆成人av免费视频| av天堂在线播放| 色av中文字幕| 一进一出好大好爽视频| 高潮久久久久久久久久久不卡| 精品久久久久久久久av| 9191精品国产免费久久| 天美传媒精品一区二区| 九九在线视频观看精品| 男人和女人高潮做爰伦理| 此物有八面人人有两片| 欧美黄色淫秽网站| 一a级毛片在线观看| 日本三级黄在线观看| 搡女人真爽免费视频火全软件 | 国产伦一二天堂av在线观看| 免费大片18禁| 欧美精品啪啪一区二区三区| 亚洲黑人精品在线| 欧美区成人在线视频| 亚洲成av人片免费观看| 两个人的视频大全免费| 亚洲人与动物交配视频| 精品人妻1区二区|