• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    基于5-磺酸基間苯二甲酸鈉和雙三唑烷烴的Cu配合物的合成、結(jié)構(gòu)和性質(zhì)

    2015-12-05 07:28:08周尚永
    關(guān)鍵詞:間苯二甲酸天津師范大學(xué)丁烷

    李 婷 李 欣 周尚永 田 麗

    (天津師范大學(xué)化學(xué)學(xué)院,天津市功能分子結(jié)構(gòu)與性能重點(diǎn)實(shí)驗(yàn)室,無機(jī)-有機(jī)雜化功能材料化學(xué)省部共建教育部重點(diǎn)實(shí)驗(yàn)室,天津300387)

    李婷李欣周尚永田麗*

    (天津師范大學(xué)化學(xué)學(xué)院,天津市功能分子結(jié)構(gòu)與性能重點(diǎn)實(shí)驗(yàn)室,無機(jī)-有機(jī)雜化功能材料化學(xué)省部共建教育部重點(diǎn)實(shí)驗(yàn)室,天津300387)

    利用5-磺酸基間苯二甲酸鈉(NaH2sip)和雙三唑烷烴,合成了3個(gè)配合物[Cu0.5(btm)(H2O)](H2sip)·H2O}n(1,btm=雙三唑甲烷),{[Cu(btp)2(H2sip)(H2O)](NO3)·4H2O}n(2,btp=雙三唑丙烷)和{[Cu(btb)2(Hsip)]n(3,btb=雙三唑丁烷)?;衔?為一維雙鏈結(jié)構(gòu);化合物2為二維四方網(wǎng)絡(luò)結(jié)構(gòu),多個(gè)二維層依次疊加形成三維超分子結(jié)構(gòu);化合物3也具有二維層狀結(jié)構(gòu),其中金屬銅離子和雙三唑丁烷構(gòu)成的一維雙鏈結(jié)構(gòu)經(jīng)雙齒μ2-Hsip2-配體連接構(gòu)成了二維層狀結(jié)構(gòu)。同時(shí)對(duì)配合物的熱穩(wěn)定性和順磁共振特性進(jìn)行了討論。

    雙三唑甲烷;雙三唑丙烷;雙三唑丁烷;5-磺酸基間苯二甲酸單鈉鹽;超分子結(jié)構(gòu);氫鍵

    Coordinationpolymershaverecentlyaroused much interest as materials,due to not only the structural diversity but also their attractive properties, such as catalytic activity,magnetism,photochemical activity and electrical chemistry[1-9].One of the key steps for preparation of polymeric transition metalcomplexesistoselectthemultidentatebridging ligands or mixed coordination ligands[10-14].Currently, the rational construction of new structurally defined MOFs using the mixed-ligand strategy seems to be a marvelous success[15-21].

    Because of the diversity of the coordination modes and high structural stability,multi-carboxylic ligands with suitable spacers,especially benzoic acid based ligands are frequently used for metal-organic networks[22-27].Benzene-1,3,5-tricarboxylic acid(H3btc, also known as trimesic acid)is a rigid,planar molecule and has been widely used as a bridging ligand in the synthesis of multidimensional MOFs.Compared to the widely used benzene-1,3,5-tricarboxylic acid,5-sulfoisophthalic acid monosodium salt(NaH2sip)has distinctive characteristics:(i)C2symmetry of the ligand may cause the generation of different structures;(ii)the sulfonate group is generally perceived as a weaker group with respect to their coordinating ability and has one more potentially coordinating oxygen atom; (iii)the weak coordination nature of-SO3makes its coordination mode very flexible and sensitive to the chemical environment.

    On the other hand,bis(1,2,4-triazol-1-yl)alkanes arehighlyflexibleligands.Theflexibilityand conformation freedoms of bistriazole alkanes can offer the possibility for the construction of unpredictable and interesting frameworks.

    In this contribution,we describe a series of Cumetal-organic frameworks constructed from rigid multi -carboxylic ligand NaH2sip and flexible bistriazole alkanes.Three novelcomplexes[Cu0.5(btm)(H2O)] (H2sip)·H2O}n(1),{[Cu(btp)2(H2sip)(H2O)](NO3)4H2O}n(2),and{[Cu(btb)2(Hsip)]n(3)were fabricated and structurallycharacterizedbyX-raysinglecrystal analyses.They exhibited novel framework structures varying from 1D chains,to 2D layers.The thermal stability and EPR spectra have also been discussed.

    1 Experimental

    1.1General considerations

    Thereagentsandsolventsemployedwere commercially available and used as received without further purification.Bis(1,2,4-triazol-1-yl)alkanes was synthesized as reported previously[28].The elemental analyses(C,H,and N)were carried out on a Perkin-Elmerelementalanalyzer.TGexperimentswere performed on a NETZSCH TG 209 instrument with a heating rate of 10℃·min-1under nitrogen conditions. EPR spectra were measured on a BRUKER EMX-6/1 EPR spectrometer.

    1.2Preparation

    [Cu0.5(btm)(H2O)](H2sip)·H2O}n(1).A mixture of Cu(NO3)2·3H2O(168 mg,0.7 mmol),NaH2sip(189 mg, 0.7 mmol),btm(91 mg,0.7 mmol)and H2O(12 mL) was added into a parr Teflon-lined stainless steel vessel(25 mL),and then the vessel was sealed and heated to 140℃.After 3 days the autoclave was cooled to room temperature at a rate of 1.5℃·h-1. Blue crystalline products 1 were filtered off,washed with distilled water and dried in air.Yield:45% (based on Cu).Anal.Calcd.(%)for C13H15Cu0.5N6O9S (463.15):C 33.71,H 3.26,N 18.15.Found(%):C 33.38,H 3.55,N 18.46.

    {[Cu(btp)2(H2sip)(H2O)](NO3)·4H2O}n(2).Blue crystals of 2 were obtained by adopting the similar synthetic procedure as 1 except that btm was replaced by btp(111 mg,0.7 mmol).Yield:48%(based on Cu).Anal.Calcd.(%)for C22H35CuN13O15S(817.25):C 32.33,H 4.32,N 22.29.Found(%):C 32.65,H 4.37, N 22.54.

    [Cu(btb)2(Hsip)]n(3).Bluecrystalsof 3 were obtained by adopting the similar synthetic procedure as 1 except that btm was replaced by btb(120 mg,0.7 mmol).Yield:43%(based on Cu).Anal.Calcd.(%)for C12H14Cu0.5N6O3.5S0.5(346.10):C 41.64,H 4.08,N 24.29. Found(%):C 41.35,H 4.18,N 24.55.

    1.3X-ray crystallography

    Single-crystal X-ray diffraction measurements of 1~3 were carried out with a Oxford Supernova CCD diffractometer and a graphite crystal monochromator situated in the incident beam for data collection at 150(2)K.Lorentz polarization and absorption corrections were applied.The structures were solved by direct methods and refined by full-matrix least-squares techniques using the SHELXS-97 and SHELXL-97[29-30]programs.Allnon-hydrogenatomswererefined anisotropically,and hydrogen atoms were located and refined isotropically.Crystallographic data for 1~3 are summarized in Table1.Selected bond lengths and angles were summarized in Table2.

    CCDC:1023688,1;776320,2;1023689,3.

    Table1 Crystallographic data and structure refinement for complexes 1~3

    Table2 Selected bond lengths(nm)and bond angles(°)for complexes 1~3

    Continued Table2

    2 Results and discussion

    2.1Description of crystal structure of {[Cu0.5(btm)(H2O)](H2sip)·H2O}n(1)

    1 is double-stranded chains which are composed of ribbons of 16-membered rings,each ring involving two copper atoms and two btm molecules,in which the Cu(1)atom is in a general position(Fig.1).The metal coordination sphere is octahedral,with four nitrogen atoms from four btm ligands and two oxygen atoms from two water molecules.The four nitrogen atoms make up the equatorial plane,whereas the two oxygen atoms occupy the apical positions.The Cu-N bonds in 1 are in the normal range,and the axial Cu1-O1 distance(0.237 7(5)nm)is a little longer thanthenormalCu-Odistances,whichcanbe attributed to Jahn-Teller elongation.

    Fig.1 (a)Molecule structure of 1,showing the coordination environments of Cu2+,btm and H2sip-ligands;(b)1D chain of 1;Symmetry Codes:ivx,y+1,z;vx,y-1,z; (c)Extended 1D supramolecular double-chain linked with hydrogen-bonding interactions in 1; (d)3D supramolecularstructure of1 viewed from b direction(dashed line:hydrogen bonding)

    The btm ligand exhibits cis conformation and works as shorter spacers(N…N 0.581 4 nm).Acting as bidentate chelating-bridging ligands,a pair of btm ligands chelate the Cu1 center by triazolyl N donors with the Cu…Cu separation being 0.870 7(4)nm, which leads to an infinite 1D chain(Fig.1b).

    In the framework of 1,free H2sip and lattice water moleculars constitute 1D supramolecular double -chainsalongthecrystallographica-axisthrough classical hydrogen-bonding interactions(O2-H2A…O9vi,O9-H9A…O8ii,O9-H9B…O4viii;Symmetry code:vi-x+2,-y,-z;iix,y-1,z;viii-x+1,-y+1,-z; Table3),which further links the 1D btm-Cu chains into 3D supramolecular architecture(Fig.1c and 1d). The btm-Cu chains carry positive charges,whereas the H2sip--H2O supramolecular chains have negative charge. Thereupon,the3Dsupramolecularstructureisconsolidated by interchain hydrogen bonding interactions as well as electrostatic interactions(Fig.1d).

    Table3 Selected hydrogen bond data for 1~3

    2.2Description of crystal structure {[Cu(btp)2(H2sip)(H2O)](NO3)·4H2O}n(2)

    Compound 2 crystallizes in the P21/c space group, and structural determination reveals it as 2D layers linked by μ2-btp ligands.The repeated unit in 2 consists of one crystallographically independent Cu2+ion.As viewed in Fig.2a,Cu1 is six-coordinated in a distortedoctahedralcoordinationspherethatis defined by two different oxygen atoms(one from water, the other two from H2sip-)occupying the axial positions,while the equatorial positions are finished by four nitrogen donors from four btp ligands.The bond distances of Cu1-O8 and Cu1-O1 which occupy the axial positions of the octahedron,are 0.253 6(3)nm and 0.244 5(2)nm,respectively.This axial elongation could be attributed to the Jahn-Teller effect.The other Cu-O and Cu-N bonds in 2 are in the normal range.

    All of the btp ligands adopt trans conformation with the N…N distances of 0.743 2 nm(to which N1 belongs)and 0.844 6 nm(to which N7 belongs) between the two donor atoms and a dihedral angle of the two triazole rings of 66.9°and 111.7°,respectively. Each Cuion is linked by four btp ligands,leading to 2D tetragonal layer structures with Cu…Cu separations of 1.002 6 nm(to which N1 belongs)and 1.131 4 nm(to which N7 belongs),as depicted in Fig.2b.The structures provide a very nice example of interdigitation.The sheets occur in which one of the uncoordinated carboxylic groups penetrate the rectangular windows of the partner,as can be clearly seen in Fig. 2c.Whats more,the interdigitating units lead to a 3D supramolecular architecture through the hydrogenbond interactions(O4-H4C…O3iii(iiix,-y+5/2,z-1/2)) (Table3).

    2.3Description of crystal structure [Cu(btb)2(Hsip)]n(3)

    3 crystallizes in the space group Ama2.In 3,the Cu1 atom and S1 atom lie on a twofold axis and the twofold axis is parallel to the b axis.What′s more,the H2sip-ligand is coordinated to the Cu1 with O1 fromthe-SO3group and O3 from COO-group,so the central atom Cu1 is unsymmetric(Fig.3).That is the reason why compound 3 belongs to non-centrosymmetric space group of Ama2.

    Fig.2 (a)Molecule structure of 2,showing the coordination environments of Cu2+,H2sip-and btp ligands;(b)2D layer of compound 2 in ab plane;(c)3D supramolecular structure of 2 viewed from a direction

    The coordination environment of Cuions is presented in Fig.3(a).Every central Cuion is sixcoordinated by two oxygen atoms from two Hsipligands,four nitrogen atoms from four btb ligands, which is in a highly distorted octahedral coordination sphere.The bond distances of Cuions with two Hsip2-oxygen atomsare 0.220 6(8)nm and 0.256 4(7) nm,respectively.This axial elongation could also beattributed to the Jahn-Teller distortion of copperions.All of the other Cu-O and Cu-N bonds are in the normal range.

    Fig.3 (a)Molecule structure of 3,showing the coordination environments of Cu2+,Hsip2-and btb ligands and building unit with 30%thermal ellipsoids;(b)1D double-stranded chain and μ2-Hsip2-ligand in 3; (c)2D layer of 3 viewed from a direction;(d)3D supramolecular structure of 3 viewed from c direction(dashed line:hydrogen bonding)

    The btb ligands adopt cis conformation with the N…N distances of 0.817 1 nm between the two donor atoms and a dihedral angle of the two triazole rings of 83°.Two strands of btb ligands are wrapped around each other and are held together by Cuions,also forming double-stranded chains like compound 1(Fig. 3b).But the Cu…Cu separation across the bridging btb ligand is 1.076 3 nm which is longer than that in 1.In the bc plane,the double-stranded chains are connected into a 2D layer by the link of the μ2-Hsip2-ligands.What′s more,the 2D layers lead to a 3D supramolecular architecture through the weak hydrogen -bond interactions(C12…N5v0.330 4 nm,C12-H12B…N5v126.98°,Symmetry code:v1-x,-y+3/2,z-1/2)).

    2.4Comparison of structures

    In the construction of compounds 1~3,the difference coordination modes(Scheme 1)of the ligand NaH2sip have an important influence on the resulting supramolecular architectures.In 1,the H2sip-ligand did not coordinated to the central Cu2+,it is only as counter ion.In compound 2,H2sip-ion acts as monodentate ligand,and mode a is observed.In 3,Hsip2-ion coordinated to Cu2+ion in mode b as a bidentate ligand.In addition,the versatile conformations of bistriazole alkanes have an important influence on the resulting frameworks.So compound 1 is doublestranded chains;compounds 2 and 3 are two different kinds of 2D frameworks.This work can be compared with our previous results[19,31-34],in which we used flexible bistriazole and rigid multicarboxylic ligands to obtain 1D,2D,3D and interpenetrated complexes.In allthesecomplexes,althoughbistriazoleligands adopted the same μ2linking mode,ligand conformations,deprotonating degree and coordination modes of the aromatic multi-carboxylic ligands are important for various framework structures in crystal engineering.

    Scheme 1 Coordination modes of ligand NaH2sip in 2 and 3

    2.5TGA and EPR characterization for 1~3

    The thermal behaviors of these new crystalline materials were studied by thermogravimetric analysis (TGA)under nitrogen atmosphere(Fig.4).Because of the existence of free H2sip anion in 1,it is very unstable and decomposes gradually above 115℃.The TGA result of 2 displays two steps weight losses.For 2,the first weight loss of 11.00%from 105 to 135℃should be attributed to the loss of water molecules (Calcd.11.01%),and the second weight loss is ascribed to the loss of organic ligands and NO3-anions.The decomposition of the coordination framework of 2 occurs immediately when the temperature is above 235℃.The TG curve for 3 reveals that it is stable up to 210℃.With further heating,rapid mass loss occurs,which is assigned to the decomposition of organic ligands.

    Fig.4 TGA curves for 1~3

    The EPR spectra of powdered samples of 1~3 have been measured at the room temperature and are shown in Fig.5.The simulations were carried out by the EasySpin software.The obtained spectra are characteristic for the coppercenters,which are simulated assuming the axial symmetry of g and A tensors.The simulated spectra were obtained by employing the following parameters:g∥=2.21,g⊥=2.05,A1=50 G,A2= 5 G and A3=5 G for compound 1;g1=2.23,g2=2.05,g3= 2.03,A1=90 G,A2=25 G and A3=10 G for compound 2; g1=2.24,g2=2.08,g3=2.05,A1=120 G,A2=0 G and A3= 10 G for compound 3.Both 2 and 3 have three g values, so the Cuions in them exist as unsymmetricallyoctahedral structures.Unlike 2 and 3,the coordination environment of Cuions in 1 appear as symmetrically octahedron,and they only have two g values.The obtained values(g∥>g⊥>2.002 3)for 1 indicate that the unpaired electron is located in the dx2-y2ground state, which is in agreement with the crystal structure and the square-pyramidal coordination around Cu atom.

    Fig.5 Experimental and simulated X-band EPR spectra of a powdered sample of 1(a),2(b),and 3(c)at room temperature

    3 Conclusions

    In summary,three novel inorganic-organic frameworks have been constructed from aromatic polycarboxylate acid(NaH2sip)and Cu(NO3)2in the presence of btm,btp and btb ligands with an increase of the length of-(CH2)-.1 features as 1D double-stranded chains.What′s more,the free H2sip-and water moleculars in 1 constitute into a supremolecular 1D chain through classical hydrogen-bonding interactions(O-H…O).2 has two-dimensional(2D)rectangular networks with a(4,4)topology,which contain 2D planar nano grid networks stacked in a step stacking fashion.In compound 3,the flexible btb ligands and Cu2+ions also gives 1D double-strained chains like that in 1, whiles the double-strained chains constitute to novel 2D layers by the link of μ2-Hsip.Structural analyses indicate that the difference in coordination modes of the aromatic polycarboxylic acids NaH2sip and the versatile conformations of bistriazole alkanes have important influences on the resulting frameworks. Meanwhile,the weak hydrogen-bonding interactions also play important roles in the formation of complexes.

    Acknowledgments:This work was financially supported by the National Natural Science Foundation of China(No. 21371133),and the Natural Science Fund of Tianjin,China (No.12JCZDJC27600).

    [1]Ishikava N,Sugita M,Ishikawa T,et al.J.Am.Chem.Soc., 2003,125:8694-8695

    [2]Zhang J P,Lin Y Y,Zhang W X,et al.J.Am.Chem Soc., 2005,127:14162-14163

    [3]Biradha K,Sarkar M,Rajput L.Chem.Commun.,2006,11: 4169-4179

    [4]Wu C D,Lin W B.Angew.Chem.Int.Ed.,2007,46:1075-1078

    [5]Wu S T,Wu Y R,Kang Q Q,et al.Angew.Chem.Int.Ed., 2007,46:8475-8479

    [6]Zhang J,Chen S M,Valle H,et al.J.Am.Chem.Soc.,2007, 129:14168-14169

    [7]Liu Y,Xu X,Zheng F K,et al.Angew.Chem.Int.Ed., 2008,47:4538-4541

    [8]Morris W,Doonan C J,Furukawa H,et al.J.Am.Chem. Soc.,2008,130:12626-12627

    [9]Ockwig N W,Delgado-Friedrichs O,OKeeffe M,et al.Acc. Chem.Res.,2005,38:176-182

    [10]Biradha K,Sarkar M,Rajput L.Chem.Commun.,2006,11: 4169-4179

    [11]Ye B H,Tong M L,Chen X M.Coord.Chem.Rev.,2005, 249:545-565

    [12]Hu S,Chen J C,Tong M L,et al.Angew.Chem.Int.Ed., 2005,44:5471-5475

    [13]Sun D F,Collins D J,Ke Y X,et al.Chem.Eur.J.,2006, 12:3768-3776

    [14]Huang Y G,Yuan D Q,Pan L,et al.Inorg.Chem.,2007,46:9609-9615

    [15]Hesham A H,Joaquin S,Christoph J.Dalton Trans.,2008, 37:1734-1744

    [16]Habib H A,Hoffmann A,Hppe H A,et al.Dalton Trans., 2009,21:1742-1751

    [17]Tian A X,Ying J,Peng J,et al.Cryst.Growth Des.,2008,8: 3717-3724

    [18]Chen Z F,Zhang S F,Luo H S,et al.CrystEngComm,2007, 9:27

    [19]Tian L,Zhang Z J,Yu A,et al.Cryst.Growth Des.,2010, 10:3847-3849

    [20]Ma L F,Han M L,Qin J H,et al.Inorg.Chem.,2012,51: 9431-9442

    [21]Ma L F,Zhao J W,Han M L,et al.Dalton Trans.,2012,41: 2078-2083

    [22]Sun D F,Cao R,Sun Y Q,et al.Inorg.Chem.,2003,42: 7512-7518

    [23]Li B,Zhu X,Zhou J,et al.Polyhedron,2004,23:3133-3141 [24]Wang X,Li B,Zhu X,et al.Eur.J.Inorg.Chem.,2005: 3277-3286

    [25]Wu C D,Lin W B.Angew.Chem.Int.Ed.,2005,44:1958-1961

    [26]Yi L,Yang X,Lu T B,et al.Cryst.Growth Des.,2005,5: 1215-1219

    [27]Zhu X,Ge H,Zhang Y,et al.Polyhedron,2006,25:1875-1883

    [28]Torres J,Lavandera J L,Cabildo P,et al.J.Heterocycl. Chem.,1988,25:771-782

    [29]Sheldrick G M.SHELXS 97,Program for Crystal Structure Solution,University of G?ttingen,Germany,1997.

    [30]Sheldrick G M.SHELXL 97,Program for Crystal Structure Refinement,University of G?ttingen,Germany,1997.

    [31]Tian L,Niu Z,Yang N.Inorg.Chim.Acta,2011,370:230-235

    [32]Tian L,Yang N,Zhao G Y.Inorg.Chem.Commun.,2010,13: 1497-1500

    [33]Tian L,Chen Z.Inorg.Chem.Commun.,2011,14:1302-1305

    [34]Tian L,Zhou S Y.J.Coord.Chem.,2013,66:2863-2874

    LI TingLI XinZHOU Shang-YongTIAN Li*
    (Tianjin Key Laboratory of Structure and Performance for Functional Molecules,Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry,Ministry of Education,College of Chemistry,Tianjin Normal University,Tianjin 300387,China)

    The reaction of coppernitrate with flexible bis(1,2,4-triazol-1-yl)alkanes and rigid ligand 5-sulfoisophthalic acid monosodium salt(NaH2sip)affords three complexes[Cu0.5(btm)(H2O)](H2sip)·H2O}n(1,btm= bis(1,2,4-triazol-1-yl)methane),{[Cu(btp)2(H2sip)(H2O)](NO3)·4H2O}n(2,btp=1,3-bis(1,2,4-triazol-1-yl)propane),and {[Cu(btb)2(Hsip)]n(3,btb=1,4-bis(1,2,4-triazol-1-yl)butane).Compound 1 contains one-dimensional(1D)doublestrained chains.Compound 2 contains two-dimensional(2D)rectangular networks with(4,4)topology,in which the 2D planar nanogrid networks stacked in a step stacking fashion.3 is also 2D layers,in which double-strained chains[Cu(btb)]nare connected into 2D layer architectures by the μ2-Hsip2-linkers.The three compounds also are characterized by Elemental analysis,EPR,and thermal stability.CCDC:1023688,1;776320,2;1023689,3.

    bis(1,2,4-triazol-1-yl)methane;1,3-bis-(1,2,4-triazol-1-yl)propane;1,4-bis(1,2,4-triazol-1-yl)butane; 5-sulfoisophthalic acid monosodium salt;supramolecular structure;hydrogen-bond interaction

    O614.121

    A

    1001-4861(2015)06-1215-09

    10.11862/CJIC.2015.145

    2015-01-03。收修改稿日期:2015-03-14。

    國(guó)家自然科學(xué)基金(No.21371133)和天津市自然科學(xué)基金(No.12JCZDJC27600)資助項(xiàng)目。

    *通訊聯(lián)系人。E-mail:hxxytl@mail.tjnu.edu.cn,Tel:+86-22-23766515;會(huì)員登記號(hào):S06N549M1304。

    猜你喜歡
    間苯二甲酸天津師范大學(xué)丁烷
    “不速之客”
    天津師范大學(xué)美術(shù)與設(shè)計(jì)學(xué)院作品選登
    An Experimental Study of Tone and Tone Sandhi in the New School of Nanjing Dialect
    蘭花
    在線處理脫丁烷塔壓差高
    間苯二甲酸二烯丙酯合成方法
    新型3-氨基氮雜環(huán)丁烷衍生物的合成
    正丁烷氧化制順酐催化劑的制備及其催化性能
    1-叔丁基氧羰基-2'-氧-螺-[氮雜環(huán)丁烷-3,3'-二氫吲哚]的合成
    基于5,5'-亞甲基二間苯二甲酸及1,2-雙(咪唑基-1-甲基)苯的Zn2+、Co2+配位聚合物的合成及晶體結(jié)構(gòu)
    国产成年人精品一区二区| 国产av国产精品国产| 欧美日韩国产mv在线观看视频 | 好男人视频免费观看在线| 免费在线观看成人毛片| 日本一本二区三区精品| 尤物成人国产欧美一区二区三区| 精品久久久久久成人av| 久久精品久久久久久久性| 大片免费播放器 马上看| 激情五月婷婷亚洲| 亚洲精品乱久久久久久| 国产成年人精品一区二区| 男的添女的下面高潮视频| 国产午夜精品论理片| 中文乱码字字幕精品一区二区三区 | 国产一区二区亚洲精品在线观看| 一个人看的www免费观看视频| 婷婷色av中文字幕| 国语对白做爰xxxⅹ性视频网站| 99热网站在线观看| 白带黄色成豆腐渣| 极品少妇高潮喷水抽搐| 日本黄色片子视频| 国产黄a三级三级三级人| 国产免费福利视频在线观看| 欧美最新免费一区二区三区| 嘟嘟电影网在线观看| 亚洲av电影在线观看一区二区三区 | 高清视频免费观看一区二区 | 国产不卡一卡二| 日韩成人伦理影院| 51国产日韩欧美| 国产在视频线精品| 菩萨蛮人人尽说江南好唐韦庄| 亚洲最大成人中文| 国产一级毛片在线| 国产精品美女特级片免费视频播放器| 亚洲欧美成人综合另类久久久| 精品少妇黑人巨大在线播放| 建设人人有责人人尽责人人享有的 | 国产精品福利在线免费观看| 人妻制服诱惑在线中文字幕| 国产色婷婷99| 国产在视频线精品| 国产欧美另类精品又又久久亚洲欧美| 日本与韩国留学比较| 免费无遮挡裸体视频| 男人狂女人下面高潮的视频| 一区二区三区四区激情视频| 日本猛色少妇xxxxx猛交久久| 久久久亚洲精品成人影院| 老女人水多毛片| 国产在视频线精品| 91精品伊人久久大香线蕉| 久久这里只有精品中国| kizo精华| 亚洲一区高清亚洲精品| 国产伦一二天堂av在线观看| www.av在线官网国产| 国产视频内射| 青青草视频在线视频观看| 亚洲一级一片aⅴ在线观看| 插逼视频在线观看| 尤物成人国产欧美一区二区三区| 国内精品宾馆在线| 免费看美女性在线毛片视频| 免费高清在线观看视频在线观看| 日韩一区二区视频免费看| 欧美xxxx性猛交bbbb| 精品久久久精品久久久| 国产精品久久久久久精品电影| 老司机影院毛片| 午夜精品一区二区三区免费看| 婷婷色av中文字幕| 69人妻影院| 日韩精品有码人妻一区| 午夜福利高清视频| 欧美不卡视频在线免费观看| 亚洲av电影不卡..在线观看| 卡戴珊不雅视频在线播放| 男女国产视频网站| 国产三级在线视频| 少妇熟女aⅴ在线视频| 美女被艹到高潮喷水动态| 极品教师在线视频| 丝袜美腿在线中文| 日韩三级伦理在线观看| 日韩欧美精品v在线| 国产精品99久久久久久久久| 精品久久久久久成人av| 乱系列少妇在线播放| 欧美成人a在线观看| 美女国产视频在线观看| 天堂中文最新版在线下载 | 在线 av 中文字幕| 日本猛色少妇xxxxx猛交久久| 亚洲自拍偷在线| 国产极品天堂在线| 国产伦在线观看视频一区| 如何舔出高潮| 一级黄片播放器| 亚洲国产精品成人综合色| www.色视频.com| 纵有疾风起免费观看全集完整版 | 99九九线精品视频在线观看视频| 大片免费播放器 马上看| 久久99热6这里只有精品| 日韩欧美精品免费久久| 在线免费观看的www视频| 色吧在线观看| 寂寞人妻少妇视频99o| 亚洲欧美成人精品一区二区| 免费人成在线观看视频色| 蜜桃亚洲精品一区二区三区| 两个人视频免费观看高清| 国产成人免费观看mmmm| 久久精品夜夜夜夜夜久久蜜豆| 色网站视频免费| 亚洲av中文字字幕乱码综合| 成人综合一区亚洲| 久久99热6这里只有精品| 美女内射精品一级片tv| 免费观看无遮挡的男女| 亚洲国产欧美在线一区| 2022亚洲国产成人精品| av网站免费在线观看视频 | 三级国产精品欧美在线观看| 精品一区二区三区人妻视频| 亚洲人成网站在线观看播放| 中文字幕免费在线视频6| 成人亚洲精品av一区二区| 最近手机中文字幕大全| 少妇裸体淫交视频免费看高清| 亚洲最大成人av| 久久精品久久久久久噜噜老黄| 精品一区二区三区人妻视频| 永久免费av网站大全| 美女大奶头视频| 日本免费在线观看一区| 高清午夜精品一区二区三区| 亚洲无线观看免费| 99久久人妻综合| 高清在线视频一区二区三区| 秋霞在线观看毛片| 精品人妻一区二区三区麻豆| 中文字幕亚洲精品专区| 精品久久久精品久久久| 一级二级三级毛片免费看| 视频中文字幕在线观看| 我的女老师完整版在线观看| 午夜福利在线在线| 久久国产乱子免费精品| 九九在线视频观看精品| 亚洲欧美成人精品一区二区| 伦精品一区二区三区| 一区二区三区高清视频在线| 在线a可以看的网站| 欧美三级亚洲精品| 中国美白少妇内射xxxbb| 国产成人a区在线观看| 日韩在线高清观看一区二区三区| 亚洲精品乱码久久久v下载方式| 少妇人妻精品综合一区二区| 51国产日韩欧美| 欧美成人一区二区免费高清观看| 国产视频首页在线观看| 欧美性猛交╳xxx乱大交人| 国产精品av视频在线免费观看| 2022亚洲国产成人精品| 黄片无遮挡物在线观看| 寂寞人妻少妇视频99o| 午夜福利网站1000一区二区三区| 亚洲色图av天堂| 日韩成人伦理影院| av福利片在线观看| 色5月婷婷丁香| 色5月婷婷丁香| 看黄色毛片网站| 真实男女啪啪啪动态图| 久久久久免费精品人妻一区二区| 久久久a久久爽久久v久久| 熟妇人妻不卡中文字幕| 狠狠精品人妻久久久久久综合| 老司机影院成人| 好男人视频免费观看在线| 能在线免费看毛片的网站| 青青草视频在线视频观看| 综合色丁香网| av一本久久久久| 国产精品人妻久久久影院| 我要看日韩黄色一级片| av又黄又爽大尺度在线免费看| 精品久久久久久电影网| 国产成年人精品一区二区| 在线观看一区二区三区| 亚洲美女视频黄频| 久久99蜜桃精品久久| 日韩av在线免费看完整版不卡| 亚洲精品久久久久久婷婷小说| 亚洲综合色惰| 99九九线精品视频在线观看视频| 亚洲av免费高清在线观看| 午夜激情欧美在线| 日韩欧美国产在线观看| 亚洲国产日韩欧美精品在线观看| 99视频精品全部免费 在线| 免费看a级黄色片| 亚州av有码| 99九九线精品视频在线观看视频| 精品久久久精品久久久| 在现免费观看毛片| 91久久精品国产一区二区成人| av一本久久久久| 两个人视频免费观看高清| 听说在线观看完整版免费高清| 国产一区二区亚洲精品在线观看| 91久久精品国产一区二区成人| av在线天堂中文字幕| 亚洲精品国产成人久久av| 久久精品综合一区二区三区| 777米奇影视久久| av一本久久久久| 男女边吃奶边做爰视频| 一级片'在线观看视频| 亚洲精品国产成人久久av| 国产国拍精品亚洲av在线观看| 国产 亚洲一区二区三区 | 男女啪啪激烈高潮av片| 永久免费av网站大全| 亚洲av日韩在线播放| 中文欧美无线码| 亚洲精品,欧美精品| 自拍偷自拍亚洲精品老妇| 亚洲精品日韩av片在线观看| 亚洲精品久久久久久婷婷小说| kizo精华| 免费观看精品视频网站| 亚洲人成网站高清观看| 人妻一区二区av| 18+在线观看网站| 国产在线男女| 久久久久国产网址| 亚洲最大成人中文| 人人妻人人澡欧美一区二区| 精品久久久久久久久av| 日韩三级伦理在线观看| 国产黄色小视频在线观看| 夫妻午夜视频| 中国国产av一级| 少妇裸体淫交视频免费看高清| 一级毛片久久久久久久久女| 午夜老司机福利剧场| 大片免费播放器 马上看| 春色校园在线视频观看| 久久久久网色| 亚洲成人久久爱视频| 九九爱精品视频在线观看| 国产91av在线免费观看| 丝瓜视频免费看黄片| 国产成人精品一,二区| 国产日韩欧美在线精品| 高清视频免费观看一区二区 | 免费大片18禁| 日本免费a在线| 久久99热这里只频精品6学生| 欧美成人a在线观看| 欧美日韩国产mv在线观看视频 | 你懂的网址亚洲精品在线观看| 全区人妻精品视频| 午夜福利网站1000一区二区三区| 久久99蜜桃精品久久| 黄片无遮挡物在线观看| 国产精品av视频在线免费观看| 亚洲国产精品专区欧美| 日韩欧美三级三区| 午夜亚洲福利在线播放| 搡女人真爽免费视频火全软件| 美女国产视频在线观看| 亚洲18禁久久av| 夫妻午夜视频| 欧美xxxx黑人xx丫x性爽| 丰满少妇做爰视频| 国产精品美女特级片免费视频播放器| 一级黄片播放器| 国产精品久久久久久久久免| 亚洲三级黄色毛片| 国产成人午夜福利电影在线观看| 免费大片黄手机在线观看| 看免费成人av毛片| 99久久九九国产精品国产免费| 91午夜精品亚洲一区二区三区| 久久99蜜桃精品久久| 亚洲av.av天堂| 一级a做视频免费观看| 亚洲av一区综合| 精品欧美国产一区二区三| 日韩 亚洲 欧美在线| 青春草视频在线免费观看| 91精品一卡2卡3卡4卡| 一级毛片黄色毛片免费观看视频| 亚洲精品国产av成人精品| 在现免费观看毛片| 18禁动态无遮挡网站| 国产大屁股一区二区在线视频| 十八禁网站网址无遮挡 | 欧美不卡视频在线免费观看| 肉色欧美久久久久久久蜜桃 | 插逼视频在线观看| av在线蜜桃| 草草在线视频免费看| 日韩三级伦理在线观看| 亚洲婷婷狠狠爱综合网| 国产淫片久久久久久久久| 午夜福利成人在线免费观看| 国产 一区 欧美 日韩| 国产精品人妻久久久久久| 免费av不卡在线播放| 男的添女的下面高潮视频| 国产欧美另类精品又又久久亚洲欧美| 91久久精品国产一区二区三区| 亚洲欧美中文字幕日韩二区| 女人被狂操c到高潮| 成年女人在线观看亚洲视频 | 午夜免费观看性视频| 大香蕉久久网| 永久免费av网站大全| 黑人高潮一二区| 免费看美女性在线毛片视频| 三级毛片av免费| 内地一区二区视频在线| 97超碰精品成人国产| 国产精品1区2区在线观看.| 日韩一本色道免费dvd| 嫩草影院精品99| 亚洲精品影视一区二区三区av| 成人二区视频| 天堂影院成人在线观看| 十八禁网站网址无遮挡 | 人人妻人人澡人人爽人人夜夜 | 日本免费a在线| 大香蕉97超碰在线| 99热这里只有精品一区| 欧美潮喷喷水| 老司机影院毛片| 亚洲精品久久久久久婷婷小说| 日日撸夜夜添| 嫩草影院新地址| 五月天丁香电影| 国产日韩欧美在线精品| 特级一级黄色大片| 亚洲乱码一区二区免费版| 菩萨蛮人人尽说江南好唐韦庄| 午夜福利视频1000在线观看| 久久精品久久久久久久性| 亚洲欧美成人精品一区二区| 熟女电影av网| 国产精品国产三级国产av玫瑰| 听说在线观看完整版免费高清| 简卡轻食公司| 国产乱人偷精品视频| 日韩,欧美,国产一区二区三区| 亚洲精品aⅴ在线观看| 久久久久久伊人网av| 青青草视频在线视频观看| 日韩 亚洲 欧美在线| 亚洲天堂国产精品一区在线| 一个人看视频在线观看www免费| 永久免费av网站大全| 九九久久精品国产亚洲av麻豆| 观看美女的网站| 成人性生交大片免费视频hd| 成人美女网站在线观看视频| 免费大片黄手机在线观看| av国产免费在线观看| 精品久久国产蜜桃| 成人性生交大片免费视频hd| 久久精品国产鲁丝片午夜精品| 精品不卡国产一区二区三区| 91aial.com中文字幕在线观看| 久久6这里有精品| 久久精品国产亚洲网站| 欧美人与善性xxx| 久久精品人妻少妇| 综合色av麻豆| 亚洲国产色片| 国产欧美日韩精品一区二区| 国产熟女欧美一区二区| 99久久中文字幕三级久久日本| av在线播放精品| 丝瓜视频免费看黄片| 熟妇人妻久久中文字幕3abv| 深夜a级毛片| 最近视频中文字幕2019在线8| 国产黄色视频一区二区在线观看| 真实男女啪啪啪动态图| 亚洲国产高清在线一区二区三| 男女下面进入的视频免费午夜| 女人十人毛片免费观看3o分钟| 青春草国产在线视频| av在线亚洲专区| 亚洲精品视频女| 国产精品爽爽va在线观看网站| 亚洲国产色片| 亚洲丝袜综合中文字幕| 永久网站在线| 久久久久久伊人网av| 美女内射精品一级片tv| 国产91av在线免费观看| 国产午夜精品论理片| 婷婷色麻豆天堂久久| 久久精品综合一区二区三区| 国产片特级美女逼逼视频| 国产精品麻豆人妻色哟哟久久 | 激情 狠狠 欧美| 97精品久久久久久久久久精品| 可以在线观看毛片的网站| 亚洲国产高清在线一区二区三| 亚洲av免费在线观看| 好男人视频免费观看在线| 亚洲精品一区蜜桃| 成人亚洲精品一区在线观看 | 偷拍熟女少妇极品色| 免费在线观看成人毛片| 午夜免费男女啪啪视频观看| 中文天堂在线官网| 久久久精品94久久精品| av黄色大香蕉| 亚洲精品久久久久久婷婷小说| 国产黄片视频在线免费观看| 国产淫语在线视频| 国产一区二区三区av在线| 亚洲最大成人手机在线| 免费黄频网站在线观看国产| 婷婷色麻豆天堂久久| 日日摸夜夜添夜夜爱| 国产高清三级在线| 床上黄色一级片| 亚洲欧美一区二区三区国产| 久久亚洲国产成人精品v| 久久99热这里只有精品18| 一级黄片播放器| av福利片在线观看| 一边亲一边摸免费视频| 干丝袜人妻中文字幕| 网址你懂的国产日韩在线| 久久精品综合一区二区三区| 久久久久久久久久久丰满| 亚洲成人精品中文字幕电影| 欧美潮喷喷水| 欧美日韩精品成人综合77777| 97精品久久久久久久久久精品| 欧美日韩一区二区视频在线观看视频在线 | 一个人看视频在线观看www免费| 国产黄a三级三级三级人| 免费黄网站久久成人精品| 日本与韩国留学比较| 亚洲av免费高清在线观看| 中文字幕久久专区| 3wmmmm亚洲av在线观看| 韩国av在线不卡| 国产老妇女一区| 两个人视频免费观看高清| 看黄色毛片网站| 亚洲欧洲国产日韩| 久久久久网色| 欧美日韩综合久久久久久| 色哟哟·www| 欧美成人精品欧美一级黄| www.av在线官网国产| 爱豆传媒免费全集在线观看| 国产中年淑女户外野战色| 黄色配什么色好看| 听说在线观看完整版免费高清| 男女那种视频在线观看| 日韩精品有码人妻一区| 99热全是精品| 全区人妻精品视频| 久久午夜福利片| 一个人看的www免费观看视频| 有码 亚洲区| 亚洲美女搞黄在线观看| 亚洲欧美日韩无卡精品| 好男人在线观看高清免费视频| 网址你懂的国产日韩在线| 舔av片在线| 一级爰片在线观看| 国产 一区精品| 午夜福利视频1000在线观看| 日韩,欧美,国产一区二区三区| 99九九线精品视频在线观看视频| 免费少妇av软件| 国产成年人精品一区二区| 久久久a久久爽久久v久久| 最近最新中文字幕免费大全7| 日韩欧美国产在线观看| 久久99热这里只有精品18| 九九爱精品视频在线观看| 男人舔女人下体高潮全视频| 特大巨黑吊av在线直播| 哪个播放器可以免费观看大片| 国产一级毛片在线| 黑人高潮一二区| 色5月婷婷丁香| 午夜老司机福利剧场| 亚洲精品视频女| 熟妇人妻不卡中文字幕| 一级a做视频免费观看| 久久久久国产网址| 精品一区二区三区视频在线| 日韩中字成人| 中文字幕久久专区| 两个人视频免费观看高清| 永久网站在线| 嘟嘟电影网在线观看| 免费不卡的大黄色大毛片视频在线观看 | 精品酒店卫生间| 亚洲精品日本国产第一区| 少妇人妻一区二区三区视频| 久久久久久久亚洲中文字幕| 少妇裸体淫交视频免费看高清| 国产精品久久久久久久电影| 日本黄色片子视频| 国产精品国产三级国产av玫瑰| 中国美白少妇内射xxxbb| 一级毛片我不卡| 蜜臀久久99精品久久宅男| 高清在线视频一区二区三区| 国产精品爽爽va在线观看网站| 免费av不卡在线播放| 免费黄色在线免费观看| 久久这里只有精品中国| 亚洲人成网站在线观看播放| 国产高清有码在线观看视频| 网址你懂的国产日韩在线| 一级毛片我不卡| 日本-黄色视频高清免费观看| 插阴视频在线观看视频| 高清午夜精品一区二区三区| 18禁裸乳无遮挡免费网站照片| 女人久久www免费人成看片| 亚洲av一区综合| 97超碰精品成人国产| 欧美另类一区| 欧美潮喷喷水| 国产成人精品婷婷| 老师上课跳d突然被开到最大视频| 久久久久精品久久久久真实原创| 极品教师在线视频| 亚洲欧美精品专区久久| 中文乱码字字幕精品一区二区三区 | 人妻夜夜爽99麻豆av| 毛片一级片免费看久久久久| 久久久久久久久久成人| 国产视频首页在线观看| 又黄又爽又刺激的免费视频.| 免费观看a级毛片全部| 99热这里只有是精品在线观看| 亚洲欧美一区二区三区黑人 | 精品少妇黑人巨大在线播放| 成人漫画全彩无遮挡| 联通29元200g的流量卡| www.色视频.com| 国产色爽女视频免费观看| av免费观看日本| 久久久久性生活片| 久久99蜜桃精品久久| 秋霞在线观看毛片| 国产免费一级a男人的天堂| 日韩欧美精品免费久久| 午夜福利在线观看免费完整高清在| 女人十人毛片免费观看3o分钟| 中国美白少妇内射xxxbb| 视频中文字幕在线观看| 国产午夜精品一二区理论片| 亚洲av福利一区| 免费少妇av软件| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 我的女老师完整版在线观看| 亚洲精品国产av蜜桃| 久久久成人免费电影| 女的被弄到高潮叫床怎么办| 亚洲精品,欧美精品| 色视频www国产| 国产黄色免费在线视频| 国产精品一区www在线观看| 大话2 男鬼变身卡| 99久国产av精品国产电影| 欧美日韩综合久久久久久| 欧美成人a在线观看| 免费观看av网站的网址| 一本久久精品| 国产老妇女一区| 成人无遮挡网站| 99视频精品全部免费 在线| 嫩草影院入口| 看十八女毛片水多多多| 欧美成人一区二区免费高清观看| 欧美不卡视频在线免费观看| 久久精品久久精品一区二区三区| 不卡视频在线观看欧美| 日日干狠狠操夜夜爽| 久久精品国产亚洲av涩爱| 深爱激情五月婷婷| 国产精品1区2区在线观看.| 老女人水多毛片| 精品一区二区免费观看| 成年av动漫网址| 免费电影在线观看免费观看| 亚洲av在线观看美女高潮| 又大又黄又爽视频免费| 中文字幕免费在线视频6| 亚洲美女视频黄频| 亚洲国产精品国产精品| www.色视频.com|