• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    以硝基對苯二甲酸和4,4′-聯(lián)吡啶為配體的四個金屬Ag配合物的合成、結(jié)構(gòu)多樣性和電子光譜

    2015-12-05 10:25:21馬愛青朱龍觀
    無機化學學報 2015年8期
    關(guān)鍵詞:聯(lián)吡啶藥學院對苯二甲

    馬愛青 朱龍觀

    (1浙江大學化學系,杭州310027)

    (2廣東醫(yī)學院藥學院,東莞523808)

    以硝基對苯二甲酸和4,4′-聯(lián)吡啶為配體的四個金屬Ag配合物的合成、結(jié)構(gòu)多樣性和電子光譜

    馬愛青1,2朱龍觀*,1

    (1浙江大學化學系,杭州310027)

    (2廣東醫(yī)學院藥學院,東莞523808)

    由2-硝基-1,4-對苯二甲酸和4,4′-聯(lián)吡啶作為起始原料合成了4個金屬銀的配位聚合物,{[Ag(4,4′-bipy)]·2-Hnbdc·2H2O ·CH3OH}n(1),{[Ag(4,4′-bipy)(2-Hnbdc)]}n(2),{[Ag2(4,4′-bipy)2(2-nbdc)]·2H2O}n(3),和{[Ag2(4,4′-bipy)2(2-nbdc)(H2O)]·2H2O}n(4)。通過IR、元素分析、TG、UV和熒光光譜以及粉末衍射等手段,對配合物進行了表征和性質(zhì)研究。單晶衍射分析顯示,配合物1為1D陰-陽離子型聚合物,配合物2為1D雙鏈結(jié)構(gòu),且結(jié)構(gòu)中不存在溶劑分子。配合物3和4均為1D鏈狀結(jié)構(gòu)。結(jié)構(gòu)的多樣性主要是由配體構(gòu)象、硝基對苯二甲酸的配位模式以及弱作用(如π-π堆積、Ag…Ag作用以及氫鍵等)導致的。結(jié)構(gòu)的不同也使得它們的穩(wěn)定性、紫外吸收以及熒光光譜存在著差異。

    配位模式;結(jié)構(gòu)分析;銀(Ⅱ)配合物;硝基對苯二甲酸

    0Introduction

    Phenyldicarboxylate metal complexes in recent years have received much attention due to their potential applications in catalysis[1-3],adsorption[4-10], luminescent[11],and chemical sensors[12-14].With the deepen of the investigation in the 1,4-benzenedicarboxylate metal complexes,people have recognized that the functional groups on benzene ring are very important in the assembly of the structures and properties.The contribution of several functional groups is not simply linear sums of the pure components[15].In the large number of 1,4-benzenedicarboxylate derivatives,seldom metal complexes with 2-nitro-1,4-benzenedicarboxylic acid(2-H2nbdc)have been explored. Totally only 17 transition complexes with nbdc ligand including Zn,Cd,Cu,Bi,In,Pb,Mn,Sn,and U (CSD,Version 5.36-Feb 2015)[16]were synthesized.The 2-nbdc ligand can be used to form cation-cation interaction dimer[17],enhance the hydrophobic interaction in the cavities of MOF,and form hysteretic single-crystal to single crystal transform cycle[18].

    In addition,silver coordination polymers have attracted much attention not only because of the diverse coordination arrangement of the Ag(Ⅱ)ion varying from 2 to 6,but also the fascinating structural diversities(linearity,triangle,tetrahedron and trigonal -pyramid with occasional instances of square and octahedron)[19]and potential applications in many areas such as optics or electrical conductivity,magnetism, host-guest chemistry,and catalyst[20-21].The supramolecular chemistry of Ag(Ⅱ)coordination polymers represents a dynamic and thriving field which abounds with various supramolecular forces such as metal-ligand, metal-π,and metal-metal interactions,hydrogen bonds, π-π stacking,and anion interactions[22-23].Therefore the crystallization of Ag(Ⅱ)complexes would depend on the delicate balance of thermodynamic and kinetic contributionsconcerningsynergeticsupramolecular interactions,which may account for the fact that the structures and topologies of Ag(Ⅱ)complexes can be astonishingly varied even with same ligands.

    However,the investigation about silver-complexes is still very limited.So far there is no any report on the silver complex with nbdc ligand,and only one complex of the M/4,4-bipyridine(4,4′-bipy)/2-H2nbdc system was reported in our lab[24].In coordination chemistry,complexes with diverse structures can be easily synthesized due to the variable coordination modes of metal ions and ligands,while structures are in general strongly related to their properties.Therefore, the directional or rational synthesis is very important forthepotential applications of coordination compounds. Herein we present the synthesis,structures,and properties of four silver complexes with same components, namely{[Ag(4,4′-bipy)]·2-Hnbdc·2H2O·CH3OH)}n(1), {[Ag(4,4′-bipy)(2-Hnbdc)]}n(2),{[Ag2(4,4′-bipy)2(2-nbdc)]·2H2O}n(3),and{[Ag2(4,4′-bipy)2(2-nbdc)(H2O)] ·2H2O}n(4).

    1Experimental

    1.1 General information

    Chemicals and solvents were of analytical grade and purchased from commercial sources,used as obtainedwithoutfurtherpurification.Elemental analyses(C,H and N)were performed on a Elementar Vario EL III Elemental Analyzer.The infrared spectra (KBr pellets)were recorded on a Bruker VERTEX 70 spectrophotometer in the range of 400~4 000 cm-1. Thermal analyses were performed on a NETZSCH 409 F3 thermal analyzer at a heating rate of 10℃·min-1in flowing nitrogen atmosphere in the temperature range of 30~800℃using Al2O3crucibles.The UVVis spectra were recorded in methanol at room temperature with a Thermo Evolution 300 spectrophotometer.The fluorescence spectroscopic studies were carried out in methanol and in the solid state at room temperature with a RF-5301pc spectrophotometer(Shimadzu,Kyoto,Japan).The powder X-ray diffractions were measured by Rigaku D/MaX 2550PC with Cu Kα radiation.The simulated powder XRD patterns of complexes 1~4 were derived from single crystal X-ray data by Mercury program.

    1.2 Syntheses of complexes 1~4

    1.2.1 Synthesis of{[Ag(4,4′-bipy)]·2-Hnbdc·2H2O· CH3OH)}n(1)

    Complex 1 was synthesized by layered-solution method in a tube with the diameter of 0.7 cm.The bottom layer was 5 mL aqueous solution containing 0.022 mol ·L-1of AgNO3and the upper layer was 10 mL methanol solution containing 0.011 mol·L-1of H2nbdc and 0.011 mol·L-1of 4,4′-bipy.After six days later,colorless block crystals were grown on the layered interface and were collected by filtration.Yield:68.3%.Anal.Calcd. for C19H20N3O9Ag(%):C 42.09,H 3.72,N 7.75.Found (%):C 42.21,H 3.66,N 7.72.IR(KBr,cm-1):1 702(s), 1 617(s),1 600(s),1 529(s),1 486(s),1 380(s),1 353(s), 1 310(s),1 288(s),1 253(s),1 219(m),1 153(m),1 064 (w),1 027(m),933(w),840(w),806(s),771(s),702(m), 623(w),515(w).

    1.2.2 Synthesis of{[Ag(4,4′-bipy)(2-Hnbdc)]}n(2)

    Complex 2 was synthesized by hydrothermal method.A mixture of AgNO3(0.050 0 g,0.29 mmol), 4,4′-bipy(0.038 g,0.24 mmol),and 2-H2nbdc(0.053 g 0.25 mmol)in water(15 mL)was sealed in a 25 mL Teflon-lined autoclave and heated to 130℃for 24 h, then cooled to room temperature.Resulting pale yellow block crystals were obtained.Yield:62.5%.Anal. Calcd.for C18H12N3O6Ag(%):C 45.59,H 2.55,N 8.86. Found(%):C 45.32,H 2.69,N 8.86.IR(KBr,cm-1): 1 676(m),1 605(s),1 523(s),1 488(s),1 382(s),1 339 (s),1 310(s),1 275(s),1 240(s),1 119(m),1 073(s), 1 058(m),911(w),864(w),828(m),815(s),780(s),738 (m),713(w),666(w),640(w),600(w),510(w),463(w).

    1.2.3 Synthesis of{[Ag2(4,4′-bipy)2(2-nbdc)]·2H2O}n(3)

    A mixture of AgNO3(0.083 g),H2nbdc(0.104 g), and 4,4′-bipy(0.080 g)in CH3OH(15 mL)and water (10 mL)was stirred and white precipitate occurred, then three drops of ammonia were added and most of white precipitate was dissolved,filtered and set aside at room temperature in dark,after about five weeks pale yellow block crystals were obtained.Yield: 56.2%.Anal.Calcd.for C28H23N5O8Ag2(%):C 43.49,H 3.00,N 9.06.Found(%):C 42.59,H 3.09,N 8.88.IR (KBr,cm-1):1 598(s),1 529(s),1 484(m),1 411(m), 1 355(s),1 219(w),1 126(w),1 070(w),1 006(w),913 (w),812(s),805(s),729(w),639(w),574(w),487(m).

    1.2.4 Synthesis of{[Ag2(4,4′-bipy)2(2-nbdc)(H2O)]· 2H2O}n(4)

    The synthesis of 4 was similar to that described for 3.The only difference was that we changed CH3OH in 3 to CH3CN(20 mL).After about five weeks,colorless block crystals were obtained.Yield:63.5%.Anal. Calcd.for C28H25N5O9Ag2(%):C 42.50,H 3.18,N 8.85. Found(%):C 42.61,H 2.97,N 8.81.IR(KBr,cm-1): 1 598(s),1 529(s),1 484(m),1 412(s),1 354(s),1 220 (m),1 069(m),1 004(w),912(w),815(s),727(w),635 (m),576(w),485(m).

    1.3 X-ray crystallographic determination

    Crystallographic data were collected at 296 K on an Oxford Diffraction Xcalibur CCD diffractometer using graphite monochromated Mo Kα radiation(λ= 0.071 073 nm).The frames were integrated with the CrysAlisPro package[25]and the data were corrected for absorptionusingtheprogramCrysAlisPro.The structures were solved by direct methods and refined byfull-matrixleast-squarestechniquesusingthe SHELXL-97 programs[26].All the non-hydrogen atoms were refined with anisotropic thermal parameters. Hydrogen atoms on carbons were put at the calculated positions,while other hydrogen atoms were found in the Fourier maps.All H atoms were refined with isotropicthermalparameters.Thegraphicswere drawn by the ORTEP and Olex2[27-28].Details of crystal data and structure refinements for the four complexes are listed in Table1 .

    CCDC:945166,1;945167,2;945168,3;945169, 4.

    2Results and discussion

    2.1 Synthesis

    Four complexes with structural diversity have been achieved by the different synthetic methods and variable solvents.Complex 1 was synthesized by the layered-solution method in a slender tube.Complex 2 was obtained using hydrothermal synthesis.Complexes 3 and 4 were synthesized in different mixed solvents through slow evaporation.Considering their structural diversity these complexes may be transformed under external stimulation.Therefore,complex 1 was heated at 130℃three hours and crystals were changed intopowder sample.The IR showed that the heated sample for 1 lost all solvents,while its spectrum is different from that of 2,indicating the simple heating did not transform the complex 1 into 2.The 2-Hnbdc ligands in 1 and 2 have largely different coordination modes and simple heating could not make these chemical bonding rearrangement.Similar experimental was done for complexes 3 and 4.And the desolvated 3 and 4 have same IR spectra,indicating the small different coordination modes in complexes 3 and 4 can be transformed due to their structural diversity is only controlled by the solvents.

    Based on the above information,we can conclude that solvents,temperature and synthetic methods are very important for structural diversity and thermal stability,since external stimuli may influence the coordination properties and abilities of the H2nbdc ligand,and also have effect on the participation of the solvents,which are helpful for the formation of weak bonds and supramolecular structure.

    Scheme 1Synthetic route of complexes 1~4

    2.2 Analysis of the structures of 1~4

    The powder XRD patterns of complexes 1~4 and their simulative patterns calculated by Mercury using single crystal data agree well with each other(see Supportinginformation),indicatingthebulksof samples are purity.

    In an asymmetrical unit for complex 1,the silver ion is four-coordinated with two longer distances (0.285 4(2)and 0.306 7(2)nm)of Ag-O representedby open bonds in Fig.1 .The geometry of the silver ion is a planar completed by two N atoms from two 4,4′-bipy and two O atoms from one water molecule and one nitro group(Table2 ).The 2-Hnbdc ligand is partlydeprotonatedanditscarboxylatesarenot coordinated to metal ion but form weak bond with Ag+using the nitro group.In general the nitro group on benzene ring is rare to coordinate with metal ion.Theunits form 1D chain structure(Fig.2 ) and the shortest Ag…Ag distance between chains is 0.532 9 nm,indicating there is no interaction between chains.

    In complex 2,the silver ion is four-coordinated with a longer distance(0.292 2(2)nm)between the silver ion and nitro group.The deprotonated carboxylate coordinates to the silver ion.The coordination geometry of the silver ion is a planar environment completed by two N atoms from two 4,4′-bipy and twoO atoms from the carboxylate and nitro groups(Fig.3 and Table2 ).Complex 2 is a 1D double chain structure(Fig.4 ),which is different from complex 1.In 2,the shortest distance of Ag…Ag is 0.379 02(6)nm. Though it is shorter than that in 1,it is still longer than the van der Waals diameter of silver(0.344 nm), indicating no obvious interaction exists between them.

    Table2 Selected bond lengths(nm)and angles(°)for complexes 1~4

    Fig.1 View of the coordination environment in 1 with the numbering scheme

    Fig.2 View of the 1D chain formed by[Ag(4,4′-bipy)]+in 1

    Fig.3 View of the coordination environment in 2 with the numbering scheme

    Fig.4 View of the 1D double chain in 2

    In 3,the Ag1 is four coordinated with a longer Ag1-O2w being 0.307(3)nm(Fig.5 ).The Ag2 is also four coordinated with two longer distances of 0.293 0(18) and 0.304 7(12)nm.The 2-nbdc ligand is monodentately coordinated to silver ion as a terminal ligand.If we ignore the bond lengths over 0.30 nm,the molecular structure of 3 is a 1D chain(Fig.6 );if we consider all bonds,the molecular structure is a 2D layer and further interpenetrates into a 3D network.The Ag…Ag distance in the double chain is 0.359 30(17)nm, which is shorter than those of in 1 and 2.

    Fig.5 View of the coordination environment for complex 3 with the numbering scheme

    Fig.6 View of 1D chain for 3

    In 4,the Ag1 is four coordinated and the Ag2 is five coordinated with two longer bond lengths(Fig.7 ). The distance of Ag1…Ag2iis 0.342 75(6)nm,which is similar to the sum of van der Waals radius of two silver ions.The molecular structure of 4 is a 1D molecular ladder combined by Ag-Ag interaction in adjacentchains,which is different from 2 and 3(Fig.8 ).

    Fig.7 View of the coordination environment in 4 with the numbering scheme

    Fromaboveinformation,wecanknowthat complex 2 has no any lattice solvent or coordinated water molecule,while other three contain coordinatedwater molecules or solvents.The basic structures for these four complexes are 1D architectures formed by [Ag(bipy)]+unit.Under the considering of the weak interactions,complex 1 is a 1D chain,1D double chain for 2,1D chain or extended 2D layer for 3,1D ladder chain for 4.

    Fig.8 View of 1D chain for 4

    In 1,solvents and anionic 2-Hnbdc form 1D hydrogen-bonding structure(Fig.9 ).Complex 2 is a 2D hydrogen-bondinglayerassembledthroughthe connection of 1D chains between 2-Hnbdc ligands.In 3,lattice water molecules and carboxylates form hydrogen bonds,generating a 2D hydrogen-bonding layer.For 4,water molecules and 2-Hnbdc form a 2D hydrogen-bonding layer.

    Fig.9 1D hydrogen bonding structure formed by solvents and anionic 2-Hnbdc in 1

    In these complexes there are some π-π interactions between pyridine rings of 4,4′-bipyridine ligands. In 1,the interactions are strong with the centroid to centroid distances of 0.349 75(13)nm and 0.345 16(13) nm between rings of N2C6~C10.In 2 the centroid to centroiddistancesare0.370 94(18)nm and 0.387 85(18) nm between Cg1 and Cg2 where Cg1 is N1C1~5 and Cg2 is N2C6~C10.In 3 the centroid-to-centroid distances are 0.376 4(8)nm between Cg1 and Cg2, 0.369 4(9)nm between Cg1 and Cg3,and 0.372 7(8) nm between Cg3 and Cg4 where Cg1 is N1C1~C5, Cg2 is N3C11~C15,Cg 3 is N4C16~C20,and Cg4 is N2C6~C10.In 4,the centroid-to-centroid distances is 0.369 4(4)nm between Cg1 and Cg2,0.370 9(4)nm between Cg3 and Cg4,0.388 6(4)nm between Cg2 and Cg3 where Cg1 is N1C1~C5,Cg2 is N4C16~C20,Cg3 is N2C6~C10,and Cg4 is N3C11~C15.In 1 there is the shortest stacking interaction distance and complexes 2 and 4 are weaker than those of complexes 1 and 3.

    These four complexes exhibit structural diversity with same components of Ag+,nbdc,and 4,4′-bipy. The solvents,interaction between silver ion and nitro group,and the positions of two pyridine rings in each 4,4′-bipy influence the assembly of the structures. The conformations of 4,4′-bipy ligands in 1~4 are listed in Table3 .In the free ligand the dihedral angles are 17°and 34°[25].

    Table3 Dihedral angles of pyridine rings in each 4,4′-bipyridine

    Fig.1 0TG curves of complexes 1~4

    2.3 Analysis of TG

    To understand the thermal stabilities of the four silver(Ⅱ)coordination polymers,the samples were analyzed by TGA,as shown in Fig.1 0.The curves of complexes 1,3 and 4 all show instability from room temperature,since they have solvent molecules in the structures.And complexes 3 and 4 have similar weight loss way since they show same structures after losing the solvent molecules.TG analysis for1 showed that the weight loss of two water molecules and one methanol from room temperature to 110℃is 11.56%(Calcd.12.56%).With a short platform,complex 1 rapidly disrupts at 220℃.For complex 3, the weight loss of 4.83%from 35 to 139℃corresponds to the release of two water molecules(Calcd.4.66%). Without a clear platform,complex 3 began to decompose slowly from 156 to 230℃,and then the structure quickly collapsed.Similar to complex 3,complex 4 released three water molecules in the range of room temperature to 139℃(Calcd.6.83%,Obsd.6.84%), and the decomposition temperature is also 156℃. Different from complexes 1 and 3~4,complex 2 shows good thermal stability.It is characterized by only one abrupt weight loss step(64.81%)from 220~350℃and then no obvious change occurred till 800℃.

    Upon comparison to complexes 1~4,the products of complexes 1 and 2 after losing their solvents are more stable than those of 3 and 4.The reason maybe that in complex 1 the carboxylate does not coordinate to the silver,the coordination of the nitro group is less strong than that of the carboxylate.In complex 2,in the double chain Ag…Ag distance is longer than those of complexes 3 and 4.All the above information clearly reflects the structural stability of complex 2.

    Fig.1 1UV spectra of complexes 1~4 at room temperature in methanol

    2.4 UV-Vis property

    UV-Vis spectra for complexes 1~4 and corresponding ligands were measured in methanol with the concentration of 1.015×10-5mol·L-1at room temperature and shown in Fig.1 1.As they are composed by the same ligands,the complexes show similar absorption peaks at about 235 nm and 200 nm,which mainly come from the H2nbdc and 4,4′-bipyridine(Table4 ). Though the UV-Vis absorption bands for these complexes are ascribed to π-π*intraligand(IL)transition, the absorptions are slightly stronger than those of ligands,suggesting the coordination can strengthen the absorption.The strongest absorption occurs in the complex 2 and the absorption strength order is 2〉4〉3〉1,indicating that configuration ofcomplexes, coordinating modes of ligands and solvents all can influence the absorptions.

    Table4 UV-Vis absorption spectral data of complexes 1~4 in CH3OH(C=1.015×10-5mol·L-1)

    Fig.1 2Fluorescent spectra of complexes 1~4 in the methanol at room temperature(λex=315 nm)

    2.5 Fluorescence property

    Both fluorescence spectra in methanol and in solid state were measured at room temperature as shown in Fig.1 2 and 13,respectively.In methanol,the λexis 315 nm and they show two extinct emission peaks at about 350 and 400 nm,which are from the H2nbdc ligand(351 nm and 407 nm).Therefore the solution spectra showed the ligand emission character. In the solid state,the λexis 240 nm,and they also showed two emission peaks.They are located at about 290 and 390 nm,somewhat blue-shift compared to the 416 nm for H2nbdc[17].The stronger peaks for four complexes are about 390 nm,and solvation may take a role for the maximum emission location,since 10nm blue-shift occurs in solid state,compared with the spectra in methanol.In the reference the existence of solventmoleculescanpromotethefluorescence emission intensity[26],but for our system both kinds of spectra show that complex 2 has the strongest emission peak,while complex 2 has no solvent but with the most co-planar 4,4′-bipyridine ligand,probably leading to the intense emission.

    Fig.1 3Fluorescent spectra of complexes 1~4 in solid state at room temperature(λex=240 nm)

    3Conclusions

    We have synthesized four diverse silver coordination polymers with same components.The structural transform between complexes 1 and 2 can not be achieved by simple heating due to in complex 1 the 2-Hnbdc coordinates to the silver ions.However, desolvated complexes 3 and 4 have same structural character,indicating the solvents can mediate the conversion of complexes 3 and 4.In these four complexes there are abundant weak interactions,such as weak bond,π-π aromatic stacking effect,and hydrogen bonding interactions.In complexes 1,2,and 4,the nitro groups of 2-Hnbdc ligands weakly coordinate with silver ions,which is rarely reported.An another interesting structural information is that in some transition metal complexes with nbdc the nitro group exists as disordered form,while in our four silver complexes all nitro groups are normal without any disorder.Complex 2 has the highest thermal stability,the strongest electronic absorption,and the strongest fluorescence emission.

    Acknowledgements:The authors thank the National Natural Science Foundation of China(No.21073157).

    Supporting information is available at http://www.wjhxxb.cn

    [1]Kim S N,Kim H Y,Cho H Y,et al.Catal.Today,2013,204: 85-93

    [2]Opanasenko M,Shamzhy M,Lamac M,et al.Catal.Today, 2013,204:94-100

    [3]Wan Y,Chen C,Xiao W M,et al.Microporous Mesoporous Mater.,2013,171:9-13

    [4]Hu X F,Lu Y K,Dai F N,et al.Microporous Mesoporous Mater.,2013,170:36-44

    [5]Mendes P A P,Ragon F,Rodrigues A E,et al.Microporous Mesoporous Mater.,2013,170:251-258

    [6]Brand S K,Colon Y J,Getman R B,et al.Microporous Mesoporous Mater.,2013,171:103-109

    [7]Yang J,Grzech A,Mulder F M,et al.Microporous Mesoporous Mater.,2013,171:65-71

    [8]Duan L H,Dong X Y,Wu Y Y,et al.J.Porous Mater.,2013, 20:431-440

    [9]Liu H,Zhao Y G,Zhang Z J,et al.Chem.Asian J.,2013,8: 778-785

    [10]Zheng B S,Yun R R,Bai J F,et al.Inorg.Chem.,2013,52: 2823-2829

    [11](a)Chen Y M,Cao Q,Gao D D,et al.J.Coord.Chem.,2013, 66:3829-3838

    (b)Allendorf M D,Bauer C A,Bhakta R K,et al.Chem. Soc.Rev.,2009,38:1330-1352

    [12]Wang Y,Wu Y C,Xie J,et al.Sens.Actuators B,2013, 177:1161-1166

    [13]Robinson A L,Stavila V,Zeitler T R,et al.Anal.Chem., 2012,84:7043-7051

    [14]Kreno L E,Leong K,Farha O K,et al.Chem.Rev.,2012, 112:1105-1125

    [15]Deng H X,Doonan C J,Furukawa H,et al.M.Science, 2010,327:846-850

    [16]Allen F H.Acta Crystallogr.,Sect.B:Struct.Sci.,2002,58: 380-388

    [17]Severance R C,Smith M D,zur Loye H C.Inorg.Chem., 2011,50:7931-7933

    [18]Wang X F,Wang Y,Zhang Y B,et al.Chem.Commun., 2012,48:133-135

    [19](a)Chen C L,Kang B S,Su C Y.Aust.J.Chem.,2006,59:3-18

    (b)Ma A Q,Zhu L G.RSC Adv.,2014,4:14691-14699

    (c)Hakimi M,Moeini K,Mardani Z,et al.J.Coord.Chem.,2013,66:1129-1141

    [20](a)Uchida S,Kawamoto R,Tagami H,et al.J.Am.Chem. Soc.,2008,130:12370-12376

    (b)Coleman K S,Chamberlayne H T,Turberville S,et al. Dalton Trans.,2003,14:2917-2922

    [21](a)Fujii Y,Terao J,Kambe N.Chem.Commun.,2009,9: 1115-1117

    (b)Genuis E D,Kelly J A,Patel M,et al.Inorg.Chem.,

    2008,47:6184-6194

    (c)Seward C,Chan J,Song D,et al.Inorg.Chem.,2003,42: 1112-1120

    [22]Akhbari K,Morsali A,Zhu L G.J.Mol.Struct.,2008,891: 132-137

    [23]Khlobystov A N,Blake A J,Champness N R,et al.Coord. Chem.Rev.,2001,222:155-192

    [24]He H Y,Zhu L G,Ng S W.Acta Crystallogr.,2005,E61: m601-m602

    [25]CrysAlisPro,Version 1.171.33.52,Oxford Diffraction Ltd., 2009.

    [26]Sheldrick G M.SHELXL-97,Program for the Refinement of Crystal Structure,University of G?ttingen,Germany,1997.

    [27]Farrugia L J.J.Appl.Cryst.,1999,32:837-838

    [28]Dolomanov O V,Bourhis L J,Gildea R J,et al.J.Appl. Cryst.,2009,42:339-341

    Structural Diversity,Supramolecular Assembly,and Electronic Spectra of Four Silver Coordination Polymers with Same Components of 2-Nitro-1,4-benzenedicarboxylate and 4,4′-Bipyridine

    MA Ai-Qing1,2ZHU Long-Guan*,1
    (1Department of Chemistry,Zhejiang University,Hangzhou 310027,China)
    (2School of Pharmacy,Guangdong Medical University,Dongguan,Guangdong 523808,China)

    Four diverse silver coordination polymers with the same components of silver,4,4′-bipyridine(4,4′-bipy), and 2-nitro-1,4-benzenedicarboxylic acid(2-H2nbdc)have been synthesized,namely{[Ag(4,4′-bipy)]·2-Hnbdc· 2H2O·CH3OH}n(1),{[Ag(4,4′-bipy)(2-Hnbdc)]}n(2),{[Ag2(4,4′-bipy)2(2-nbdc)]·2H2O}n(3),and{[Ag2(4,4′-bipy)2(2-nbdc)(H2O)]·2H2O}n(4),and characterized by IR,elemental analysis,TG,UV,fluorescence spectra,and powder X-ray analysis.The single crystal X-ray analysis showed that complex 1 is a 1D cation-anionic polymer,complex 2 is a 1D double chain without any solvent,and complexes 3 and 4 are 1D chain structures.Diverse structures differ with respect to molecular conformation,coordination modes of 2-Hnbdc,and weak interactions.In these complexes there are weak bonds,π-π aromatic stacking interactions,Ag…Ag interaction,and hydrogen bonding. The diverse structures are related to the thermal stability,UV absorptions,and fluorescence emissions.CCDC: 945166,1;945167,2;945168,3;945169,4.

    coordination modes;structure elucidation;silver coordination compound;nitrobenzenedicarboxylate

    O614.122

    A

    1001-4861(2015)08-1651-10

    10.11862/CJIC.2015.227

    2015-05-04。收修改稿日期:2015-06-04。

    國家自然科學基金(No.21073157)資助項目。

    *通訊聯(lián)系人。E-mail:chezlg@zju.edu.cn;會員登記號:S06N0578M1207。

    猜你喜歡
    聯(lián)吡啶藥學院對苯二甲
    蘭州大學藥學院簡介
    四氯對苯二甲腈含量分析方法
    擴鏈劑對聚對苯二甲酸乙二醇酯流變性能和發(fā)泡性能影響
    中國塑料(2015年5期)2015-10-14 00:59:48
    純手性的三聯(lián)吡啶氨基酸—汞(II)配合物的合成與表征
    功能化三聯(lián)吡啶衍生物的合成及其對Fe2+識別研究
    咪唑-多聯(lián)吡啶釕配合物的合成、晶體結(jié)構(gòu)和性能研究
    基于四溴代對苯二甲酸構(gòu)筑的兩個Cu(Ⅱ)配位聚合物的合成與晶體結(jié)構(gòu)
    1,10-鄰菲咯啉和四氟對苯二甲酸構(gòu)建的兩個鎳(Ⅱ)的配合物:合成和晶體結(jié)構(gòu)
    基于環(huán)己烷甲酸根和2,2′-聯(lián)吡啶配體的雙核錳(Ⅱ)配合物的合成與表征
    HSCCC-ELSD法分離純化青葙子中的皂苷
    a级毛片a级免费在线| 久久久久久大精品| 高清毛片免费观看视频网站| 亚洲av电影不卡..在线观看| 国产欧美日韩精品一区二区| 国产午夜福利久久久久久| 色噜噜av男人的天堂激情| or卡值多少钱| 国产成人aa在线观看| 国产高清三级在线| 成年版毛片免费区| eeuss影院久久| 亚洲性夜色夜夜综合| 欧美成狂野欧美在线观看| www.熟女人妻精品国产| 少妇熟女aⅴ在线视频| 人人妻人人澡欧美一区二区| 欧美性猛交黑人性爽| 最近在线观看免费完整版| 老司机福利观看| 国产免费男女视频| 国产三级中文精品| 中文字幕人妻丝袜一区二区| 日本一二三区视频观看| 国内久久婷婷六月综合欲色啪| 亚洲最大成人中文| 亚洲国产精品999在线| 黄色视频,在线免费观看| 无人区码免费观看不卡| 国产精品电影一区二区三区| 亚洲 欧美 日韩 在线 免费| 久久久久久久久大av| 亚洲av第一区精品v没综合| 在线看三级毛片| 少妇的逼水好多| 久久久久久人人人人人| 国产高清视频在线观看网站| 久久性视频一级片| 观看免费一级毛片| 九九在线视频观看精品| 日韩欧美一区二区三区在线观看| 日日干狠狠操夜夜爽| 性欧美人与动物交配| 国产亚洲精品av在线| 伊人久久大香线蕉亚洲五| 老汉色av国产亚洲站长工具| tocl精华| 夜夜躁狠狠躁天天躁| 亚洲成人免费电影在线观看| 亚洲激情在线av| 中亚洲国语对白在线视频| 蜜桃久久精品国产亚洲av| 久久久久久久久中文| 人人妻人人看人人澡| 最好的美女福利视频网| 亚洲精品一区av在线观看| 成年女人看的毛片在线观看| 欧美+亚洲+日韩+国产| 午夜福利欧美成人| 男女床上黄色一级片免费看| 一个人免费在线观看电影| 午夜福利视频1000在线观看| 国产日本99.免费观看| 精品人妻一区二区三区麻豆 | 制服人妻中文乱码| 欧美+日韩+精品| 亚洲中文字幕一区二区三区有码在线看| 亚洲av美国av| 久久性视频一级片| 国产色婷婷99| 悠悠久久av| 有码 亚洲区| 操出白浆在线播放| 一级毛片高清免费大全| 亚洲精品在线观看二区| 最近视频中文字幕2019在线8| 免费在线观看成人毛片| 久久久久免费精品人妻一区二区| 亚洲精品一区av在线观看| 在线观看美女被高潮喷水网站 | 欧美国产日韩亚洲一区| 精品不卡国产一区二区三区| 18禁国产床啪视频网站| 午夜福利视频1000在线观看| 国产精品电影一区二区三区| 国产精品影院久久| 99国产综合亚洲精品| 又爽又黄无遮挡网站| 国产探花极品一区二区| 午夜a级毛片| 欧美成人一区二区免费高清观看| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 精品一区二区三区视频在线观看免费| 波多野结衣高清作品| 亚洲人成电影免费在线| 国产av麻豆久久久久久久| 成人国产一区最新在线观看| 嫩草影院精品99| 老司机午夜福利在线观看视频| 国产毛片a区久久久久| 丁香欧美五月| 男女视频在线观看网站免费| 成人18禁在线播放| 亚洲精品在线美女| 成年女人永久免费观看视频| 老司机午夜十八禁免费视频| 天天一区二区日本电影三级| 久久婷婷人人爽人人干人人爱| 最后的刺客免费高清国语| 国内精品久久久久精免费| 久久久久久人人人人人| 99国产综合亚洲精品| 老熟妇仑乱视频hdxx| 国产乱人视频| 在线观看美女被高潮喷水网站 | 啦啦啦观看免费观看视频高清| 国产爱豆传媒在线观看| 欧美性猛交╳xxx乱大交人| 久久草成人影院| h日本视频在线播放| 免费av毛片视频| 一本一本综合久久| 中文字幕av在线有码专区| 久久人人精品亚洲av| 性色av乱码一区二区三区2| 成人亚洲精品av一区二区| 亚洲欧美日韩东京热| 国产伦精品一区二区三区视频9 | 黄色成人免费大全| 一二三四社区在线视频社区8| 国产中年淑女户外野战色| 又黄又粗又硬又大视频| 色综合亚洲欧美另类图片| tocl精华| 在线观看舔阴道视频| 3wmmmm亚洲av在线观看| 最后的刺客免费高清国语| 国产精品电影一区二区三区| 日韩欧美精品v在线| 免费搜索国产男女视频| 国产在视频线在精品| 日韩欧美 国产精品| av在线天堂中文字幕| 精品99又大又爽又粗少妇毛片 | 网址你懂的国产日韩在线| 美女高潮喷水抽搐中文字幕| 久99久视频精品免费| 在线观看舔阴道视频| avwww免费| 男插女下体视频免费在线播放| 99久久精品一区二区三区| 在线视频色国产色| 日本一二三区视频观看| 看黄色毛片网站| 亚洲成人中文字幕在线播放| 午夜免费激情av| 看片在线看免费视频| 亚洲欧美日韩无卡精品| 一个人观看的视频www高清免费观看| 久久国产精品人妻蜜桃| 亚洲av成人不卡在线观看播放网| 91在线精品国自产拍蜜月 | 九九热线精品视视频播放| 少妇的丰满在线观看| 免费av不卡在线播放| 麻豆国产97在线/欧美| e午夜精品久久久久久久| 99久久九九国产精品国产免费| 男女午夜视频在线观看| 综合色av麻豆| 夜夜爽天天搞| 中文字幕精品亚洲无线码一区| svipshipincom国产片| 看黄色毛片网站| av欧美777| 真人一进一出gif抽搐免费| 中文资源天堂在线| 国产精品久久久人人做人人爽| 一级作爱视频免费观看| 在线观看舔阴道视频| 久久久成人免费电影| 18禁黄网站禁片午夜丰满| 岛国在线观看网站| 波多野结衣高清作品| 亚洲一区高清亚洲精品| 99视频精品全部免费 在线| 午夜福利免费观看在线| 校园春色视频在线观看| 日韩欧美 国产精品| 日本a在线网址| 最新美女视频免费是黄的| 日本五十路高清| 日韩欧美精品免费久久 | 国产精品影院久久| 久久久久国内视频| 搡老熟女国产l中国老女人| 国产高清激情床上av| 久99久视频精品免费| 成人国产综合亚洲| 久久精品影院6| 成年女人毛片免费观看观看9| 亚洲国产高清在线一区二区三| 一个人免费在线观看的高清视频| svipshipincom国产片| 国产高潮美女av| 一二三四社区在线视频社区8| 精品人妻偷拍中文字幕| 麻豆成人av在线观看| 国产精品香港三级国产av潘金莲| 成人午夜高清在线视频| 又爽又黄无遮挡网站| 免费看光身美女| av欧美777| 日日干狠狠操夜夜爽| 色综合欧美亚洲国产小说| 欧美高清成人免费视频www| 亚洲国产精品999在线| 亚洲最大成人手机在线| 欧美绝顶高潮抽搐喷水| 十八禁网站免费在线| 99久久综合精品五月天人人| 亚洲成人久久性| 亚洲七黄色美女视频| 天堂网av新在线| 成人三级黄色视频| 久久久国产成人免费| www日本在线高清视频| 99在线人妻在线中文字幕| 一卡2卡三卡四卡精品乱码亚洲| 12—13女人毛片做爰片一| 欧美在线一区亚洲| 小蜜桃在线观看免费完整版高清| 久久精品国产清高在天天线| x7x7x7水蜜桃| 精品国产亚洲在线| а√天堂www在线а√下载| 国产色婷婷99| 久久亚洲精品不卡| 97超级碰碰碰精品色视频在线观看| 在线观看免费视频日本深夜| 国产精品女同一区二区软件 | 一区二区三区激情视频| 久久久国产精品麻豆| 国产高清videossex| 日本与韩国留学比较| 久久性视频一级片| 亚洲av五月六月丁香网| 欧美性猛交╳xxx乱大交人| 淫妇啪啪啪对白视频| 一级a爱片免费观看的视频| 1024手机看黄色片| h日本视频在线播放| 听说在线观看完整版免费高清| 欧美大码av| 亚洲国产精品sss在线观看| 精品一区二区三区视频在线 | 操出白浆在线播放| 九九在线视频观看精品| 最近最新中文字幕大全免费视频| 看黄色毛片网站| 99热只有精品国产| 人妻久久中文字幕网| 伊人久久大香线蕉亚洲五| a在线观看视频网站| 搞女人的毛片| 成人特级av手机在线观看| 精品人妻一区二区三区麻豆 | 日本撒尿小便嘘嘘汇集6| 日韩中文字幕欧美一区二区| 久久6这里有精品| 中文字幕av在线有码专区| 岛国视频午夜一区免费看| 亚洲avbb在线观看| 日本与韩国留学比较| 别揉我奶头~嗯~啊~动态视频| 一个人看的www免费观看视频| 久久久精品欧美日韩精品| 久久久久久久亚洲中文字幕 | 嫩草影院入口| 搞女人的毛片| 国产一区二区三区在线臀色熟女| 99热精品在线国产| 久久中文看片网| 一卡2卡三卡四卡精品乱码亚洲| 午夜免费成人在线视频| 麻豆国产av国片精品| 黄色日韩在线| 日本免费a在线| 99久久精品一区二区三区| 日韩欧美三级三区| 高清在线国产一区| 五月伊人婷婷丁香| 97超级碰碰碰精品色视频在线观看| 12—13女人毛片做爰片一| 日韩高清综合在线| 国产乱人伦免费视频| 制服丝袜大香蕉在线| 亚洲中文日韩欧美视频| 亚洲精品美女久久久久99蜜臀| 99久久成人亚洲精品观看| 亚洲国产精品sss在线观看| 三级毛片av免费| 日本黄大片高清| 色精品久久人妻99蜜桃| 搡老熟女国产l中国老女人| 亚洲国产欧美人成| 国产成人a区在线观看| 国产伦精品一区二区三区视频9 | 午夜影院日韩av| bbb黄色大片| 国产一区二区三区视频了| 日韩高清综合在线| 亚洲专区国产一区二区| 99久久无色码亚洲精品果冻| 免费看光身美女| 俄罗斯特黄特色一大片| 中文字幕高清在线视频| 波多野结衣高清作品| 欧美大码av| 日本 av在线| 国产精品久久久久久久久免 | 欧美av亚洲av综合av国产av| 亚洲av一区综合| 亚洲精品粉嫩美女一区| 禁无遮挡网站| 精品久久久久久久久久免费视频| 美女大奶头视频| 国内精品久久久久久久电影| 91字幕亚洲| 麻豆国产av国片精品| 国产极品精品免费视频能看的| 日韩高清综合在线| 国产视频一区二区在线看| 天天躁日日操中文字幕| 手机成人av网站| 亚洲欧美一区二区三区黑人| 国产伦一二天堂av在线观看| 久久久精品欧美日韩精品| 麻豆一二三区av精品| 少妇的逼好多水| 高潮久久久久久久久久久不卡| 黄片小视频在线播放| 高清在线国产一区| 丰满的人妻完整版| av黄色大香蕉| 久久久久久久久大av| 亚洲第一电影网av| 欧美午夜高清在线| 国产aⅴ精品一区二区三区波| 国产免费av片在线观看野外av| 成熟少妇高潮喷水视频| 国产精品香港三级国产av潘金莲| 亚洲久久久久久中文字幕| 国产一区二区在线观看日韩 | av天堂中文字幕网| 国产精品久久视频播放| 婷婷精品国产亚洲av| 母亲3免费完整高清在线观看| 国产精品一区二区三区四区免费观看 | 国产黄色小视频在线观看| 一本综合久久免费| 国产黄色小视频在线观看| 特级一级黄色大片| 亚洲av第一区精品v没综合| 国产探花极品一区二区| 女人十人毛片免费观看3o分钟| 欧美精品啪啪一区二区三区| 免费人成视频x8x8入口观看| 一个人看的www免费观看视频| 久久亚洲真实| 久久国产精品影院| 黄片大片在线免费观看| 成年女人看的毛片在线观看| 最近视频中文字幕2019在线8| 亚洲精品456在线播放app | 12—13女人毛片做爰片一| 亚洲av日韩精品久久久久久密| 99热6这里只有精品| 亚洲av二区三区四区| 欧美午夜高清在线| 成年免费大片在线观看| av在线蜜桃| 两个人视频免费观看高清| 国产av麻豆久久久久久久| 九九久久精品国产亚洲av麻豆| 少妇人妻精品综合一区二区 | 很黄的视频免费| 熟女电影av网| 51午夜福利影视在线观看| 美女被艹到高潮喷水动态| 精品国产美女av久久久久小说| 欧美黄色淫秽网站| 国产爱豆传媒在线观看| 天天躁日日操中文字幕| 黄色成人免费大全| 午夜福利视频1000在线观看| 1000部很黄的大片| 在线免费观看不下载黄p国产 | 亚洲 欧美 日韩 在线 免费| 麻豆成人午夜福利视频| 我的老师免费观看完整版| 日韩亚洲欧美综合| 国产三级中文精品| 久久精品国产99精品国产亚洲性色| 亚洲精品成人久久久久久| 色av中文字幕| 高清日韩中文字幕在线| 淫妇啪啪啪对白视频| 有码 亚洲区| 久久久精品大字幕| 国产三级黄色录像| 国产亚洲精品av在线| 国产黄色小视频在线观看| 亚洲av五月六月丁香网| 男插女下体视频免费在线播放| 老汉色∧v一级毛片| 操出白浆在线播放| 亚洲自拍偷在线| 亚洲av电影不卡..在线观看| 宅男免费午夜| 国产欧美日韩精品一区二区| 叶爱在线成人免费视频播放| 手机成人av网站| 最后的刺客免费高清国语| 精品一区二区三区视频在线观看免费| 国产成人aa在线观看| 国产三级在线视频| 99热这里只有精品一区| 在线免费观看的www视频| 成人一区二区视频在线观看| 国内毛片毛片毛片毛片毛片| 精品福利观看| 日本一二三区视频观看| 国产乱人视频| 中出人妻视频一区二区| 免费av毛片视频| 日韩大尺度精品在线看网址| or卡值多少钱| 婷婷亚洲欧美| 午夜精品在线福利| 国产中年淑女户外野战色| 国产野战对白在线观看| 日本在线视频免费播放| 美女黄网站色视频| 国产激情欧美一区二区| 长腿黑丝高跟| 亚洲在线观看片| 一级毛片女人18水好多| 好男人电影高清在线观看| 亚洲五月婷婷丁香| 亚洲电影在线观看av| 欧美成狂野欧美在线观看| 麻豆久久精品国产亚洲av| 男人和女人高潮做爰伦理| 亚洲中文字幕一区二区三区有码在线看| 十八禁人妻一区二区| 国产免费男女视频| 久久精品综合一区二区三区| 观看免费一级毛片| 搡女人真爽免费视频火全软件 | 禁无遮挡网站| 麻豆成人av在线观看| 69av精品久久久久久| 久久精品国产亚洲av涩爱 | 2021天堂中文幕一二区在线观| 欧美日韩福利视频一区二区| 成人特级黄色片久久久久久久| 一边摸一边抽搐一进一小说| 亚洲va日本ⅴa欧美va伊人久久| 久久久精品欧美日韩精品| 一区二区三区国产精品乱码| 少妇的逼好多水| 麻豆一二三区av精品| 69人妻影院| 国产老妇女一区| 操出白浆在线播放| 国产乱人视频| 国产精品美女特级片免费视频播放器| 一个人看的www免费观看视频| 色哟哟哟哟哟哟| 欧美zozozo另类| 无限看片的www在线观看| 国产精品自产拍在线观看55亚洲| 国产精品国产高清国产av| 天美传媒精品一区二区| 丁香六月欧美| 国产欧美日韩精品亚洲av| 亚洲在线自拍视频| 亚洲av免费在线观看| 在线播放国产精品三级| 搡女人真爽免费视频火全软件 | 国产日本99.免费观看| 此物有八面人人有两片| 女警被强在线播放| 国产免费一级a男人的天堂| 精品欧美国产一区二区三| 国产午夜福利久久久久久| 国产亚洲精品久久久com| 成年女人看的毛片在线观看| 国产精华一区二区三区| 精品国产超薄肉色丝袜足j| 毛片女人毛片| 国产一区二区三区视频了| 最近在线观看免费完整版| 12—13女人毛片做爰片一| 在线观看日韩欧美| 国内少妇人妻偷人精品xxx网站| 99精品久久久久人妻精品| 日韩欧美 国产精品| 亚洲成人久久爱视频| 欧美+亚洲+日韩+国产| 99热6这里只有精品| 精品人妻1区二区| xxxwww97欧美| 美女大奶头视频| 内地一区二区视频在线| 色噜噜av男人的天堂激情| 午夜福利成人在线免费观看| 在线观看一区二区三区| 欧洲精品卡2卡3卡4卡5卡区| 热99在线观看视频| 色综合欧美亚洲国产小说| 色噜噜av男人的天堂激情| 校园春色视频在线观看| 精品国产三级普通话版| 亚洲第一电影网av| 免费电影在线观看免费观看| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 亚洲黑人精品在线| 免费无遮挡裸体视频| 亚洲五月天丁香| 欧美区成人在线视频| 美女cb高潮喷水在线观看| 人妻夜夜爽99麻豆av| 国产成人aa在线观看| 日本与韩国留学比较| 欧美黄色淫秽网站| 五月伊人婷婷丁香| 亚洲av电影不卡..在线观看| 老汉色av国产亚洲站长工具| 日韩精品中文字幕看吧| 麻豆成人午夜福利视频| avwww免费| 真人做人爱边吃奶动态| 18美女黄网站色大片免费观看| 伊人久久大香线蕉亚洲五| 国产精品永久免费网站| 国产精品精品国产色婷婷| 成人特级黄色片久久久久久久| 国产精品亚洲av一区麻豆| 日韩欧美三级三区| 日本熟妇午夜| 在线观看免费午夜福利视频| 99久久精品热视频| 韩国av一区二区三区四区| 一本久久中文字幕| 美女大奶头视频| 欧美最黄视频在线播放免费| 女人十人毛片免费观看3o分钟| ponron亚洲| 精品久久久久久成人av| 亚洲国产欧美人成| 小说图片视频综合网站| 午夜精品在线福利| 午夜a级毛片| 真人做人爱边吃奶动态| 国产精品久久久人人做人人爽| 亚洲av熟女| 老司机午夜福利在线观看视频| 国产av在哪里看| 操出白浆在线播放| 久久精品人妻少妇| 欧美一区二区亚洲| 亚洲一区二区三区不卡视频| 久久久国产精品麻豆| 人人妻人人看人人澡| 欧美性猛交黑人性爽| 国产亚洲精品一区二区www| 长腿黑丝高跟| xxx96com| 国产亚洲欧美在线一区二区| 欧美最黄视频在线播放免费| 丰满乱子伦码专区| 国产伦一二天堂av在线观看| 乱人视频在线观看| 一本综合久久免费| 18禁美女被吸乳视频| 激情在线观看视频在线高清| 欧美成人一区二区免费高清观看| 三级男女做爰猛烈吃奶摸视频| 欧美激情在线99| 在线观看66精品国产| 给我免费播放毛片高清在线观看| 1000部很黄的大片| 三级毛片av免费| 亚洲欧美日韩无卡精品| 欧美另类亚洲清纯唯美| 国产精品久久久人人做人人爽| xxx96com| 国产黄a三级三级三级人| 在线国产一区二区在线| 天美传媒精品一区二区| 婷婷亚洲欧美| а√天堂www在线а√下载| www日本在线高清视频| 两个人视频免费观看高清| 日韩精品中文字幕看吧| 老鸭窝网址在线观看| 变态另类成人亚洲欧美熟女| 亚洲欧美日韩高清专用| 国产三级在线视频| 亚洲男人的天堂狠狠| 中文字幕人妻丝袜一区二区| 欧美高清成人免费视频www| 国产黄色小视频在线观看|