·生物治療·
化療藥物靶向腫瘤相關(guān)免疫抑制性細(xì)胞的研究進(jìn)展
蔣琦,錢其軍 (東方肝膽外科醫(yī)院腫瘤生物治療科、病毒基因治療實(shí)驗(yàn)室,上海 200438)
[摘要]腫瘤相關(guān)免疫抑制性細(xì)胞在腫瘤的發(fā)生、發(fā)展過程中發(fā)揮重要的免疫抑制作用,腫瘤的發(fā)展和轉(zhuǎn)移常伴有這些細(xì)胞的異常聚集。調(diào)節(jié)性T細(xì)胞(regulatory T cells, Treg)和髓系來源的抑制性細(xì)胞(myeloid-derived suppressor cells,MDSC)是免疫抑制性細(xì)胞網(wǎng)絡(luò)的主要成分,它們通過直接或間接作用負(fù)向調(diào)節(jié)其他免疫細(xì)胞,抑制抗腫瘤的免疫反應(yīng)。最新研究顯示,有些常規(guī)化療藥物除可直接殺傷腫瘤細(xì)胞外,還可降低Treg和MDSC的數(shù)量,抑制其功能,從而增強(qiáng)抗腫瘤免疫功能。因此,將化療藥物作為預(yù)處理方案,憑借其免疫調(diào)節(jié)作用聯(lián)合后續(xù)的過繼性細(xì)胞免疫治療可有效增強(qiáng)抗腫瘤免疫應(yīng)答?;瘜W(xué)免疫治療策略將改變?nèi)藗儗鹘y(tǒng)化療抗腫瘤地位的認(rèn)識,繼而更加合理地應(yīng)用化療藥物。
[關(guān)鍵詞]化療藥物;調(diào)節(jié)性T細(xì)胞;髓系來源的抑制性細(xì)胞;化學(xué)免疫治療;免疫抑制性細(xì)胞
[基金項(xiàng)目]國家科技重大專項(xiàng)資助項(xiàng)目(No.2013ZX10002-010-007)
[作者簡介]蔣琦,碩士研究生.研究方向:惡性腫瘤化療和免疫治療的臨床與基礎(chǔ)研究.E-mail: stjiangqichina@163.com
[通訊作者]錢其軍,教授, 博士生導(dǎo)師. 研究方向: 腫瘤基因-病毒治療和免疫治療、循環(huán)腫瘤細(xì)胞研究. E-mail: qianqj@sino-gene.cn
[中圖分類號]R456,R73[文獻(xiàn)標(biāo)志碼]A
DOI[]10.3969/j.issn.1006-0111.2015.02.019
[收稿日期]2014-12-18[修回日期]2015-01-26
Chemotherapeutic targeting of cancer-induced immunosuppressive cells: an update research
JIANG Qi, QIAN Qijun (Laboratory of Gene and Viral Therapy, Department of Biotherapy, Eastern Hepatobiliary Surgery Hospital, Shanghai 200438, China)
Abstract[]Cancer-induced immunosuppressive cells play an important immunosuppressive role during the tumor development process, and the development and progression of tumors are always accompanied with abnormal accumulation of cancer-induced immunosuppressive cells. Regulatory T lymphocytes (Treg) and myeloid-derived suppressor cells (MDSC) are major components of these inhibitory cellular networks, and they can inhibit antitumor immune response through multiple mechanisms. Recent studies have provided evidence that beyond their direct cytotoxic or cytostatic effects on cancer cells, some conventional chemotherapeutic drugs and agents used in targeted therapies can promote the elimination or inactivation of suppressive Tregs or MDSCs, resulting in enhanced anti-tumor immunity. Hence, chemotherapeutics, used as a preconditioning regimen and combined with subsequent immunotherapy, can promote anti-tumor immune response. Anticancer chemoimmunotherapy strategy will change the recognization of the role for conventional chemotherapy in anticancer treatment, and it will be helpful to optimize the chemotherapy strategies more reasonably.
[Key words]chemotherapeutics; regulatory T cell; myeloid-derived suppressor cell; chemoimmunotherapy; cancer-induced immunosuppressive cell
一直以來,腫瘤生物學(xué)領(lǐng)域的探索幾乎完全集中于腫瘤細(xì)胞本身的研究,而對腫瘤細(xì)胞以外的腫瘤基質(zhì)組成的腫瘤微環(huán)境很少關(guān)注。近年的臨床和實(shí)驗(yàn)研究業(yè)已證實(shí),腫瘤的形成是癌細(xì)胞及基質(zhì)中多種細(xì)胞相互作用的共同結(jié)果。腫瘤基質(zhì)由免疫細(xì)胞、成纖維細(xì)胞、血管內(nèi)皮等細(xì)胞成分以及細(xì)胞外基質(zhì)構(gòu)成[1]。其中,腫瘤相關(guān)免疫抑制性細(xì)胞,主要有調(diào)節(jié)性T細(xì)胞(regulatory T cells, Treg)、髓系來源的抑制性細(xì)胞(myeloid-derived suppressor cells,MDSC)、腫瘤相關(guān)巨噬細(xì)胞(tumor-associated macrophage, TAM)和不成熟的樹突狀細(xì)胞(immature dendritic cells,iDC),對腫瘤的免疫逃逸和免疫療法的低效性起關(guān)鍵作用[2-4]。隨著基礎(chǔ)研究和臨床試驗(yàn)的深入,化療藥物不再是一種純粹的細(xì)胞毒性藥物,其免疫調(diào)節(jié)作用逐漸受到重視。本文就近年來最重要的2種免疫抑制性細(xì)胞(Treg和MDSC)的免疫抑制機(jī)制及其化學(xué)免疫治療策略作一綜述。
1Treg和化療藥物
1.1Treg20世紀(jì)70年代就提出抑制性T細(xì)胞這一概念[5],直到 1995年,研究才明確CD25(IL-2受體α鏈)可作為小鼠Treg的重要表型標(biāo)記[6],此后Treg在腫瘤免疫逃逸中的作用備受關(guān)注。在人體內(nèi),Treg是一個異質(zhì)性群體,主要包括CD4+CD125highTreg、Tr1(IL-10+T細(xì)胞)和TH3(TGF-β+T細(xì)胞),F(xiàn)oxp3是Treg的一個特異性的轉(zhuǎn)錄因子。其中,CD4+CD125highFoxp3+Treg在多種人體腫瘤,包括肺癌、乳腺癌、胃癌、肝癌、腎癌、卵巢癌等實(shí)體腫瘤以及淋巴瘤等血液腫瘤中都存在,在某些腫瘤中的數(shù)量還與其預(yù)后密切相關(guān),是一個獨(dú)立的預(yù)后因子。Treg發(fā)揮免疫抑制作用的機(jī)制主要有:①通過免疫抑制因子,如白細(xì)胞介素10(IL-10)、轉(zhuǎn)化生長因子β(TGF-β)等抑制效應(yīng)細(xì)胞的功能;②通過顆粒酶和穿孔素直接殺傷效應(yīng)細(xì)胞;③影響效應(yīng)細(xì)胞的代謝,如高表達(dá)CD25大量消耗IL-2、產(chǎn)生腺苷抑制效應(yīng)細(xì)胞增殖;④影響樹突狀細(xì)胞(DC)的功能進(jìn)而影響T細(xì)胞的活化、誘導(dǎo)及增殖[7]。
1.2靶向Treg的化療藥物環(huán)磷酰胺(cyclophosphamide,CTX),是一種烷化劑,可與DNA交聯(lián),抑制DNA合成,用于治療乳腺癌、卵巢癌、多發(fā)性骨髓瘤和淋巴瘤,是第一個被報(bào)道能夠抑制Treg逆轉(zhuǎn)免疫耐受的藥物[8]。多項(xiàng)研究表明,CTX能清除荷瘤動物體內(nèi)的Treg,由于大劑量CTX同時(shí)還可去除其他免疫細(xì)胞,凈效應(yīng)為抑制抗腫瘤免疫反應(yīng)。而小劑量CTX對其他免疫細(xì)胞的影響小,因此能增強(qiáng)機(jī)體的抗腫瘤免疫反應(yīng)[9,10]。另一項(xiàng)研究顯示,小劑量CTX能引起小鼠體內(nèi)和體外Treg的凋亡而不影響CD4+CD25-T細(xì)胞的活力;CTX是通過下調(diào)FoxP3和GITR蛋白來抑制Treg的功能[11]。許多臨床試驗(yàn)也表明,小劑量CTX能減輕CD4+CD25+Treg的影響,增強(qiáng)TH1細(xì)胞,從而扭轉(zhuǎn)腫瘤誘導(dǎo)的免疫偏倚,促發(fā)腫瘤免疫。疫苗免疫之前應(yīng)用小劑量CTX有利于潛在的高活性CD8+T細(xì)胞的募集[12]。最近一項(xiàng)臨床試驗(yàn)證實(shí),疫苗免疫前1 d給予CTX(200~300 mg/m2)和接種前7 d應(yīng)用CTX(600 mg/m2)都能清除人體內(nèi)的Treg[13]。此外,CTX節(jié)拍式給藥可以清除晚期腫瘤患者體內(nèi)CD4+CD25+T細(xì)胞并恢復(fù)T細(xì)胞和自然殺傷(NK)細(xì)胞的有效作用[14]。因此,從化學(xué)免疫治療的角度來看,CTX的用藥劑量、給藥方式和順序都對Treg有影響,需進(jìn)一步優(yōu)化和更多的臨床試驗(yàn)驗(yàn)證。
紫杉醇(paclitaxel,PTX),屬于紫杉烷類,可與微管蛋白的β亞單位結(jié)合,影響微管的聚合,抑制有絲分裂,最終導(dǎo)致細(xì)胞死亡。有研究報(bào)道,標(biāo)準(zhǔn)劑量PTX應(yīng)用于晚期非小細(xì)胞肺癌患者,可選擇性地減少Treg數(shù)量和抑制Treg功能,同時(shí)保留效應(yīng)T細(xì)胞的功能。PTX的選擇性作用歸結(jié)于其上調(diào)Treg的死亡受體Fas,而對效應(yīng)T細(xì)胞不起作用[15]。在小鼠肺癌模型中,PTX可能通過影響凋亡調(diào)節(jié)蛋白Bcl-2/Bax的表達(dá)而誘導(dǎo)Treg凋亡[16]。多西他賽(docetaxel,DTX)同樣具有免疫刺激特性,Garnett等[17]證實(shí)DTX可降低Treg數(shù)量,但對Treg的功能無影響;增強(qiáng)CD8+T細(xì)胞對CD3交聯(lián)的應(yīng)答,對CD4+T細(xì)胞無作用;增強(qiáng)疫苗的抗原特異性T細(xì)胞應(yīng)答,降低了小鼠的腫瘤負(fù)荷。
標(biāo)準(zhǔn)劑量氟達(dá)拉濱(fludarabine,F(xiàn)A)對Treg具有抑制作用。Beyer等[18]發(fā)現(xiàn)慢性淋巴細(xì)胞白血病患者接受FA治療后,體內(nèi)Treg數(shù)量顯著減少;體外實(shí)驗(yàn)發(fā)現(xiàn)與FA共培養(yǎng)的Treg有70% 表達(dá)凋亡標(biāo)志,較CD4+CD25-T細(xì)胞敏感;體外混合淋巴細(xì)胞反應(yīng)顯示,經(jīng)FA化療后患者的Treg對CD4+CD25-T細(xì)胞的抑制作用減弱。
在大鼠神經(jīng)膠質(zhì)瘤模型中顯示小劑量替莫唑胺(temozolomide,TEM)節(jié)拍式給藥能減少Treg在總CD4+T細(xì)胞中的比例,并且降低Treg的活性[19]。在晚期黑色素瘤患者中TEM能減少Treg數(shù)量的現(xiàn)象被進(jìn)一步證實(shí)[20]。還有研究表明,用吉西他濱(gemcitabine,GEM)和FOLFOX4治療轉(zhuǎn)移性結(jié)直腸癌,再行皮下注射集落刺激因子(GM-CSF)和IL-2,可以使65%的患者Treg明顯減少,該發(fā)現(xiàn)與70%的對治療的客觀反應(yīng)率有關(guān)[21]。來那度胺、泊馬度胺通過減少FoxP3表達(dá)來抑制Treg的增殖和功能,但具體機(jī)制不明[22]。在A20淋巴瘤模型中,顯示來那度胺能同時(shí)降低Treg和MDSC的數(shù)量。
2MDSC和化療藥物
2.1MDSC在荷瘤小鼠的脾臟、血液及腫瘤組織廣泛存在著一群強(qiáng)免疫抑制功能的細(xì)胞群體,來源于骨髓祖細(xì)胞和未成熟髓細(xì)胞,是樹突狀細(xì)胞、巨噬細(xì)胞或粒細(xì)胞的前體,稱為髓系來源的抑制性細(xì)胞。小鼠腫瘤動物模型中,這群細(xì)胞共表達(dá)髓系分化抗原Gr1和CD11b,可分為2個亞型:粒細(xì)胞樣的MDSC(CD11b+Ly6G+Ly6Clow)和單核細(xì)胞樣的MDSC(CD11b+Ly6G-Ly6Chigh)[3]。人體腫瘤MDSC的最基本識別特征還沒有公認(rèn)的標(biāo)準(zhǔn),現(xiàn)有的研究越來越多地用CD33、CD11b、HLA-DR、Lin、CD14、CD15等作為MDSC的表面標(biāo)志,或用以上分子的不同組合作為腫瘤患者M(jìn)DSC的鑒定標(biāo)志。在多種腫瘤中發(fā)現(xiàn)MDSC表型為CD33和(或)CD11b表達(dá)陽性,而HLA-DR和(或)Lin不表達(dá)或低表達(dá)。與小鼠MDSC相似,人MDSC也可分為單核系MDSC(monocytic-MDSC、M-MDSC)和粒系MDSC (granulocytic-MDSC、G-MDSC),人體M-MDSC表達(dá)CD14,而G-MDSC表達(dá)CD15,這2類MDSC均表達(dá)CD11b和CD33,不表達(dá)或低表達(dá)HLA-DR和Lin。MDSC主要從兩方面促進(jìn)腫瘤的發(fā)展:① MDSC能表達(dá)多種促血管生成因子,如血管內(nèi)皮生長因子(VEGF)、堿性成纖維細(xì)胞生長因子(bFGF)和(MMP),直接促進(jìn)腫瘤血管形成。②MDSC能通過高表達(dá)的精氨酸酶1(ARG1)、誘導(dǎo)型一氧化氮合成酶(iNOS)和活性氧簇(ROS)抑制T細(xì)胞介導(dǎo)的適應(yīng)性抗腫瘤免疫和NK細(xì)胞與巨噬細(xì)胞介導(dǎo)的天然抗腫瘤免疫。例如,表達(dá)ARG1來分解T細(xì)胞賴以活化的精氨酸,下調(diào)TCRδ鏈和抑制歸巢受體CD62L的表達(dá);誘導(dǎo)Treg的產(chǎn)生;分泌IL-10抑制巨噬細(xì)胞和DC的功能,阻斷NKG2D或膜型TGF-β抑制NK細(xì)胞功能[23]。
2.2靶向MDSC的化療藥物吉西他濱(gemcitabine,GEM)是一種嘧啶核苷類似物的抗代謝藥,可以抑制核酸還原酶和DNA聚合酶α,阻止DNA的合成。臨床上廣泛用于胰腺癌、肺癌、乳腺癌等多種腫瘤的治療。在多種腫瘤動物模型中,GEM通過降低MDSC的數(shù)量來抵抗腫瘤免疫。同樣地,另一種抗代謝藥氟尿嘧啶(5-Fu)小劑量應(yīng)用時(shí)也能誘導(dǎo)MDSC凋亡,而對T細(xì)胞、B細(xì)胞及NK細(xì)胞的數(shù)量沒有明顯影響,機(jī)制可能是MDSC低表達(dá)胸苷酸合成酶[24]。因此,GEM對MDSC的作用主要表現(xiàn)為誘導(dǎo)凋亡。
多西他賽(docetaxel,DTX)是PTX的類似物,主要通過抑制MDSC的STAT3磷酸化和促使MDSC向M1分化來減弱MDSC的抑制作用[25]。動物實(shí)驗(yàn)發(fā)現(xiàn),DTX能有效抑制小鼠腫瘤生長并降低MDSC在小鼠脾臟內(nèi)的數(shù)量,使細(xì)胞毒性T淋巴細(xì)胞反應(yīng)性提高。經(jīng)全身照射治療的機(jī)體產(chǎn)生淋巴細(xì)胞缺乏癥后,MDSC和調(diào)節(jié)性T細(xì)胞可以很快恢復(fù)其數(shù)量和功能,而加用DTX治療則能有效阻止MDSC的恢復(fù),提高放射治療的療效[26]。Kodumudi[26]等研究發(fā)現(xiàn),DTX處理組小鼠腫瘤微環(huán)境中的MDSC與對照組相比明顯減少,進(jìn)一步研究發(fā)現(xiàn),處理組有高達(dá)40% 的MDSC表達(dá)CCR7表型,而CCR7正是M1型巨噬細(xì)胞的表型。體外實(shí)驗(yàn)顯示,DTX作用24 h后,MDSC上巨噬細(xì)胞的分化標(biāo)志MHC-Ⅱ、CD11c、CD86表達(dá)均上調(diào)。同時(shí),DTX可以誘導(dǎo)M2型巨噬細(xì)胞凋亡卻對M1型細(xì)胞有保護(hù)作用。由此可見,DTX對MDSC的作用表現(xiàn)為多方面,其中一個重要方面即表現(xiàn)為促進(jìn)MDSC的分化成熟。另外,作為紫杉烷類的PTX,在體外1 nmol/L的PTX不能誘導(dǎo)MDSC的凋亡但卻可以促使MDSC分化為DC,揭示了低劑量PTX在動物實(shí)驗(yàn)中降低MDSC水平的過程[27]。
阿霉素(adriamycin,ADM)是蒽環(huán)類抗生素,其代謝活性物嵌入DNA堿基中形成復(fù)合體,抑制DNA合成和轉(zhuǎn)錄。在多種荷瘤小鼠模型中發(fā)現(xiàn)ADM具有免疫調(diào)節(jié)效應(yīng),能選擇性地清除和滅活MDSC,機(jī)制可能包括:① ADM優(yōu)先靶向高增殖活性細(xì)胞,在非干預(yù)狀態(tài)下的荷瘤小鼠體內(nèi)MDSC的增殖活力遠(yuǎn)高于T細(xì)胞和NK細(xì)胞;② ADM能提高已較其他免疫細(xì)胞高表達(dá)ROS的MDSC持續(xù)高表達(dá)ROS,導(dǎo)致ROS依賴的細(xì)胞凋亡。盡管ADM的選擇性作用是暫時(shí)的,但優(yōu)先靶向MDSC的作用提高了效應(yīng)T細(xì)胞與免疫抑制性細(xì)胞的比例,為CD4+T細(xì)胞、CD8+T細(xì)胞和NK細(xì)胞發(fā)揮抗腫瘤免疫提供了最基本的條件。值得重視的是,與單用ADM比較,小鼠在接受含ADM的聯(lián)合治療后,其體內(nèi)MDSC數(shù)量能較長時(shí)間維持低水平[28]。這種現(xiàn)象進(jìn)一步提示了化學(xué)免疫治療策略中免疫刺激后進(jìn)一步聯(lián)合治療的可能性和重要性。
阿扎胞苷(5-azacytidine,AZA)是一種去甲基化藥物,在小鼠TC-1/A9和TRAMP-C2腫瘤模型中可觀察到,能減少M(fèi)DSC聚集和抑制MDSC功能[29]。但是化療藥物并非都能減輕MDSC的負(fù)荷,某些藥物反而可以誘導(dǎo)MDSC生成。CTX在非荷瘤小鼠中可以誘導(dǎo)MDSC短暫升高。研究顯示,CTX和腫瘤均可誘導(dǎo)正常小鼠MDSC增多,兩者誘導(dǎo)的MDSC都會加速腫瘤的生長,但是它們的亞型和抑制免疫功能的機(jī)制不同。CTX誘導(dǎo)的MDSC中單核細(xì)胞樣MDSC的比例較高,抑制性基因水平表達(dá)較低,經(jīng)干擾素-γ刺激之后,其表達(dá)上調(diào),但抑制功能仍不及腫瘤誘導(dǎo)的MDSC。而荷瘤小鼠給予CTX治療后誘導(dǎo)的MDSC表型和功能介于上述兩者之間,且具有更強(qiáng)的可塑性[30]。
3結(jié)語
基于對宿主-腫瘤相互作用的免疫細(xì)胞和分子機(jī)制,以及腫瘤化療藥對該機(jī)制作用的深入認(rèn)識,傳統(tǒng)化療藥物靶向作用于腫瘤誘導(dǎo)產(chǎn)生的免疫抑制細(xì)胞網(wǎng)絡(luò),將是一個新的研究熱點(diǎn)。策略性的聯(lián)合化療藥的免疫治療來改變宿主的整體內(nèi)環(huán)境和局部腫瘤微環(huán)境,以及改變免疫耐受和免疫抑制的不同機(jī)制,可以維持有效、持久的抗腫瘤免疫應(yīng)答。但需注意的是,在實(shí)際應(yīng)用時(shí),化療藥物的可能的分子機(jī)制、藥物劑量和用藥時(shí)機(jī)等細(xì)節(jié)問題仍然需要進(jìn)一步設(shè)計(jì)和優(yōu)化。尚需開展更多的相關(guān)研究,特別是大樣本臨床試驗(yàn),使化學(xué)免疫治療廣泛用于惡性腫瘤的治療成為現(xiàn)實(shí)。
【參考文獻(xiàn)】
[1]Thompson RH, Kwon ED. Significance of B7-H1 overexpression in kidney cancer[J].Clin Genitourin Cancer ,2006,5(3),206-211.
[2]Zitvogel L, Tesniere A, Kroemer G. Cancer despite immunosurveillance: immunoselection and immunosubversion[J]. Nat Rev Immunol,2006,6(10):715-727.
[3]Gabrilovich DI, Nagaraj S. Myeloid-derived suppressor cells as regulators of the immune system[J]. Nat Rev Immunol,2009,9(3):162-174.
[4]Colombo MP, Piconese S. Regulatory-T-cell inhibitionversusdepletion: the right choice in cancer immunotherapy[J]. Nat Rev Cancer,2007,7(11):880-887.
[5]Curiel TJ, Coukos G, Zou L,etal. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival[J]. Nat Med,2004,10(9):942-949.
[6]Sakaguchi S, Sakaguchi N, Asano M,etal. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases[J]. J Immunol,1995,155(3):1151-1164.
[7]曾益新,呂有勇,朱明華,等.腫瘤學(xué)[M].3版. 北京:人民衛(wèi)生出版社,2012:281-282.
[8]North RJ. Cyclophosphamide-facilitated adoptive immunotherapy of an established tumor depends on elimination of tumor-induced suppressor T cells[J]. J Exp Med,1982,155(4):1063-1074.
[9]Sharabi A, Ghera NH. Breaking tolerance in a mouse model of multiple myeloma by chemoimmunotherapy[J]. Adv Cancer Res,2010,107:1-37.
[10]Wada S, Yoshimura K, Hipkiss EL,etal. Cyclophosphamide augments antitumor immunity: studies in an autochthonous prostate cancer model[J]. Cancer Res,2009,69(10):4309-4318.
[11]Ghiringhelli F, Larmonier N, Schmitt E,etal. CD4+CD25+ regulatory T cells suppress tumor immunity but are sensitive to cyclophosphamide which allows immunotherapy of established tumors to be curative[J]. Eur J Immunol,2004,34(2):336-344.
[12]Chen G, Emens LA. Chemoimmunotherapy: reengineering tumor immunity[J]. Cancer Immunol Immunother,2013,62(2):203-216.
[13]Nizar S, Copier J, Meyer B,etal. T-regulatory cell modulation: the future of cancer immunotherapy?[J]. Br J Cancer,2009,100(11):1697-1703.
[14]Ghiringhelli F, Menard C, Puig PE,etal. Metronomic cyclophosphamide regimen selectively depletes CD4+CD25+ regulatory T cells and restores T and NK effector functions in end stage cancer patients[J]. Cancer Immunol Immunother,2007,56(5):641-648.
[15]Zhang L,Dermawan K,Jin M,etal.Differential impairment of regulatory T cells rather than effector T cells by paclitaxel-based chemotherapy[J].Clin Immunol,2008,129(2):219-229.
[16]Liu N, Zheng Y, Zhu Y,etal. Selective impairment of CD4+CD25+Foxp3(+)regulatory T cells by paclitaxel is explained by Bcl-2/Bax mediated apoptosis[J]. Int mmunopharmacol,2011,11(2):212-219.
[17]Garnett CT, Schlom J, Hodge JW. Combination of docetaxel and recombinant vaccine enhances T-cell responses and antitumor activity: effects of docetaxel on immune enhancement[J]. Clin Cancer Res,2008,14(11):3536-3544.
[18]Reinartz S, Pfisterer J, du Bois A,etal. Suppressive activity rather than frequency of FoxP3(+)regulatory T cells is essential for CA-125-specific T-cell activation after abagovomab treatment[J]. Hum Immunol,2010,71(1):36-44.
[19]Banissi C, Ghiringhelli F, Chen L,etal. Treg depletion with a low-dose metronomic temozolomide regimen in a rat glioma model[J]. Cancer Immunol Immunother,2009,58(10):1627-1634.
[20]Ridolfi L, Petrini M, Granato AM,etal. Low-dose temozolomide before dendritic-cell vaccination reduces (specifically) CD4+CD25+Foxp3(+)regulatory T-cells in advanced melanoma patients[J]. J Transl Med,2013,11:135.
[21]Correale P, Cusi MG, Tsang KY,etal. Chemo-immunotherapy of metastatic colorectal carcinoma with gemcitabine plus FOLFOX 4 followed by subcutaneous granulocyte macrophage colony-stimulating factor and interleukin-2 induces strong immunologic and antitumor activity in metastatic colon cancer patients[J]. J Clin Oncol,2005,23(35):8950-8958.
[22]Galustian C, Meyer B, Labarthe MC,etal. The anti-cancer agents lenalidomide and pomalidomide inhibit the proliferation and function of T regulatory cells[J]. Cancer Immunol Immunother,2009,58(7):1033-1045.
[23]Ostrand-Rosenberg S, Sinha P. Myeloid-derived suppressor cells: linking inflammation and cancer[J]. J Immunol,2009,182(8):4499-4506.
[24]Vincent J, Mignot G, Chalmin F,etal. 5-Fluorouracil selectively kills tumor-associated myeloid-derived suppressor cells resulting in enhanced T cell-dependent antitumor immunity[J]. Cancer Res,2010,70(8):3052-3061.
[25]Kodumudi KN, Woan K, Gilvary DL,etal. A novel chemoimmunomodulating property of docetaxel: suppression of myeloid-derived suppressor cells in tumor bearers[J]. Clin Cancer Res,2010,16(18):4583-4594. RH, Kwon ED. Significance of B7-H1 overexpression in kidney cancer[J].Clin Genitourin Cancer ,2006,5(3),206-211.
[2]Zitvogel L, Tesniere A, Kroemer G. Cancer despite immunosurveillance: immunoselection and immunosubversion[J]. Nat Rev Immunol,2006,6(10):715-727.
[3]Gabrilovich DI, Nagaraj S. Myeloid-derived suppressor cells as regulators of the immune system[J]. Nat Rev Immunol,2009,9(3):162-174.
[4]Colombo MP, Piconese S. Regulatory-T-cell inhibitionversusdepletion: the right choice in cancer immunotherapy[J]. Nat Rev Cancer,2007,7(11):880-887.
[5]Curiel TJ, Coukos G, Zou L,etal. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival[J]. Nat Med,2004,10(9):942-949.
[6]Sakaguchi S, Sakaguchi N, Asano M,etal. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases[J]. J Immunol,1995,155(3):1151-1164.
[7]曾益新,呂有勇,朱明華,等.腫瘤學(xué)[M].3版. 北京:人民衛(wèi)生出版社,2012:281-282.
[8]North RJ. Cyclophosphamide-facilitated adoptive immunotherapy of an established tumor depends on elimination of tumor-induced suppressor T cells[J]. J Exp Med,1982,155(4):1063-1074.
[9]Sharabi A, Ghera NH. Breaking tolerance in a mouse model of multiple myeloma by chemoimmunotherapy[J]. Adv Cancer Res,2010,107:1-37.
[10]Wada S, Yoshimura K, Hipkiss EL,etal. Cyclophosphamide augments antitumor immunity: studies in an autochthonous prostate cancer model[J]. Cancer Res,2009,69(10):4309-4318.
[11]Ghiringhelli F, Larmonier N, Schmitt E,etal. CD4+CD25+ regulatory T cells suppress tumor immunity but are sensitive to cyclophosphamide which allows immunotherapy of established tumors to be curative[J]. Eur J Immunol,2004,34(2):336-344.
[12]Chen G, Emens LA. Chemoimmunotherapy: reengineering tumor immunity[J]. Cancer Immunol Immunother,2013,62(2):203-216.
[13]Nizar S, Copier J, Meyer B,etal. T-regulatory cell modulation: the future of cancer immunotherapy?[J]. Br J Cancer,2009,100(11):1697-1703.
[14]Ghiringhelli F, Menard C, Puig PE,etal. Metronomic cyclophosphamide regimen selectively depletes CD4+CD25+ regulatory T cells and restores T and NK effector functions in end stage cancer patients[J]. Cancer Immunol Immunother,2007,56(5):641-648.
[15]Zhang L,Dermawan K,Jin M,etal.Differential impairment of regulatory T cells rather than effector T cells by paclitaxel-based chemotherapy[J].Clin Immunol,2008,129(2):219-229.
[16]Liu N, Zheng Y, Zhu Y,etal. Selective impairment of CD4+CD25+Foxp3(+)regulatory T cells by paclitaxel is explained by Bcl-2/Bax mediated apoptosis[J]. Int mmunopharmacol,2011,11(2):212-219.
[17]Garnett CT, Schlom J, Hodge JW. Combination of docetaxel and recombinant vaccine enhances T-cell responses and antitumor activity: effects of docetaxel on immune enhancement[J]. Clin Cancer Res,2008,14(11):3536-3544.
[18]Reinartz S, Pfisterer J, du Bois A,etal. Suppressive activity rather than frequency of FoxP3(+)regulatory T cells is essential for CA-125-specific T-cell activation after abagovomab treatment[J]. Hum Immunol,2010,71(1):36-44.
[19]Banissi C, Ghiringhelli F, Chen L,etal. Treg depletion with a low-dose metronomic temozolomide regimen in a rat glioma model[J]. Cancer Immunol Immunother,2009,58(10):1627-1634.
[20]Ridolfi L, Petrini M, Granato AM,etal. Low-dose temozolomide before dendritic-cell vaccination reduces (specifically) CD4+CD25+Foxp3(+)regulatory T-cells in advanced melanoma patients[J]. J Transl Med,2013,11:135.
[21]Correale P, Cusi MG, Tsang KY,etal. Chemo-immunotherapy of metastatic colorectal carcinoma with gemcitabine plus FOLFOX 4 followed by subcutaneous granulocyte macrophage colony-stimulating factor and interleukin-2 induces strong immunologic and antitumor activity in metastatic colon cancer patients[J]. J Clin Oncol,2005,23(35):8950-8958.
[22]Galustian C, Meyer B, Labarthe MC,etal. The anti-cancer agents lenalidomide and pomalidomide inhibit the proliferation and function of T regulatory cells[J]. Cancer Immunol Immunother,2009,58(7):1033-1045.
[23]Ostrand-Rosenberg S, Sinha P. Myeloid-derived suppressor cells: linking inflammation and cancer[J]. J Immunol,2009,182(8):4499-4506.
[24]Vincent J, Mignot G, Chalmin F,etal. 5-Fluorouracil selectively kills tumor-associated myeloid-derived suppressor cells resulting in enhanced T cell-dependent antitumor immunity[J]. Cancer Res,2010,70(8):3052-3061.
[25]Kodumudi KN, Woan K, Gilvary DL,etal. A novel chemoimmunomodulating property of docetaxel: suppression of myeloid-derived suppressor cells in tumor bearers[J]. Clin Cancer Res,2010,16(18):4583-4594.
[26]Kodumudi KN, Weber A, Sarnaik AA,etal. Blockade of myeloid-derived suppressor cells after induction of lymphopenia improves adoptive T cell therapy in a murine model of melanoma[J]. J Immunol,2012,189(11):5147-5154.
[27]Michels T, Shurin GV, Naiditch H,etal. Paclitaxel promotes differentiation of myeloid-derived suppressor cells into dendritic cellsinvitroin a TLR4-independent manner[J]. J Immunotoxicol,2012,9(3):292-300.
[28]Alizadeh D, Trad M, Hanke NT,etal. Doxorubicin eliminates myeloid-derived suppressor cells and enhances the efficacy of adoptive T-cell transfer in breast cancer[J]. Cancer Res,2014,74(1):104-118.
[29]Mikysková R, Indrová M, Vlková V,etal. DNA demethylating agent 5-azacytidine inhibits myeloid-derived suppressor cells induced by tumor growth and cyclophosphamide treatment[J]. J Leukoc Biol,2014,95(5):743-753.
[30]Mikysková R, Indrová M, Pollaková V,etal. Cyclophosphamide-induced myeloid-derived suppressor cell population is immunosuppressive but not identical to myeloid-derived suppressor cells induced by growing TC-1 tumors[J]. J Immunother,2012,35(5):374-384. KN, Weber A, Sarnaik AA,etal. Blockade of myeloid-derived suppressor cells after induction of lymphopenia improves adoptive T cell therapy in a murine model of melanoma[J]. J Immunol,2012,189(11):5147-5154.
[27]Michels T, Shurin GV, Naiditch H,etal. Paclitaxel promotes differentiation of myeloid-derived suppressor cells into dendritic cellsinvitroin a TLR4-independent manner[J]. J Immunotoxicol,2012,9(3):292-300.
[28]Alizadeh D, Trad M, Hanke NT,etal. Doxorubicin eliminates myeloid-derived suppressor cells and enhances the efficacy of adoptive T-cell transfer in breast cancer[J]. Cancer Res,2014,74(1):104-118.
[29]Mikysková R, Indrová M, Vlková V,etal. DNA demethylating agent 5-azacytidine inhibits myeloid-derived suppressor cells induced by tumor growth and cyclophosphamide treatment[J]. J Leukoc Biol,2014,95(5):743-753.
[30]Mikysková R, Indrová M, Pollaková V,etal. Cyclophosphamide-induced myeloid-derived suppressor cell population is immunosuppressive but not identical to myeloid-derived suppressor cells induced by growing TC-1 tumors[J]. J Immunother,2012,35(5):374-384.
[本文編輯]李睿旻