• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    1H-3-(3-吡啶基)-5-(3′-吡啶基)-1,2,4-三唑的鈷配合物的合成、晶體結(jié)構(gòu)、熱穩(wěn)定性及配體的DFT計(jì)算

    2015-12-05 07:28:05劉懷賢周惠良劉翔宇宋偉明胡奇林
    關(guān)鍵詞:吡啶基三唑晶體結(jié)構(gòu)

    孫 琳 劉懷賢 周惠良 劉翔宇 宋偉明 李 冰 胡奇林

    (寧夏大學(xué)化學(xué)化工學(xué)院,銀川 750021)

    1H-3-(3-吡啶基)-5-(3′-吡啶基)-1,2,4-三唑的鈷配合物的合成、晶體結(jié)構(gòu)、熱穩(wěn)定性及配體的DFT計(jì)算

    孫琳劉懷賢周惠良劉翔宇*宋偉明李冰*胡奇林

    (寧夏大學(xué)化學(xué)化工學(xué)院,銀川750021)

    合成了一個(gè)多功能的配體1H-3-(3-吡啶)-5-(3′-吡啶)-1,2,4-三唑(3,3′-Hbpt,1)并得到了配體的晶體結(jié)構(gòu),運(yùn)用DFT理論計(jì)算了配體的最優(yōu)構(gòu)型、優(yōu)勢(shì)構(gòu)象和電荷分布。在此基礎(chǔ)上,水熱合成了一個(gè)配位化合物:[Co(3,3′-Hbpt)2(H2O)4]·(ad)·6H2O(2)(ad=己二酸),結(jié)構(gòu)分析表明配合物2是零維單核化合物,它的三維超分子結(jié)構(gòu)是由分子間氫鍵連接而成,其中包含著由游離的己二酸分子填充的矩形孔道。值得注意的是,配體在配合物中的幾何結(jié)構(gòu)和構(gòu)象與理論計(jì)算的結(jié)果一致。另外,利用熱重分析研究了配合物2的熱穩(wěn)定性。

    1H-3-(3-吡啶基)-5-(3′-吡啶基)-1,2,4-三唑;理論計(jì)算;配位化合物;晶體結(jié)構(gòu);熱穩(wěn)定性

    0 Introduction

    The design andconstructionof coordination polymers(CPs)are of great interest in the field of crystal engineering,for their intriguing variety of architectures and tremendous potential applications in non-linearoptics,catalysis,gasabsorption, luminescence,magnetism and medicine[1-5].However,itis still a great challenge to rationally predict and control their exact structures of CPs because the structural natures are diverse depending on various factors such as the metal ions,pH values,solvents, the ligands and/or co-ligands,synthetic methods,etc[6-12].Selecting appropriate organic ligands to construct expected CPs is still a committed step with a longterm issue in the field of coordination chemistry[13-20]. As we all known,pyridine-based triazole ligands have been proved as a type of excellent connector to engender a wide range of CPs resulting from the several advantages below:(i)The abundant nitrogen electron-donatingatomsinthemoleculecould selectively coordinate to metal ions,facilitating the generation of CPs[21].(ii)The ligand indicates various coordination fashions,such as multidentate or bridging building modes,offering the possibility to obtain the fascinating CPs[22-25].In this work,we adopt 1H-3-(3-pyridyl)-5-(3′-pyridyl)-1,2,4-triazole(3,3′-Hbpt)as ligandtoassemblethetargetsupramolecular architectures.

    One thing to note is that 3,3′-Hbpt has potential tendency to show four typical conformations under different surroundings(Scheme 1).Therefore,it is an efficient strategy to conduct research on the reaction systems in the basic of the combination of theory and experiment,whichisconducivetoformingthe structural model and revealing the preferred geometry, and even estimating the coordination mode of the compounds,especially in the application of non-metal organic compounds[26-27].Whats more,it has long been a target for scientists to control the reaction conditions and use theoretical calculations to guide and verify experimental results[28-32].It is tantalizing to introduce the theoretical calculation into the investigation of CPs.

    Scheme 1 Four typical conformations of 3,3′-Hbpt

    Based on the considerations above,we have synthesized the 3,3-Hbpt·2H2O(1)ligand of which the crystal structure is determined and the optimized structure and preferred conformation are inferred by using DFT method[33].Then,a coordination compound, namely[Co(3,3′-Hbpt)2(H2O)4]·(ad)·6H2O(ad= adipate)(2),has been obtained under hydrothermal condition and structurally characterized in detail,in which the structure and conformation of the ligand are comparable with the calculated results.The thermo stability of 2 is tested and discussed as well.

    1 Experimental

    1.1Materials

    Commercially available reagents were used as received without further purification.1H NMR spectra were taken with a Varian 400 spectrometer using tetramethylsilane(TMS)as an internal standard. Elemental analyses(C,H and N)were performed on a Vario EL III analyzer.Infrared spectra were obtained from KBr pellets1on a BEQ VZNDX 550 FTIR instrument within the 400~4 000 cm-1region.Thermal analysiswasperformedonNetzschSTA449C microanalyzerunderflowingN2atmosphereata heatingrateof10℃ ·min-1.X-raypowder diffractometer were received on a Bruker Advanced-D8 instrument at room temperature.The calculations have been carried out using Gaussian03 program[34],at the B3LYP[35-36]level of theory with 6-31G(d,p)basis set.

    1.2Synthesis of 3,3′-Hbpt·2H2O(1)

    3,3′-Hbpt·2H2O was synthesized through advan-ced methods reported[37].A mixture of magnesium(0.6 g)and iodine(0.2 g)in methanol(110 mL)was refluxed for 0.5 h to prepare dry methanol(50 mL). Later a mixture of sodium(0.1 g)and 3-cyanopyridine (2.1 g)was added with stirring for 1 h,then 3-pyridyl carbonyl hydrazide(2.1 g)was added followed by glacial acetic acid(0.1 g).The resulting yellow precipitate was filtered off and washed thoroughly with boiling ethanol.Drying in vacuo gave 1.8 g(75%)of analytically pure 3,3′-Hbpt as a white powder.The product(10 mmol)was dissolved in the mixed solution of H2O(2 mL)and MeOH(20 mL),and the resulting solution was placed in a silicagel desiccator at room temperature for several weeks to give colorless crystals as compound 1.Anal.Calcd.for C12H13N5O2(%):C, 55.54;H,5.01;N,27.01.Found(%):C,55.69;H, 5.10;N,27.08.m.p.:509~510 K;IR(cm-1,KBr):3 327(s),3 156(s),3 048(m),2 843(m),1 620(s),1 594 (s),1 482(w),1 406(s),1 308(s),1 196(w),1 051(m), 821(m),709(m),625(w).1H NMR(400 MHz,DMSO-d6):7.534~7.552(2H,m),8.408~8.427(2H,d,J=7.6 Hz),8.723~8.743(2H,dd,J=8.0 Hz),9.272(2H,s), 14.926(1H,s,Triazole-H).

    1.3Synthesisof[Co(3,3′-Hbpt)2(H2O)4](ad)6H2O(2) A mixture containing Co(OAc)2·4H2O(7.5 mg, 0.03 mmol),3,3′-Hbpt(6.6 mg,0.03 mmol),adipic acid(8.8 mg,0.06 mmol)and water(6 mL)was sealed in a 15 mL Teflon-lined stainless steel vessel and heated at 150℃for 3 days,and then cooled to room temperature at a rate of 5℃·h-1.Pink plate-like crystals of 2 were collected in a yield of 30%(based on Co).Anal.Calcd.for(CoC30N10O14H42)(%):C,43.64; H,5.13;N,16.96.Found(%):C,43.72;H,5.15;N, 16.99.IR(cm-1,KBr):3 208(s),3 057(m),2 964(w), 2 941(w),2 643(w),1 692(m),1 550(s),1 483(m),1 450 (m),1 402(s),1 292(m),1 186(m),1 146(m),1 127 (m),1 048(w),986(m),952(w),821(w),748(m),703(s), 695(s),475(w).

    1.4Crystallographic data collection and structure determination

    All diffraction data of compounds were collected on a Bruker Smart ApexⅡ CCD diffractometer with graphite monochromated Mo Kα radiation(λ=0.071 073 nm)at 293(2)K.Absorption corrections were applied using SADABS[38].All structures were solved by the direct methods using the SHELXS program of the SHELXTL-97 package and refined with SHELXL -97[39-40].All non-hydrogen atoms were refined anisortropically.Hydrogen atoms were placed in geometrically calculated positions.Crystallographic details are summarized in Table1.Selected bond(nm)and bond angles(°)of compound 2 are shown in Table S1. Hydrogen bond geometries in compounds 1 and 2 are listed in Table S2 and Table S3,respectively.

    CCDC:1028283,1;1002548,2.

    Table1 Crystal data and structure refinement details for compounds 1 and 2

    Continued Table1

    2 Results and discussion

    2.1Quantum chemical calculation for 3,3′-Hbpt

    DFT method was carried out to get an insight of the electronic structures and bonding properties of 3,3′-Hbpt.The following calculation and discussion are resulted from the optimized structure.The full geometry optimization is performed without constraints on symmetry.The optimized geometries of different conformations have been obtained at the B3LYP/6-31G(d,p)level and shown in Fig.1.Selected bond lengths and angles of cis-Ⅰand cis-Ⅱconformations are summarized in Table2.For cis-Ⅰ conformation, the bond lengths of N1-C5,N2-C6,N3-N4 and N5-C12 are calculated to be 0.133 527,0.136 689, 0.134 913 and 0.135 133 nm,respectively,while the corresponding bond lengths of cis-Ⅱ are 0.133 896, 10.326 55,0.135 322 and 0.133 389 nm.

    Fig.1 Optimized structures of four conformations for 3,3′-Hbpt

    The molecular total energies,zero-point energies and frontier orbital energies and the energy gaps of four different conformations had been calculated and listed in Table3.The total energies of four different conformations are calculated to be-736.464 0,-736.462 5, -736.463 9,-736.462 8 a.u.,respectively.Obviously, the cis-Ⅰconformation provides relatively lower energy, representing more stable geometry.The surfaces of HOMO-1,HOMO,LUMO and LUMO+1 for four conformationsareshowninFig.2.Thefrontier molecular orbitals of four kinds of conformations are mainly composed of p atomic orbitals,and the electronic transitions are mainly assigned to n→π*and π→π* electronic transitions.The same electron distribution of the frontier orbitals indicates similar electronic transition model.As listed in Table3,the energy gap of cis-Ⅱ conformation(ΔE(LUMO-HOMO)=4.71 eV)is lower than that of other three conformations,suggesting the greater ability of electron transition under external stimuli.To estimate the possible coordinated condition of the cis-Ⅱ conformation,the natural charges and electronconfigurationsoftheatomshavebeen calculatedbyusingnaturalbondorbital(NBO) analysis.As shown in Table4,mulliken charges andnatural charges of N1,N2,N3,N4 and N5 atoms are calculated as negative values.The charge of N2 atom shows more negative than that of N3 and N4 atoms in the triazole ring.The natural charge of N1 and N5 atoms in pyridine rings are indentified to be-0.440 60 and-0.449 06.The results above demonstrate N1,N2and N5 atoms are prone to coordinate with metal ions.

    Fig.2 Isodensity surfaces of HOMO-1,HOMO,LUMO and LUMO+1 for 3,3′-Hbpt

    Table2 Experimental and theoretical bond lengths(nm)and angles(°)for 3,3′-Hbpt in two compounds

    Table3 Calculated total energies,zero-point energies(ZPE)and frontier orbit energies of 3,3′-Hbpt

    Table4 Natural configurations and natural charges for the selected atoms of cis-Ⅱ

    2.2Structure of 3,3′-Hbpt·2H2O(1)

    Single crystal X-ray analysis reveals that the elementaryunitofcompound1consistsofone discrete 3,3′-Hbpt molecule and two lattice water(Fig. 3a).The 3,3′-Hbpt ligand performs cis-Ⅰ conformation in the crystal structure,which is in agreement with calculated molecular total energies of four kinds of conformations.The dihedral angles between the two pyridine planes and triazole are 2.012°and 8.640°, respectively.Thesupramoleculararchitectureis formed by hydrogen-bonding interactions including O1-H21…O2(0.276 1(3)nm),O1-H22…N5i(2.804 nm),O2-H24…N1ii(0.291 0(3)nm),O2-H23…N2iii(0.309 6(3)nm)and N4-H1…O1iv(0.270 7(3)nm)(Fig. 3b).The comparisons of observed and calculated geometric parameters for compound 1 are listed in Table3.

    Fig.3 (a)Structure of 1 with 50%thermal ellipsoids;(b)Supramolecular structure assembled by hydrogen bonds throughthe free water molecules

    2.3Structure of[Co(3,3′-Hbpt)2(H2O)4]·(ad)· 6H2O(2)

    Compound 2 is a 0D motif with one Cocation, two 3,3′-Hbpt molecules,four coordinated water molecules,one free adipate anion and six lattice water molecules.As illustrated in Fig.4a,the Cocenter presents a slightly distorted octahedron by two axial nitrogen atoms from two different 3,3′-Hbpt groups (Co-N 0.211 8(2)nm)and four oxygen atoms of four water molecules(Co-O 0.2055 2~0.2108 5(19)nm). Adjacent mononuclear molecules are integrated by diverse hydrogen-bonding interactions derived from the free water molecules and 3,3′-Hbpt ligands(O1-H1A…O5iv0.270 7(3)nm;O5-H5B…N2v0.294 9(3)nm; O5-H5A…O6 0.273 2(4)nm;O6-H6B…N3 0.284 1(4) nm;O7-H7B…N5vi0.292 9(7)nm;N4-H4N…O7vii0.279 2(3)nm).Subsequently,the 3D supramolecular network is constructed by the non-covalent interactions between the oxygen atoms in coordinated water and adipate anions(O2-H2A…O3iii0.266 8(3)nm;O2-H2B…O3ii0.265 1(3)nm;O1-H1B…O4ii0.267 4(3) nm)(Fig.4c),in which the rectanglar channels are filled by free adipate anions.

    In addition,all of the 3,3′-Hbpt ligand keeps uniform cis-Ⅱ conformation in compound 2,corresponding to the lower energy gap value from frontier orbitals obtained by theoretical calculation.In the structure of 2,the ligands display identical coordination mode where the pyridine N1 atom connects to Coions,which is in good agreement with the calculated results of atomic charge density.As shown in Table3,the experimental bond lengths of N1-C1,N2-C7,N3-N4 and N5-C12 and the bond angles of C6-N2-C7,C6-N3-N4,C7-N4-N3 and C11-N5-C12 are well in accordance with the calculated values.In this case,the satisfying result is that the calculated geometry slightly differs from the observed parameters only by an average of 0.000 5 nm,emphasizing that the calculation method and basis set are habituated to the present system.

    Fig.4 (a)Coordination environment of cobalt ion with 50%thermal ellipsoids;(b)Hydrogen-bonding between two mono-molecules; (c)Supramolecular network with rectangle channels encapsulated by adipate anions

    2.4Thermaldecompositionprocessofcompound2 Before to study the thermal stability,the phase purity of the bulk materials of compound 2 was confirmed by comparison of powder X-ray diffraction (PXRD)with that calculated from the single-crystal study(Fig.S1).Then,the thermal behavior of 2 was determined using TG measurement with the linear heatingrateof10℃ ·min-1undernitrogen atmosphere.As shown in Fig.5,the first stage occurs with weight loss of 22.09%between 71 and 137℃, coinciding with the loss of coordinated water and lattice water molecules(Calcd.21.80%).The second process of weight loss appears from 290℃to 424℃, and the weight loss of 16.78%is attributed to the release of adipate anions(Calcd.17.44%).After that, theconsecutivethirdstepisconsideredasthe decompositionofthe3,3′-Hbptligands.The remainder might be CoO since the weight(10.22%)is in agreement with the calculated value of 9.08%.

    Fig.5 TG curve for compound 2

    3 Conclusions

    In summary,3,3′-Hbpt·2H2O(1)and its coordination compound,[Co(3,3′-Hbpt)2(H2O)4]·(ad)·6H2O (2),have been successfully synthesized and structurally investigated.Single-crystal structure analysis reveals thatcompound2possessesa0Dmononuclear structure which can be extended to the 3D supramolecular network with rectanglar channels packed by free adipate anions.The optimized structure,preferred conformation,chargedistributionandfrontier molecular orbitals of 3,3′-Hbpt ligand are obtained by theoretical calculation,which is in good agreement with the experimental results.The crystalline 3,3′-Hbpt maintains the cis-Ⅰconformation which displays the lowest molecular total energy,while the cis-Ⅱconformation with minimum energy gaps of frontier molecularorbitalappearsinthecoordination compound when the ligand combines with the metal ion.The present work shows a practical case for the combination of theory and experiment,leading to the sophisticated concepts for the design and synthesis of desired coordination polymers.

    [1]Batten S R,Robson R.Angew.Chem.Int.Ed.Engl.,1998, 37:1460-1494

    [2]Yaghi O M,O′Keeffe M,Ockwig N W,et al.Nature,2003, 423:705-714

    [3]Liu X Y,Cen P P,Li H,et al.Inorg.Chem.,2014,53:8088-8097

    [4]Mahata P,Prabu M,Natarajan S.Cryst.Growth Des.,2009, 9:3683-3691

    [5]Seo J S,Wang D,Lee H,et al.Nature,2000,404(6781):982-986

    [6]You Z L,Qiu X Y,Xian D M,et al.Inorg.Chem.Commun., 2012,26:11-16

    [7]Liu X Y,Cen P P,Zhou H L,et al.Inorg.Chem.Commun., 2015,53:11-14

    [8]Xu Q F,Ge G F,Zhou Q X,et al.Dalton Trans.,2011,40: 2805-2814

    [9]Wang H S,Zhao B,Zhai B,et al.Cryst.Growth Des.,2007, 7(9):1851-1857

    [10]Kitchen J A,White N J,Gandolfi C,et al.Chem.Commun., 2010,46:6464-6466

    [11]Li,B Y,Peng,Y,Li,G H,et al.Cryst.Growth Des.,2010, 10:2192-2201

    [12]Herchel R,Travnícek Z,et al.Inorg.Chem.,2011,50:12390 -12392

    [13]Fan L M,Li D C,Wei H,et al.J.Coord.Chem.,2011,64: 3031-3040

    [14]Ouellette W,Hudson B S,Zubieta J.Inorg.Chem.,2007,46 (12):4887-4904

    [15]Li B,Wei Q,Yang Q,J,et al.Chem.Eng.Data,2011,56: 3043-3046

    [16]Huang F P,Tian J L,Gu W,et al.Cryst.Growth Des.,2010, 10:1145-1154

    [17]Huang F P,Tian J L,Chen G J,et al.CrystEngComm, 2010,12:1269-1279

    [18]Huang F P,Zhang Q,Yu Q,et al.Cryst.Growth Des., 2012,12:1890-1898

    [19]Huang F P,Tian J L,Li D D,et al.CrystEngComm,2010, 12:395-400

    [20]Zhang J P,Lin Y Y,Huang X C,et al.Cryst.Growth Des., 2006,6:519-523

    [21]Xie X F,Chen S P,Gao S L,et al.Polyhedron,2009,28: 679-688

    [22]Wen G L,Wang Y Y,Wang H.J.Mol.Struct.,2009,928: 125-131

    [23]Lin J B,Zhang J P,Zhang W X,et al.Inorg.Chem.,2009, 48:6652-6660

    [24]Huang F P,Bian H D,Yu Q,et al.CrystEngComm,2011, 13:6538-6548

    [25]Huang F P,Tian J L,Yu Q,et al.Polyhedron,2012,34: 129-135

    [26]Liu X Y,Su,Z Y,Ji W X,et al.J.Phys.Chem.C,2014, 118:23487-23498

    [27]Li B,Chen S P,Yang Q,et al.Polyhedron,2011,30:1213-1218

    [28]Sheu C F,Shih,C H,Sugimoto K,et al.Chem.Commun., 2012,48:5715-5717

    [29]WANG Jun-Mei(王俊梅),LI Bing(李冰),SUN Lin(孫琳),et al.Chinese J.Inorg.Chem.(無(wú)機(jī)化學(xué)學(xué)報(bào)),2014,30(3): 683-688

    [30]Kobrsi I,Zheng W J,Knox J E,et al.Inorg.Chem.,2006, 45:8700-8710

    [31]Zhai Q G,Hu M C,Wang Y,et al.Inorg.Chem.Commun., 2009,12:286-289

    [32]Su Z Y,Liu X Y,Yang Q,et al.CrystEngComm,2014,16: 4245-4253

    [33]Dreizler R M,Gross E U K.Density Functional Theory. Heidelberg,Germany:Spinger-Verlag,1990.

    [34]Frisch M J,Trucks G W,Schlegel H B,et al.Gaussian 03, Revision B.05,Gaussian,Inc.,Pittsburgh,PA,2003.

    [35]Becke A D.J.Chem.Phys.,1993,98:5648-5652

    [36]Lee C,Yang W,Parr R G,et al.Phys.Rev.B,1988,37: 785-789

    [37]Browne E.Aust.J.Chem.,1975,28(11):2543-2546

    [38]Sheldrick G M.SADABS,An Empirical Absorption Correction Program,Bruker Analytical X-ray Systems,Madison,WI, 1996.

    [39]Sheldrick G M.SHELXL97,Program for Crystal Structure Determination,University of G?ttingen,G?ttingen,Germany, 1997.

    [40]Sheldrick G M.SHELXL97,Program for Crystal Structure Refinement,University of G?ttingen,G?ttingen,Germany, 1997.

    SUN LinLIU Huai-XianZHOU Hui-LiangLIU Xiang-Yu*SONG Wei-MingLI Bing*HU Qi-Lin
    (School of Chemistry and Chemical Engineering,Ningxia University,Yinchuan 750021,China)

    Based on the versatile ligand 1H-3-(3-pyridyl)-5-(3′-pyridyl)-1,2,4-triazole(3,3′-Hbpt,(1),a coordination polymer,[Co(3,3′-Hbpt)2(H2O)4]·(ad)·6H2O(2),has been hydrothermally isolated(ad=adipate).The crystal structure of ligand has been investigated.Density functional theory(DFT)is employed to explicate the optimized geometry,preferred conformation and electronic properties of 3,3′-Hbpt ligand.Structural analysis reveals that compound 2 is a zero-dimensional mononuclear molecule,and the 3D supramolecular network is constructed through hydrogen-bonding interactions,in which the rectangular channels are filled by free adipate anions.Notably,the geometry and conformation of the ligand in compound 2 are corresponding with the calculated results.In addition,thermostability of compound 2 is investigated by TG.CCDC:1028283,1; 1002548,2.

    1H-3-(3-pyridyl)-5-(3′-pyridyl)-1,2,4-triazole;theoreticalcalculation;coordinationcompound;crystalstructure; thermostability

    O614.81+2

    A

    1001-4861(2015)06-1207-08

    10.11862/CJIC.2015.172

    2015-01-24。收修改稿日期:2015-04-13。

    國(guó)家自然科學(xué)基金(No.21463020、21263019)和寧夏自然科學(xué)基金(No.NZ13029)資助項(xiàng)目。

    *通訊聯(lián)系人。E-mail:xiangyuliu432@126.com;nxdaxue@126.com

    猜你喜歡
    吡啶基三唑晶體結(jié)構(gòu)
    化學(xué)軟件在晶體結(jié)構(gòu)中的應(yīng)用
    鎳(II)配合物{[Ni(phen)2(2,4,6-TMBA)(H2O)]·(NO3)·1.5H2O}的合成、晶體結(jié)構(gòu)及量子化學(xué)研究
    不同濃度三唑錫懸浮劑防治效果研究
    三組分反應(yīng)高效合成1,2,4-三唑烷類化合物
    1,1′-二(硝氧甲基)-3,3′-二硝基-5,5′-聯(lián)-1,2,4-三唑的合成及性能
    含能配合物Zn4(C4N6O5H2)4(DMSO)4的晶體結(jié)構(gòu)及催化性能
    一個(gè)基于β-[Mo8O26]和5-(3-吡啶基)-四唑橋連的二核鎳配合物構(gòu)筑的無(wú)機(jī)-有機(jī)雜化化合物
    1,3-二吡啶基苯和4,4′-二羧基二苯砜構(gòu)筑的鈷(Ⅱ)配合物合成、結(jié)構(gòu)和性質(zhì)
    2,4-二氨基-6-(2'-吡啶基)均三嗪銅(Ⅱ)配合物的結(jié)構(gòu)、抗菌活性及DNA作用
    以二羧酸二苯甲醚和吡啶基三唑?yàn)榕潴w構(gòu)筑的鈷(Ⅱ)配合物的合成、結(jié)構(gòu)、熱穩(wěn)定性及DFT計(jì)算
    91久久精品电影网| 国产无遮挡羞羞视频在线观看| 肉色欧美久久久久久久蜜桃| 一区二区三区免费毛片| 91精品国产国语对白视频| 777米奇影视久久| 国产精品秋霞免费鲁丝片| 日日啪夜夜撸| 国产免费福利视频在线观看| 日韩欧美 国产精品| 91午夜精品亚洲一区二区三区| 免费高清在线观看视频在线观看| 2022亚洲国产成人精品| 日本色播在线视频| 五月伊人婷婷丁香| 日本vs欧美在线观看视频 | 国产成人精品久久久久久| 日韩av在线免费看完整版不卡| 国产精品福利在线免费观看| 午夜福利高清视频| 精华霜和精华液先用哪个| 久久精品久久久久久噜噜老黄| 一区二区av电影网| 亚洲国产精品专区欧美| 777米奇影视久久| 欧美一区二区亚洲| 欧美xxxx黑人xx丫x性爽| 亚洲av免费高清在线观看| 色婷婷久久久亚洲欧美| 超碰97精品在线观看| 亚洲国产精品国产精品| 香蕉精品网在线| 国产白丝娇喘喷水9色精品| 日韩欧美精品免费久久| av在线播放精品| 一区二区三区免费毛片| 能在线免费看毛片的网站| 97精品久久久久久久久久精品| 少妇熟女欧美另类| 国产精品一区www在线观看| 亚洲av免费高清在线观看| 嫩草影院新地址| 欧美xxxx黑人xx丫x性爽| 黄色视频在线播放观看不卡| 国产精品伦人一区二区| 极品少妇高潮喷水抽搐| 丝袜喷水一区| 伊人久久精品亚洲午夜| 一个人看的www免费观看视频| 日本午夜av视频| 超碰av人人做人人爽久久| 免费黄色在线免费观看| 秋霞伦理黄片| 成年美女黄网站色视频大全免费 | 久久人妻熟女aⅴ| 搡老乐熟女国产| 少妇人妻久久综合中文| 一本—道久久a久久精品蜜桃钙片| 亚洲综合色惰| 一边亲一边摸免费视频| 久久ye,这里只有精品| 亚洲内射少妇av| 蜜臀久久99精品久久宅男| 国产精品无大码| 色婷婷av一区二区三区视频| av一本久久久久| 亚洲aⅴ乱码一区二区在线播放| 青春草国产在线视频| 小蜜桃在线观看免费完整版高清| 一区二区三区精品91| 我要看日韩黄色一级片| 国产精品伦人一区二区| 人妻制服诱惑在线中文字幕| 欧美日韩在线观看h| 国产精品人妻久久久影院| 王馨瑶露胸无遮挡在线观看| 亚洲第一av免费看| 欧美精品一区二区大全| 国产精品欧美亚洲77777| 国产精品久久久久久精品电影小说 | 天天躁日日操中文字幕| 国产精品女同一区二区软件| 精品一区二区三卡| 18禁动态无遮挡网站| 直男gayav资源| 99热这里只有精品一区| 精品久久久噜噜| 国产午夜精品一二区理论片| 国产成人a区在线观看| 人人妻人人爽人人添夜夜欢视频 | 超碰97精品在线观看| 尾随美女入室| 欧美日韩在线观看h| 色视频在线一区二区三区| 如何舔出高潮| 免费观看av网站的网址| 狂野欧美激情性xxxx在线观看| 久久久久性生活片| 性高湖久久久久久久久免费观看| 啦啦啦在线观看免费高清www| 99久国产av精品国产电影| 联通29元200g的流量卡| 91aial.com中文字幕在线观看| 国产欧美另类精品又又久久亚洲欧美| 男人和女人高潮做爰伦理| 男女无遮挡免费网站观看| 国产乱人视频| 久久精品久久精品一区二区三区| 中文在线观看免费www的网站| 欧美日韩一区二区视频在线观看视频在线| 色哟哟·www| 国产老妇伦熟女老妇高清| 国产淫语在线视频| 天天躁夜夜躁狠狠久久av| 91久久精品国产一区二区三区| 国模一区二区三区四区视频| 免费观看的影片在线观看| www.av在线官网国产| 欧美高清成人免费视频www| 国产伦理片在线播放av一区| 亚洲成色77777| 网址你懂的国产日韩在线| 人妻夜夜爽99麻豆av| 亚洲欧洲国产日韩| 一级毛片久久久久久久久女| 热99国产精品久久久久久7| 丝瓜视频免费看黄片| 欧美老熟妇乱子伦牲交| 日本午夜av视频| 欧美xxxx黑人xx丫x性爽| 成人美女网站在线观看视频| 日本黄色日本黄色录像| 岛国毛片在线播放| 久久久久精品性色| 久久6这里有精品| 国产女主播在线喷水免费视频网站| 男的添女的下面高潮视频| 日本wwww免费看| 丰满人妻一区二区三区视频av| 久久国产亚洲av麻豆专区| 精品一区二区三区视频在线| 超碰97精品在线观看| 中文字幕人妻熟人妻熟丝袜美| 国产日韩欧美亚洲二区| av在线app专区| 99re6热这里在线精品视频| 男的添女的下面高潮视频| av免费在线看不卡| 女人十人毛片免费观看3o分钟| 亚洲人与动物交配视频| 国产毛片在线视频| 国产精品国产三级国产av玫瑰| 国产精品熟女久久久久浪| 亚洲av中文字字幕乱码综合| 日本wwww免费看| 国产老妇伦熟女老妇高清| 欧美日本视频| 男女下面进入的视频免费午夜| 久久综合国产亚洲精品| 女性生殖器流出的白浆| 亚洲性久久影院| 亚洲久久久国产精品| 亚洲经典国产精华液单| 久久精品人妻少妇| 爱豆传媒免费全集在线观看| 亚洲高清免费不卡视频| 成人二区视频| 少妇的逼水好多| 久久人妻熟女aⅴ| 视频区图区小说| 大香蕉97超碰在线| 18+在线观看网站| 精华霜和精华液先用哪个| 国产在视频线精品| 99re6热这里在线精品视频| 亚洲av.av天堂| 51国产日韩欧美| 九草在线视频观看| av一本久久久久| 久久久久久人妻| 永久网站在线| 欧美zozozo另类| 一级爰片在线观看| 美女主播在线视频| 最近的中文字幕免费完整| 日本黄色日本黄色录像| 国国产精品蜜臀av免费| videos熟女内射| 国产永久视频网站| 性色avwww在线观看| 80岁老熟妇乱子伦牲交| 久久久久久久久大av| 精品人妻熟女av久视频| 成人亚洲欧美一区二区av| 久久久久视频综合| 欧美日韩亚洲高清精品| 久久精品国产亚洲av涩爱| 精华霜和精华液先用哪个| 国产精品熟女久久久久浪| 亚洲性久久影院| 十分钟在线观看高清视频www | 成年人午夜在线观看视频| 日韩国内少妇激情av| 久久久久久伊人网av| 99久久综合免费| 香蕉精品网在线| 色视频在线一区二区三区| 亚洲综合色惰| 国产黄片视频在线免费观看| 狂野欧美白嫩少妇大欣赏| 男女无遮挡免费网站观看| 身体一侧抽搐| 精品久久久久久久久av| 最近手机中文字幕大全| 亚洲第一av免费看| 纵有疾风起免费观看全集完整版| 九色成人免费人妻av| 国产精品99久久99久久久不卡 | 日日撸夜夜添| 99久久综合免费| 老女人水多毛片| 免费观看av网站的网址| 国产一区亚洲一区在线观看| 国产精品久久久久久精品电影小说 | 精品久久久精品久久久| 国产深夜福利视频在线观看| 成人免费观看视频高清| 菩萨蛮人人尽说江南好唐韦庄| 国模一区二区三区四区视频| 老女人水多毛片| 制服丝袜香蕉在线| 国产一区亚洲一区在线观看| 国产精品久久久久成人av| 欧美国产精品一级二级三级 | 亚洲精华国产精华液的使用体验| 国产精品一区二区在线观看99| 亚洲欧美一区二区三区黑人 | 最近2019中文字幕mv第一页| 国产日韩欧美在线精品| 中文天堂在线官网| 自拍欧美九色日韩亚洲蝌蚪91 | 美女视频免费永久观看网站| 精品视频人人做人人爽| 国产成人freesex在线| 婷婷色麻豆天堂久久| 激情 狠狠 欧美| 国产精品嫩草影院av在线观看| 成人二区视频| 人人妻人人爽人人添夜夜欢视频 | 伊人久久精品亚洲午夜| 少妇人妻一区二区三区视频| 久久精品久久精品一区二区三区| 中文字幕制服av| 久久久久久九九精品二区国产| 久久韩国三级中文字幕| 一个人看视频在线观看www免费| 大码成人一级视频| av在线app专区| 亚洲欧美日韩无卡精品| 少妇熟女欧美另类| 日韩人妻高清精品专区| 亚洲四区av| 少妇高潮的动态图| 校园人妻丝袜中文字幕| 尾随美女入室| 亚洲精品国产色婷婷电影| av在线app专区| 一区在线观看完整版| 亚洲国产色片| 欧美xxⅹ黑人| 夜夜骑夜夜射夜夜干| 日韩,欧美,国产一区二区三区| 国国产精品蜜臀av免费| 成年女人在线观看亚洲视频| 18禁裸乳无遮挡动漫免费视频| 欧美 日韩 精品 国产| 国产黄色免费在线视频| 欧美精品亚洲一区二区| 亚洲精品aⅴ在线观看| 大片免费播放器 马上看| 欧美老熟妇乱子伦牲交| 91久久精品国产一区二区三区| 国产91av在线免费观看| 天堂中文最新版在线下载| 在线观看国产h片| 国产高清三级在线| 成人国产麻豆网| 成年免费大片在线观看| 亚洲成人av在线免费| 日日撸夜夜添| 日日啪夜夜爽| 婷婷色综合大香蕉| av不卡在线播放| 高清视频免费观看一区二区| 成人18禁高潮啪啪吃奶动态图 | 婷婷色综合www| 亚洲国产精品999| 少妇的逼好多水| 又爽又黄a免费视频| 免费人妻精品一区二区三区视频| 亚洲精品成人av观看孕妇| 亚洲欧美精品自产自拍| 国产免费一区二区三区四区乱码| 国产探花极品一区二区| 免费久久久久久久精品成人欧美视频 | 成人午夜精彩视频在线观看| 爱豆传媒免费全集在线观看| tube8黄色片| 亚洲美女视频黄频| 中文字幕免费在线视频6| 日本与韩国留学比较| 久久久久精品性色| 交换朋友夫妻互换小说| 精品一区二区三区视频在线| 午夜福利在线观看免费完整高清在| 国产成人a∨麻豆精品| 欧美激情国产日韩精品一区| 免费大片18禁| 中国美白少妇内射xxxbb| 麻豆国产97在线/欧美| 一个人免费看片子| 美女国产视频在线观看| 亚洲av不卡在线观看| 22中文网久久字幕| 黄色视频在线播放观看不卡| 久久久久久九九精品二区国产| 一本一本综合久久| 永久网站在线| 亚洲精品日本国产第一区| 老司机影院毛片| 91久久精品国产一区二区成人| 在线播放无遮挡| 国产精品欧美亚洲77777| 日韩视频在线欧美| 一级片'在线观看视频| 亚洲美女搞黄在线观看| 99热国产这里只有精品6| 欧美丝袜亚洲另类| 日韩国内少妇激情av| 成人漫画全彩无遮挡| 午夜免费男女啪啪视频观看| av一本久久久久| 国产欧美日韩精品一区二区| 男女边吃奶边做爰视频| 国产av一区二区精品久久 | 狠狠精品人妻久久久久久综合| 国产午夜精品久久久久久一区二区三区| 毛片一级片免费看久久久久| 观看免费一级毛片| 午夜免费鲁丝| 中文在线观看免费www的网站| 国产极品天堂在线| 精品久久久久久久末码| 久久av网站| 久久久国产一区二区| 18禁动态无遮挡网站| 欧美三级亚洲精品| 狂野欧美激情性xxxx在线观看| 18禁动态无遮挡网站| 国产精品一区二区性色av| 观看美女的网站| 亚洲国产毛片av蜜桃av| 亚洲美女黄色视频免费看| 18禁裸乳无遮挡免费网站照片| 亚洲精华国产精华液的使用体验| 亚洲美女视频黄频| 久久精品夜色国产| 成年人午夜在线观看视频| 99re6热这里在线精品视频| 国产真实伦视频高清在线观看| 久久影院123| 丝袜脚勾引网站| h视频一区二区三区| 国产女主播在线喷水免费视频网站| 亚州av有码| 人妻少妇偷人精品九色| 国产免费又黄又爽又色| 大陆偷拍与自拍| 观看av在线不卡| 国产精品女同一区二区软件| 久久人人爽人人片av| 国产欧美日韩精品一区二区| 日本黄大片高清| 国产精品一及| 韩国高清视频一区二区三区| 亚洲第一区二区三区不卡| 综合色丁香网| 久热这里只有精品99| 精品国产乱码久久久久久小说| 在现免费观看毛片| 久久女婷五月综合色啪小说| 欧美一区二区亚洲| 一级毛片aaaaaa免费看小| 五月伊人婷婷丁香| 韩国av在线不卡| 99精国产麻豆久久婷婷| 国产高清有码在线观看视频| 国产又色又爽无遮挡免| 国产男人的电影天堂91| 熟妇人妻不卡中文字幕| 免费高清在线观看视频在线观看| 亚洲精品日本国产第一区| 成人高潮视频无遮挡免费网站| 2018国产大陆天天弄谢| 精品亚洲成a人片在线观看 | 亚洲精品国产av成人精品| 不卡视频在线观看欧美| 少妇猛男粗大的猛烈进出视频| 国产黄片美女视频| 美女cb高潮喷水在线观看| 肉色欧美久久久久久久蜜桃| 国产片特级美女逼逼视频| 亚洲精品aⅴ在线观看| 国产美女午夜福利| 午夜福利在线在线| 如何舔出高潮| 日韩伦理黄色片| 熟妇人妻不卡中文字幕| 亚洲一级一片aⅴ在线观看| 日日啪夜夜爽| 亚洲精品日韩av片在线观看| 国产亚洲欧美精品永久| 97在线视频观看| 蜜桃久久精品国产亚洲av| 在线看a的网站| 午夜免费鲁丝| 精品一品国产午夜福利视频| 国内揄拍国产精品人妻在线| 秋霞在线观看毛片| 夜夜看夜夜爽夜夜摸| 国产av国产精品国产| 黄色欧美视频在线观看| 视频区图区小说| 性色av一级| 日韩欧美 国产精品| 亚洲国产最新在线播放| 一个人看视频在线观看www免费| 有码 亚洲区| 在线观看人妻少妇| 国产一区二区在线观看日韩| 亚洲欧美日韩另类电影网站 | 3wmmmm亚洲av在线观看| 99热全是精品| av在线蜜桃| 一级毛片我不卡| 免费大片黄手机在线观看| 搡老乐熟女国产| 日韩一区二区视频免费看| 99久久精品热视频| 亚洲av综合色区一区| 久久精品人妻少妇| 国产美女午夜福利| 大话2 男鬼变身卡| 最近手机中文字幕大全| 久久国产精品大桥未久av | 97精品久久久久久久久久精品| 交换朋友夫妻互换小说| 亚洲四区av| 日本免费在线观看一区| 亚洲成人手机| a级毛色黄片| 亚洲精品日韩在线中文字幕| 男人爽女人下面视频在线观看| 黑丝袜美女国产一区| 噜噜噜噜噜久久久久久91| 久久这里有精品视频免费| 亚洲av福利一区| 在线观看人妻少妇| 十分钟在线观看高清视频www | 成年免费大片在线观看| 午夜日本视频在线| 国产黄色视频一区二区在线观看| 高清黄色对白视频在线免费看 | 日韩一区二区三区影片| 亚洲精品乱码久久久久久按摩| 国产 精品1| 永久免费av网站大全| 日本欧美国产在线视频| 精品国产露脸久久av麻豆| 美女内射精品一级片tv| 亚洲国产日韩一区二区| 成人漫画全彩无遮挡| 午夜视频国产福利| 精品久久国产蜜桃| 国产色爽女视频免费观看| 精品久久久久久电影网| 久热久热在线精品观看| 久久99蜜桃精品久久| 少妇熟女欧美另类| 亚洲av欧美aⅴ国产| 亚洲精品国产av成人精品| 大陆偷拍与自拍| 嫩草影院入口| 看免费成人av毛片| 亚洲国产精品一区三区| 久久这里有精品视频免费| 免费久久久久久久精品成人欧美视频 | 夫妻午夜视频| 久久久a久久爽久久v久久| av免费在线看不卡| 男女边摸边吃奶| 人妻少妇偷人精品九色| 成人毛片a级毛片在线播放| 国产精品熟女久久久久浪| 一级毛片黄色毛片免费观看视频| 好男人视频免费观看在线| 亚洲成色77777| 高清不卡的av网站| 国产欧美亚洲国产| 久久 成人 亚洲| 国产精品一区二区三区四区免费观看| 综合色丁香网| 免费看光身美女| 视频中文字幕在线观看| 麻豆成人av视频| 一级二级三级毛片免费看| 18+在线观看网站| a级毛片免费高清观看在线播放| 久久婷婷青草| 有码 亚洲区| 久久这里有精品视频免费| 麻豆国产97在线/欧美| a级一级毛片免费在线观看| 国产亚洲午夜精品一区二区久久| 国产淫语在线视频| 97在线视频观看| 另类亚洲欧美激情| 美女xxoo啪啪120秒动态图| 欧美老熟妇乱子伦牲交| 欧美性感艳星| 久久久久久久久久成人| 天堂8中文在线网| 麻豆成人av视频| 色视频在线一区二区三区| 伊人久久精品亚洲午夜| 免费观看无遮挡的男女| 伦理电影大哥的女人| 亚洲,一卡二卡三卡| 久久鲁丝午夜福利片| 一二三四中文在线观看免费高清| www.av在线官网国产| 免费观看无遮挡的男女| 亚洲经典国产精华液单| 99久久综合免费| 欧美激情极品国产一区二区三区 | 熟女人妻精品中文字幕| 男的添女的下面高潮视频| 日韩 亚洲 欧美在线| 在线观看av片永久免费下载| 国产中年淑女户外野战色| 欧美精品人与动牲交sv欧美| 亚洲国产精品成人久久小说| 日韩av不卡免费在线播放| 日韩一区二区三区影片| 亚洲精品,欧美精品| 晚上一个人看的免费电影| 九九久久精品国产亚洲av麻豆| 尤物成人国产欧美一区二区三区| 视频区图区小说| 中文在线观看免费www的网站| 国产精品一及| 一级爰片在线观看| 亚洲国产欧美人成| 亚洲国产精品999| 色视频在线一区二区三区| 大香蕉久久网| 最后的刺客免费高清国语| 三级国产精品欧美在线观看| 国产片特级美女逼逼视频| 婷婷色麻豆天堂久久| 超碰97精品在线观看| 26uuu在线亚洲综合色| 亚洲国产精品国产精品| 日韩亚洲欧美综合| 亚洲精品乱码久久久久久按摩| 亚洲精品第二区| 日本av免费视频播放| 国产欧美日韩一区二区三区在线 | 久久久精品免费免费高清| 亚洲国产欧美人成| 亚洲人成网站高清观看| 成人黄色视频免费在线看| 国产精品一区www在线观看| 三级经典国产精品| 久久精品久久精品一区二区三区| 99久久精品热视频| 亚洲精品日韩av片在线观看| 女性生殖器流出的白浆| 只有这里有精品99| 18禁在线无遮挡免费观看视频| 黄色欧美视频在线观看| 国产精品久久久久成人av| 国产精品一区二区在线观看99| 久久韩国三级中文字幕| 性高湖久久久久久久久免费观看| 久久久久久久精品精品| 亚洲性久久影院| 欧美日韩视频高清一区二区三区二| 中国美白少妇内射xxxbb| 18禁在线播放成人免费| 高清视频免费观看一区二区| 18禁裸乳无遮挡免费网站照片| 日韩一本色道免费dvd| 精品99又大又爽又粗少妇毛片| 日韩中文字幕视频在线看片 | 成人影院久久| 久久女婷五月综合色啪小说| 国产淫片久久久久久久久| 成人黄色视频免费在线看| 国产一区有黄有色的免费视频| 欧美少妇被猛烈插入视频| 日本黄色日本黄色录像| 最近手机中文字幕大全| 男人舔奶头视频| 国产欧美日韩一区二区三区在线 |