• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Removal of Volatile Organic Compounds Driven by Platinum Supported on Amorphous Phosphated Titanium Oxide

    2020-05-13 00:43:52HUANGXieyiWANGPengYINGuohengZHANGShaoningZHAOWeiWANGDongBIQingyuanHUANGFuqiang
    無機(jī)材料學(xué)報(bào) 2020年4期
    關(guān)鍵詞:氧化鈦非晶介孔

    HUANG Xieyi, WANG Peng, YIN Guoheng, ZHANG Shaoning, ZHAO Wei,WANG Dong, BI Qingyuan, HUANG Fuqiang,3,4

    Removal of Volatile Organic Compounds Driven by Platinum Supported on Amorphous Phosphated Titanium Oxide

    HUANG Xieyi1,2, WANG Peng2,3, YIN Guoheng1, ZHANG Shaoning1, ZHAO Wei1,WANG Dong1, BI Qingyuan1, HUANG Fuqiang1,3,4

    (1. State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China; 3. School of Physical Science and Technology, ShanghaiTech University, Shanghai 200031, China; 4. State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China)

    Development of high efficiency catalyst is the key factor to catalytic combustion of volatile organic com-pounds (VOCs). Herein, amorphous mesoporous phosphated TiO2(ATO-P) with high specific surface area supported platinum catalyst was successfully fabricated. P-dopant can increase the surface area (up to 278.9 m2?g?1) of ATO-P, which is 21 times higher than that of pristine TiO2, and make the amorphous titanium oxide structure. The supported Pt catalyst with amorphous mesoporous feature shows impressive performance and excellent thermostability for VOCs oxidation. The Pt/ATO-P catalyst exhibits outstanding catalytic efficiency, the50and90(temperatures required for achieving conversions of 50% and 90%) are respectively 130 ℃and 140 ℃, for toluene oxidation under high gas hourly space velocity (GHSV) of 36000 mL·h?1·g?1and toluene concentration of 10000 mL·m?3. The performance is superior to the reference Pt/TiO2and comparable with the state-of-the-art catalysts. These findings can make a significant contribution on the new applications of amorphous mesoporous phosphated materials in VOCs removal.

    amorphous mesoporous structure; phosphated TiO2; Pt nanoparticle; toluene oxidation; VOCs removal

    Volatile organic compounds (VOCs), like toluene, benzene, esters and hydrocarbons, are emitted from vari-ous industrial sources which can cause serious envi-ronmental pollution and health problems[1?2]. Toluene, one kind of toxic and strong carcinogenic chemical, is frequently used in making paints, adhesives, rubbers, and leather tanning processes because of its excellent ability to dissolve organic substances[3-4]. However, toluene is difficult to degrade due to its stable structure[5]. Several techniques, such as physical and chemical adsorption, photocatalytic and catalytic oxidation methods, are widely used for the combustion of VOCs[6-7]. Among them, catalytic oxidation is regarded as a promising approach owing to its high efficiency and convenient operating conditions[8].

    Researches on catalysts for toluene oxidation have been conducted, including noble metal and metal oxides catalysts[9-10]. Due to the significant reduction on acti-vation energy during the catalytic oxidation process, noble metal based catalysts, such as Pt, Pd, Au, Rh, and Ir have shown impressive performance in toluene remo-val[11-13]. It was found that supported Pt catalysts showed the best catalytic performance compared with other noble metals[14-15]. It should be pointed out that the supports play an important role in the catalytic reaction pro-cesses[16-18]. Many works have focused on the metal- support interac-tion by studying the catalytic properties of TiO2, Al2O3, ZrO2, and ZnO supported Au nanopar-ticles[19], and the shape effect of Pt/CeO2catalysts[10]. Nevertheless, most supports suffer from low specific surface area and few active sites, which are crucial for the overall catalytic activity.

    Due to high specific surface area and variable valence, amorphous materials have attracted increasing interests in VOCs oxidation. And the numerous defects in amo-rphous structures can offer large quantities of oxygen vacancies, which are beneficial for the adsorption of oxygen and organic molecules. Lee,[20]reported that carbon black supported amorphous MnOis highly efficient for oxygen involved reaction. Wang,[21]found that amorphous MnOmodified Co3O4can en-hance the catalytic activity for the VOCs oxidation. It was demonstrated that the amorphous structure of bimetallic Pd-Pt/CeO2-Al2O3-TiO2could provide more vacancies and active sites for catalytic combustion[22]. Therefore, the amorphous catalysts show a tremendous potential in practical catalytic reactions. However, it is still a challenge to develop highly active and robust catalysts based on the amorphous materials for the oxidation of VOCs.

    Herein, we demonstrate an efficient Pt/ATO-P catalyst for the catalytic removal of VOCs under high gas hourly space velocity (GHSV)and high substrate concentration. It should be pointed out that incorporating phosphorus into the framework of TiO2is a widely applied strategy for obtaining amorphous mesoporous feature[23-24]. And the P element can stabilize the TiO2framework and significantly increase the specific surface area[24].

    1 Experimental

    1.1 Preparation of sample

    1.1.1 Preparation of support

    All reagents were of analytical grade and were used without any purification. 3 mL of tetrabutyl titanate was dissolved in 30 mL of ethanol at room temperature, which was marked as solution A. Then 0.125 mL of phosphoric acid (H3PO4) was subsequently dropwisely added into solution A with stirring to form a homogenous mixture, and kept stirring for 24 h. The obtained white solid products were separated by centrifuge, and washed by deionized water and ethanol several times, followed by freeze drying overnight. The as-prepared products were calcined at 400 ℃in air for 4 h at a heating rate of 5 ℃?min?1.

    1.1.2 Preparation of catalyst

    The ATO-P supported platinum (Pt/ATO-P) sample was preparedimpregnation method. A desired amount of ATO-P was transferred into aqueous solution containing appropriate amount of chloroplatinic acid (H2PtCl4). Subsequently, the samples were impregnated at room temperature for 12 h. After drying out the H2O at 80 ℃, the samples were treated at 350 ℃ for 2 h with a H2/Ar mixture (5/95,/).

    1.2 Characterization

    XRD characterization of the samples was carried out on a German Bruker D8 Advance X-ray diffractometer (XRD) using the Ni-filtered Cu Kα radiation at 40 kV and 40 mA. Nitrogen adsorption-desorption isotherms were measured at –196 ℃ on a Micromeritics ASAP 2460 analyzer. Samples were degassed at 120 ℃ for 24 h prior to the measurement. The specific surface area of the samples was calculated using the Brunauer–Emmett– Teller (BET) method with the adsorption data at the relative pressure (/0) range of 0.05–0.2. The total pore volumes were estimated at/0=0.99. The pore size distribution (PSD) curves were calculated from the adsorption branch using Barrett-Joyner-Halenda (BJH) model. The prepared materials were pressed into tablets with KBr powder and then detected by FT-IR (Perkin Elmer, USA) in the scanning range from 400 to 4000 cm–1. SEM images were obtained by Hitachi-S4800. A JEOL 2011 microscope operating at 200 kV equipped with an EDX unit (Si(Li) detector) was used for the transmission electron microscope (TEM) and high resolution trans-mission electron microscope (HRTEM) investigations. The samples for TEM testing were prepared by dis-persing the powder in ethanol and applying a drop of highly dilute suspension on carbon-coated grids. XPS data were recorded with a Perkin Elmer PHI 5000 C system equipped with a hemispherical electron energy analyzer. The spectrometer was operated at 15 kV and 20 mA, and a magnesium anode (Mg Kα,=1253.6 eV) was used. The C1s line (284.6 eV) was used as the reference to calibrate the binding energies (BE). TG measurements were conducted on a Netzsch STA 449C TG-DSC thermoanalyzer. The flow rate of the carrier gas (air) was 30 mL?min–1. The temperature was raised from room temperature to 800 ℃ at a ramp rate of 10 ℃?min–1. Prior to H2-TPR test, the sample (100 mg) was pretreated at 200 ℃ for 2 h and cooled to 50 ℃ in the flowing He. TPR experiment was carried out in 5vol% H2/He flowing at 30 mL?min–1, with a ramping rate of 5 ℃?min–1to a final temperature of800 ℃. The signal was monitored using a TCD detector.

    1.3 Catalytic activity test

    The catalytic activity of samples was evaluated in a continued-flow fixed-bed quartz reactor with 50 mg catalyst. Toluene was introduced into the reactor with bubbling toluene solution in ice bath with pure air. The concentration of toluene was about 104mL?m?3, and the flow rate was kept at 30 mL?min–1by a mass controller, equivalent to a gas hour space velocity (GHSV) of 36000 mL?h–1?g–1. After steady operation for 100 min, the activity of the catalyst was tested. Toluene con-cen-tration was detected by a gas chromatograph equi-pped with a flame ionization detector. The toluene conversion (toluene) was calculated according to the equation:

    toluene(inout)/in·100% (1)

    whereinandoutare the inlet and outlet toluene concentrations, respectively.

    2 Results and discussion

    2.1 Physicochemical properties of ATO-P support

    Fig. 1 displays the schematic diagram of amorphous ATO-P preparedfacile co-precipitation. XRD patterns of ATO-P and TiO2are shown in Fig. 2. All diffraction peaks of basic TiO2sample are indexed to anatase phase (JCPDS 21-1276). Interestingly, there is no TiO2crystal phase observed for ATO-P sample (Fig. 2), suggesting that ATO-P sample is typically amorphous and phosphorus dopant can markedly restrain the crystallization of anatase[25?26].

    According to the TGA-DSC thermograms (Fig. 3), a thermal decomposition of ATO-P took place in the temperature range of 20?900 ℃. The first DSC peak at 30?80 ℃ is due to the release of physical adsorbed water. When all the water is released, Ti?OH and HPO42?groups start to condense[27]. These processes occur simultaneously in the temperature range of 100?220 ℃ (1.927% of weight loss) and 220?516 ℃ (0.7% of weight loss), resulting in an overlap of the TG data. There is no further weight loss up to 516 ℃. The DSC curve shows two exothermic peaks at 704and 781 ℃, corresponding to a two-step exothermic transformation of ATO-P into a crystalline phase.

    Fig. 1 Structure of amorphous ATO-P prepared via facile co-precipitation

    Fig. 2 XRD patterns of TiO2 and ATO-P samples

    Fig. 3 TG (solid line) and DSC (dashed line) curves for ATO-P

    Fig. 4(a,b) show the SEM images of ATO-P. The ATO-P nanoparticles are homogeneously dispersed with the particle size of ~20 nm, and the sizes are similar to that of TiO2(Fig. S1(a)). HRTEM was employed to characterize the nanostructure of samples. No porous structure is observed in the HRTEM image of TiO2(Fig. S1(b)), while various porous structure is shown in ATO-P (Fig. 4(c)). Moreover, the pores of ATO-P are uniform, and the average diameter is around 10 nm. EDS elemental mappings indicate that the P element homo-geneously distributes in ATO-P (Fig. 4(d)). It is found that H3PO4owns unique effects for synthesizing amorphous mesoporous phosphated TiO2[28-29].

    Fig. 4 SEM (a, b) and HRTEM (c) images, and EDS elemental mapping (d) of ATO-P

    As shown in Fig. 5, the obtained ATO-P sample shows a characteristic type-IV isotherm with clear hysteresis loop locates at the/0range of 0.45?1.0, showing the existence of a large amount of mesopore. Notably, the specific surface area of 278.9 m2·g?1for ATO-P is 21 times higher than that of pristine TiO2. The pore diameters of ATO-P center around 10 nm (Fig. 5 and Table 1), which is consistent with HRTEM result (Fig. 4(c)).

    The results of EDX are listed in Table 1. The actual P concentration is much less than the initial addition amount of H3PO4, suggesting that partial H3PO4is leached during the preparation process.

    FT-IR spectra of TiO2and ATO-P samples are depicted in Fig. 6. The wide absorption bands around 3440 and 1620 cm?1are attributed to the surface adsorbed water and/or hydroxyl groups[30-31]. The bands at 1100 cm?1are ascribed to the stretching vibration of Ti?O?P species, which are absent in TiO2. The weak bands at 610 cm?1are due to the vibration of Ti?O?Ti bond[22]. Compared with TiO2, a weak peak appears in series ATO-P, which may result from the incorporating effect of phosphorus dopant. There is no distinct peak over the range of 700?800 cm?1(Fig. 6), indicating the absence of P?O?P groups in the amorphous mesoporous phosphated TiO2. Therefore, the P element is incorporated into the frameworks of ATO-P by forming Ti?O?P bonds[24].

    Fig. 5 N2 adsorption-desorption isotherms (a) and pore size distributions (b) of ATO-P and TiO2

    Table 1 Textural properties and elemental compositions ofTiO2 and ATO-P samples

    [a] Weight fraction (wt%) are determined by EDX analysis

    Fig. 6 FT-IR spectra of TiO2 and ATO-P

    As shown in Fig. 7(a), the full XPS spectra indicate the existence of P in ATO-P. High-resolution XPS spectra of P 2p, Ti 2p and O 1s are depicted in Fig. 7(b?d). The peak of P 2p of ATO-P is at 134.0 eV, suggesting that phosphorus in ATO-P gives a pentavalent oxidation state of P5+. No peak observed at 128.6 eV, which is the characteristic binding energy of P2p in TiP, indicating the absence of Ti?P bonds in ATO-P samples. As depicted in Fig. 7(c), the peaks of Ti2p3/2and Ti2p1/2in ATO-P show remarkable blue-shift owing to the incorporation effect of phosphorus element. Fig. 7(d) shows the XPS spectra of O1s signals of TiO2and ATO-P. The single peak at 529.5 eV is corresponded to the oxygen in Ti?O bond of TiO2. However, the O1s spectrum of ATO-P contains two peaks at 531.4 and 532.9 eV, which are contributed to Ti?O?P and O?H bond, respectively[32-33].

    2.2 Physicochemical properties of Pt/ATO-P catalysts

    Fig. 8(a) shows that the Pt nanoparticles are well dis-persed over the ATO-P support, and the size is relatively uniform with the average parameter of (1.8±0.3) nm (insert in Fig. 8(a)). Fig. 8(b) and S2 demonstrate a-spacing of 0.23 nm, attributed to the (111) plane of the highly crystalline Pt nanostructure. Furthermore, the actual Pt content was also confirmed by inductively coulped plasma atomic emission spectra (ICP-AES). The mass loadings of Pt in Pt/TiO2and Pt/ATO-P catalysts are 0.90 and 0.92, respectively, which are close to the nominal composition of 1wt%.

    Fig. 8(c) shows the XRD patterns of Pt/ATO-P and Pt/TiO2catalysts. The amorphous structure is still remained for Pt/ATO-P sample. However, no diffraction pattern of Pt nanoparticles is observed, indicating that the Pt nanoparticles are quite small and/or the Pt species are highly dispersed on the ATO-P surface. These results are well consistent with the HRTEM data above mentioned in Fig. 8(a, b).

    Fig. 7 Full XPS spectra (a) of TiO2 and ATO-P; High-resolution XPS P2p (b), Ti2p (c), and O1s (d) of TiO2 and ATO-P

    Fig. 8 TEM (a) and HRTEM (b) images of Pt/ATO-P with insert in (a) indicating the particle size distribution of Pt nanoparticles, XRD patterns (c) and XPS Pt4f (d) of Pt/ATO-P

    The results of XPS analysis of Pt/ATO-P and Pt/TiO2samples are depicted in Fig. 8(d). It is known that the positions of Pt4f7/2binding energy at 71.1, 72.4, and 74.2 eV are attributedto Pt0, Pt2+, and Pt4+species, respec-tively[34]. Similiar XPS profiles arerendered as the indication of a mixture of various valence states for Pt species overthe small Pt nanoparticles. The exisence of Pt+species reflects the strong metal-support interaction (Pt?ATO-P), especially the prominent electronic intera-ction between active Pt and underlying phosphated TiO2support[35]. This is probably due to the changes of the metal- support interaction by doping phosphorus atoms which can make an obvious effect onTi?O?P frameworks.

    The H2-TPR profiles depicted in Fig. S3 show that there are two H2-consumption peaks at low and high temperature attributed to weak and strong interaction of Pt and supports, respectively[36]. Notably, two reduction peaks of Pt/ATO-P catalyst at 78 and 601 ℃ show stro-nger intensity than that of Pt/TiO2at 72 and 433 ℃, indicating strongPt-support interaction for Pt/ATO-P. These results are consistent with the XPS data.

    2.3 Removal of VOCs by Pt/ATO-P catalysts

    The catalytic efficiencies are depicted in Fig. 9. It is clearly observed that reaction temperature can enhance the performance of Pt/ATO-P catalyst. The50and90are widely used to evaluate the catalytic performance[37]. As shown in Fig. 9(a), Pt/ATO-P shows the excellent catalytic activity.50and90values for toluene com-bustion are 130 and 140 ℃, which are much lower than those of Pt/TiO2with50and90of 160 and 190 ℃, res-pectively. Combined with the above XPS data (Fig. 8(d)), it can be concluded that the existance of phosphorus component plays an important role in electronic structure of the active Pt species underlying amorphous meso-porous ATO-P support and thus the catalytic oxidation removal of toluene over Pt/ATO-P catalyst.

    Fig. 9 Toluene conversion (a) of 1wt% Pt/ATO-P with respect to reaction temperature, and thermal stability (b) of Pt/ATO-P at 180 ℃

    It is well known that noble metal loading significantly affects the catalytic behavior for many reactions. Pt/ATO-P catalysts with different Pt loadings were examined, and the results are depicted in Fig. 10. Compared with 0.5wt% and 2wt%, the Pt loading of 1wt% shows better performance (lower50and90) for toluene oxidation. The low catalytic activity of 0.5 wt% Pt/ATO-P results from low density of active platinum nanoparticles anchoring on the surface of ATO-P support. For the Pt/ATO-P catalyst with Pt loading up to 2wt%, larger size of Pt nanopartices (~5 nm) can be obtained (Fig. S4). Larger Pt particles can not only decrease the dispersion of Pt species[38], but also lead to a weaker metal-support (Pt/ATO-P) interactions, thus resulting in the poor activity.

    Stability is critical for the catalysts on the practical application. 1wt% Pt/ATO-P exhibits excellent thermal stability for toluene oxidation over a 50-h period on stream at 180 ℃ without visible loss of activity, as shown in Fig. 9(b). The toluene conversion remains a high level of 95.4% at the end of reaction process and maintains near full selectivity to final products of CO2and H2O. The excellent stability of Pt/ATO-P catalyst is attributed to the unique geometric structure of crystalline Pt nanoparticles and amorphous mesoporous phosphated TiO2with prominent electronic interaction. For the used 1wt% Pt/ATO-P, TEM measurement and XPS analysis (Fig. S5 and Fig. S6) demonstrate no significant change on the morphology, average size of Pt nanoparticles, and the chemical oxidation state of active Pt species. These results suggest the robustness of Pt/ATO-P catalyst for toluene oxidation removal under a relatively mild the-rmal process.

    Given the superb thermocatalytic performance for 1wt% Pt/ATO-P catalyst toward toluene oxidation, we were curious to examine whether the engineered material would also catalyze the removal of a class of VOCs, especially the complete oxidation of benzene,-hexane, ethyl acetate, and mesitylene. As depicted in Fig. 11, the90values for the catalytic oxidation of benzene, ethyl acetate,-hexane, and mesitylene are 216, 331, 271, and 200 ℃, respectively. Notably, high tem-perature is requ-ired for ethyl acetate conversion at 90% due to its strong structural stability[39-40]. These results show a broad scope toward catalytic combustion invo-lving trouble-some organic compounds over Pt/ATO-P and indicate that the Pt/ATO-P catalysts can provide a new insight for the oxidation of VOCs.

    Fig. 10 Toluene conversion over Pt/ATO-P catalysts with different Pt loadings

    Fig. 11 Catalytic activity of Pt/ATO-P for the conversion of benzene (a), ethyl acetate (b), n-hexane (c), and mesitylene (d) with respect to reaction temperature

    3 Conclusions

    In summary, we successfully fabricated the amorphous mesoporous phosphated TiO2supported platinum catalysts for efficient removal of volatile organic compounds. The electronic modifications of supported Pt nanoparticles for the underlying amorphous ATO-P material and Pt loading for the whole catalyst were systematically investigated. The phosphorus dopant played an important role for stabilizing the inflated Ti?O?P frameworks as well as the electronic structure of Pt species. Compared with pristine TiO2, ATO-P with high specific surface area showed signi-ficant enhancement for Pt/ATO-P samples for catalytic overall oxidation of toluene under practical conditions. The performance of the engineered Pt/ATO-P for toluene combustion was superior to the reference Pt/TiO2and comparable with the state-of-the-art catalysts. Additionally, Pt/ATO-P catalyst exhibited excellent stability for toluene oxidation removal under a relatively mild thermal process and could be potentially applied in a broad scope of VOCs. The present work is expected to make a significant contribution on the new application of amorphous mesoporous phosphated material in VOCs removal.

    Supporting Materials

    Supporting Materials related to this article can be found at https://doi.org/10.15541/jim20190154.

    [1] XIE S H, LIU Y X, DENG J G,. Insights into the active sites of ordered mesoporous cobalt oxide catalysts for the total oxidation of-xylene.,2017, 352: 282–292.

    [2] GENUINO H C, DHARMARATHNA S, NJAGI E C,. Gas-phase total oxidation of benzene, toluene, ethylbenzene, and xylenes using shape-selective manganese oxide and copper manganese oxide catalysts., 2012, 116(22): 12066–12078.

    [3] SIHAIB Z, PULEO F, GARCIA-VARGAS J M,.Manganese oxide-based catalysts for toluene oxidation.,2017, 209(15): 689–700.

    [4] ROKICI?SKA A, DROZDEK M, DUDEK B,. Cobalt- containing BEA zeolite for catalytic combustion of toluene.,2017, 212: 59–67.

    [5] SANTOS V P, PEREIRA M F R, óRF?O J J M,. The role of lattice oxygen on the activity of manganese oxides towards the oxidation of volatile organic compounds.,2010, 99(1/2): 353–363.

    [6] ?ULIGOJ A, ?TANGAR U L, RISTI? A,. TiO2-SiO2films from organic-free colloidal TiO2anatase nanoparticles as photocatalyst for removal of volatile organic compounds from indoor air.,2016, 184: 119–131.

    [7] QIAN X F, YUE D T, TIAN Z Y,. Carbon quantum dots decorated Bi2WO6nanocomposite with enhanced photocatalytic oxidation activity for VOCs.,2016, 193: 16–21.

    [8] CHEN J, CHEN X, XU W J,. Homogeneous introduction of CeOinto MnO-based catalyst for oxidation of aromatic VOCs.,2018, 224: 825–835.

    [9] YANG H G, DENG J G, LIU Y X,. Preparation and catalytic performance of Ag, Au, Pd or Pt nanoparticles supported on 3DOM CeO2-Al2O3for toluene oxidation.,2016, 414: 9–18.

    [10] PENG R S, SUN X B, LI S J,. Shape effect of Pt/CeO2catalysts on the catalytic oxidation of toluene.,2016, 306: 1234–1246.

    [11] ALGHAMDI A O, JEDIDI A, AZIZ S G,. Theoretical insights into dehydrogenative chemisorption of alkylaromatics on Pt(100) and Ni(100)., 2018, 363: 197–203.

    [12] ZHANG Z X, JIANG Z, SHANGGUAN W F. Low-temperature catalysis for VOCs removal in technology and application: a state-of-the-art review.,2016, 264: 270–278.

    [13] XIE S H, LIU Y X, DENG J G,. Effect of transition metal doping on the catalytic performance of Au-Pd/3DOM Mn2O3for the oxidation of methane and-xylene.,2017, 206: 221–232.

    [14] SANTOS V P, CARABINEIRO S A C, TAVARES P B,. Oxidation of CO, ethanol and toluene over TiO2supported noble metal catalysts.,2010, 99(1/2): 198–205.

    [15] FU X R, LIU Y, YAO W Y,. One-step synthesis of bimetallic Pt-Pd/MCM-41 mesoporous materials with superior catalytic performance for toluene oxidation.,2016, 83: 22–26.

    [16] YIN G H, HUANG X Y, CHEN T Y,. Hydrogenated blue titania for efficient solar to chemical conversions: preparation, characterization, and reaction mechanism of CO2reduction.,2018, 8(2): 1009–1017.

    [17] WU D W, ZHANG Q L, LIN T,. Effect of Fe on the selective catalytic reduction of NO by NH3at low temperature over Mn/CeO2-TiO2catalyst.,2012, 27(5): 495–500.

    [18] YU W W, ZHANG Q H, SHI G Y,. Preparation of Pt-loaded TiO2nanotubes/nanocrystals composite photocatalysts and their photocatalytic properties.,2011, 26(7): 747–752.

    [19] COMOTTI M, LI W C, SPLIETHOFF B,. Support effect in high activity gold catalysts for CO oxidation.,2006, 128(3): 917–924.

    [20] LEE J S, PARK G S, LEE H I,. Ketjenblack carbon supported amorphous manganese oxides nanowires as highly efficient electrocatalyst for oxygen reduction reaction in alkaline solutions.,2011, 11(12): 5362–5366.

    [21] ZHENG Y L, WANG W Z, JIANG D,. Amorphous MnOmodified Co3O4for formaldehyde oxidation: improved low-temperature catalytic and photothermocatalytic activity.,2016, 284: 21–27.

    [22] GUO Y Y, ZHANG S, MU W T,. Methanol total oxidation as model reaction for the effects of different Pd content on Pd-Pt/CeO2-Al2O3-TiO2catalysts.,2017, 429: 18–26.

    [23] CLEARFIELD A, THAKUR D S. Zirconium and titanium phosphates as catalysts: a review.,1986, 26: 1–26.

    [24] YU J C, ZHANG L Z, ZHENG Z,. Synthesis and characterization of phosphated mesoporous titanium dioxide with high photocatalytic activity.,2003, 15(11): 2280–2286.

    [25] K?R?SI L, OSZKó A, GALBáCS G,. Structural properties and photocatalytic behaviour of phosphate-modified nanocrystalline titania films.,2007, 77(1/2): 175–183.

    [26] K?R?SI L, PAPP S, BERTóTI I,. Surface and bulk composition, structure, and photocatalytic activity of phosphate-modified TiO2.,2007, 19(19): 4811–4819.

    [27] MASLOVA M V, RUSANOVA D, NAYDENOV V,. Synthesis, characterization, and sorption properties of amorphous titanium phosphate and silica-modified titanium phosphates.,2008, 47(23): 11351–11360.

    [28] ZHU Y L, ZHOU W, SUNARSO J,. Phosphorus-doped perovskite oxide as highly efficient water oxidation electrocatalyst in alkaline solution.,2016, 26(32): 5862–5872.

    [29] HEO Y W, PARK S J, IP K,. Transport properties of phosphorus-doped ZnO thin films.,2003, 83(6): 1128–1130.

    [30] YIN G H, BI Q Y, ZHAO W,. Efficient conversion of CO2to methane photocatalyzed by conductive black titania.,2017, 9(23): 4389–4396.

    [31] PLUMEJEAU S, RIVALLIN M, BROSILLON S,. The reductive dehydration of cellulose by solid/gas reaction with TiCl4at low temperature: a cheap, simple, and green process for preparing anatase nanoplates and TiO2/C composites.,2016, 22(48): 17262–17268.

    [32] REN T Z, YUAN Z Y, AZIOUNE A,. Tailoring the porous hierarchy of titanium phosphates.,2006, 22(8): 3886–3894.

    [33] YOSHIDA H, YAZAWA Y, HATTORI T. Effects of support and additive on oxidation state and activity of Pt catalyst in propane combustion.,2003, 87(1-4): 19–28.

    [34] TIERNAN M J, FINLAYSON O E. Effects of ceria on the combustion activity and surface properties of Pt/Al2O3catalysts.,1998, 19(1): 23–25.

    [35] LYKHACH Y, FAISAL F, SKáLA T,. Interplay between the metal-support interaction and stability in Pt/Co3O4(111) model catalysts.,2018, 6: 23078–23086.

    [36] ZHANG C B, HE H, TANAKA KI. Catalytic performance and mechanism of a Pt/TiO2catalyst for the oxidation of formaldehyde at room temperature.,2006, 65: 37–43.

    [37] RAHMANI F, HAGHIGHI M, ESTIFAEE P. Synthesis and characterization of Pt/Al2O3-CeO2nanocatalyst used for toluene abatement from waste gas streams at low temperature: conventionalplasma-ultrasound hybrid synthesis methods.,2014, 185(1): 213–223.

    [38] CHEN C Y, CHEN F, ZHANG L,. Importance of platinum particle size for complete oxidation of toluene over Pt/ZSM-5 catalysts.,2015, 51: 5936–5938.

    [39] LI S M, HAO Q L, ZHAO R Z,. Highly efficient catalytic removal of ethyl acetate over Ce/Zr promoted copper/ZSM-5 catalysts.,2016, 285: 536–543.

    [40] CARABINEIRO S A C, CHEN X, MARTYNYUK O,. Gold supported on metal oxides for volatile organic compounds total oxidation.,2015, 244: 103–114.

    摻磷非晶氧化鈦負(fù)載鉑用于高效催化氧化揮發(fā)性有機(jī)化合物

    黃謝意1,2, 王鵬2,3, 尹國恒1, 張紹寧1, 趙偉1, 王東1, 畢慶員1, 黃富強(qiáng)1,3,4

    (1. 中國科學(xué)院 上海硅酸鹽研究所, 高性能陶瓷和超微結(jié)構(gòu)國家重點(diǎn)實(shí)驗(yàn)室, 上海 200050; 2. 中國科學(xué)院大學(xué), 北京 100049; 3. 上??萍即髮W(xué) 物理科學(xué)與技術(shù)學(xué)院, 上海 200050; 4. 北京大學(xué) 化學(xué)與分子工程學(xué)院, 稀土材料化學(xué)及應(yīng)用國家重點(diǎn)實(shí)驗(yàn)室, 北京 100871)

    高活性催化劑是揮發(fā)性有機(jī)化合物(VOCs)催化氧化消除的關(guān)鍵因素。本研究通過簡單的共沉淀法成功制備了具有高比表面積的非晶介孔磷摻雜氧化鈦負(fù)載鉑催化劑(Pt/ATO-P)。通過P摻雜, 既可獲得非晶介孔結(jié)構(gòu), 又可獲得高ATO-P比表面積(可達(dá)278.9 m2?g?1)。非晶介孔Pt/ATO-P催化劑顯示出優(yōu)異的VOCs催化氧化性能和良好的熱穩(wěn)定性。Pt/ATO-P樣品在空速為36000 mL?h?1?g?1、甲苯濃度為10000 mL?m?3的反應(yīng)條件下, 對甲苯催化氧化的50和90(實(shí)現(xiàn)50%和90%轉(zhuǎn)化率所需的溫度)分別為130 ℃和140 ℃, 明顯優(yōu)于無磷催化劑Pt/TiO2。這些發(fā)現(xiàn)可以為拓展非晶介孔磷化材料在環(huán)境凈化和能源轉(zhuǎn)化等領(lǐng)域的應(yīng)用提供重要參考。

    非晶介孔材料; 磷摻雜非晶氧化鈦; 鉑納米顆粒; 甲苯催化氧化; VOCs消除

    O782

    A

    2019-04-12;

    2019-05-24

    National Key Research and Development Program of China (2016YFB0901600); National Natural Science Foundation of China (21872166); Science & Technology Commission of Shanghai (16ZR1440400, 16JC1401700); The Key Research Program of Chinese Academy of Sciences (QYZDJ-SSW-JSC013 and KGZD-EW-T06)

    Huang Xieyi (1994–), male, Master candidate. E-mail: huangxieyi@student.sic.ac.cn

    黃謝意(1994–), 男, 碩士研究生. E-mail: huangxieyi@student.sic.ac.cn

    BI Qingyuan, associate professor. E-mail: biqingyuan@mail.sic.ac.cn;

    HUANG Fuqiang, professor. E-mail: huangfq@mail.sic.ac.cn

    畢慶元, 副研究員. E-mail: huangfq@mail.sic.ac.cn; 黃富強(qiáng), 研究員. E-mail: huangfq@mail.sic.ac.cn

    1000-324X(2020)04-0482-09

    10.15541/jim20190154

    猜你喜歡
    氧化鈦非晶介孔
    基于JAK/STAT信號通路研究納米氧化鈦致卵巢損傷的分子機(jī)制*
    保健文匯(2022年4期)2022-06-01 10:06:50
    功能介孔碳納米球的合成與應(yīng)用研究進(jìn)展
    氧化鈦對陶瓷結(jié)合劑金剛石磨具性能及結(jié)構(gòu)的影響
    新型介孔碳對DMF吸脫附性能的研究
    非晶Ni-P合金鍍層的制備及應(yīng)力腐蝕研究
    有序介孔材料HMS的合成改性及應(yīng)用新發(fā)展
    非晶硼磷玻璃包覆Li[Li0.2Co0.13Ni0.13Mn0.54]O2正極材料的研究
    介孔二氧化硅制備自修復(fù)的疏水棉織物
    塊體非晶合金及其應(yīng)用
    Fe73.5Cu1Nb3Si13.5B9非晶合金粉體的SPS燒結(jié)特性研究
    亚洲精品日韩在线中文字幕| 男女边吃奶边做爰视频| 身体一侧抽搐| 久久久久国产网址| 精品久久久久久成人av| 大香蕉97超碰在线| 国产成人福利小说| 免费观看a级毛片全部| 边亲边吃奶的免费视频| 精品国内亚洲2022精品成人| 热99re8久久精品国产| 女人十人毛片免费观看3o分钟| 日韩中字成人| 日本-黄色视频高清免费观看| 国产精品电影一区二区三区| 国产麻豆成人av免费视频| 青青草视频在线视频观看| 丰满人妻一区二区三区视频av| 亚洲精品aⅴ在线观看| 99久久精品一区二区三区| 久久精品国产亚洲网站| 国产精品精品国产色婷婷| 久久久久精品久久久久真实原创| 国产熟女欧美一区二区| 亚洲精华国产精华液的使用体验| 美女高潮的动态| 床上黄色一级片| 久久国产乱子免费精品| 免费av不卡在线播放| 国产激情偷乱视频一区二区| 91精品国产九色| 久久国内精品自在自线图片| 少妇裸体淫交视频免费看高清| 精华霜和精华液先用哪个| 国产高清不卡午夜福利| 天堂网av新在线| 国产亚洲一区二区精品| 亚洲欧美日韩卡通动漫| 18禁在线无遮挡免费观看视频| 嫩草影院精品99| 日韩欧美精品免费久久| 偷拍熟女少妇极品色| 中国国产av一级| 日日摸夜夜添夜夜爱| 91精品伊人久久大香线蕉| 免费黄色在线免费观看| 三级毛片av免费| 国产精品久久久久久久久免| 国产精品伦人一区二区| 国产真实乱freesex| 性插视频无遮挡在线免费观看| 久久午夜福利片| av女优亚洲男人天堂| 嘟嘟电影网在线观看| 少妇熟女欧美另类| 床上黄色一级片| 国产成人a∨麻豆精品| 亚洲欧美日韩卡通动漫| 亚洲国产最新在线播放| 国产精品熟女久久久久浪| 免费在线观看成人毛片| 丝袜美腿在线中文| 麻豆国产97在线/欧美| 99热网站在线观看| 亚洲精品,欧美精品| 免费观看在线日韩| 大香蕉久久网| 成人午夜精彩视频在线观看| 成人亚洲精品av一区二区| 亚洲成人久久爱视频| 亚洲综合精品二区| 91久久精品国产一区二区成人| 噜噜噜噜噜久久久久久91| 国产精品国产三级国产av玫瑰| 亚洲国产精品sss在线观看| 国产一级毛片七仙女欲春2| 成人高潮视频无遮挡免费网站| 免费一级毛片在线播放高清视频| 高清在线视频一区二区三区 | 视频中文字幕在线观看| 有码 亚洲区| 高清日韩中文字幕在线| 菩萨蛮人人尽说江南好唐韦庄 | 亚州av有码| 精品久久久久久电影网 | 国产人妻一区二区三区在| 精品久久久久久久末码| av视频在线观看入口| 97在线视频观看| 综合色av麻豆| 高清日韩中文字幕在线| 91av网一区二区| 神马国产精品三级电影在线观看| av福利片在线观看| 大香蕉久久网| 伦精品一区二区三区| 啦啦啦观看免费观看视频高清| 国产乱人偷精品视频| 久久久国产成人精品二区| 最近2019中文字幕mv第一页| 亚洲av免费高清在线观看| 亚洲国产精品成人综合色| 激情 狠狠 欧美| 日本猛色少妇xxxxx猛交久久| 国产精品,欧美在线| 国产精品,欧美在线| 久久久久精品久久久久真实原创| 亚洲成人精品中文字幕电影| 午夜福利高清视频| 日本黄色视频三级网站网址| 色网站视频免费| 免费av观看视频| 一级爰片在线观看| 乱码一卡2卡4卡精品| 欧美另类亚洲清纯唯美| 久久精品久久久久久久性| 国产黄色视频一区二区在线观看 | 国产极品天堂在线| 纵有疾风起免费观看全集完整版 | 亚洲av不卡在线观看| 一级黄片播放器| 久久久色成人| 亚洲欧美日韩高清专用| 国产精华一区二区三区| av卡一久久| 丝袜美腿在线中文| 欧美激情在线99| 视频中文字幕在线观看| 国产高清国产精品国产三级 | 99热网站在线观看| 午夜a级毛片| 亚洲国产精品sss在线观看| 亚洲精品乱码久久久久久按摩| 三级国产精品欧美在线观看| 永久免费av网站大全| 大话2 男鬼变身卡| 中文亚洲av片在线观看爽| av天堂中文字幕网| 亚洲经典国产精华液单| 精品熟女少妇av免费看| 成年版毛片免费区| 白带黄色成豆腐渣| 一级黄色大片毛片| 日韩在线高清观看一区二区三区| av专区在线播放| 成人午夜精彩视频在线观看| 18+在线观看网站| 18+在线观看网站| 亚洲国产日韩欧美精品在线观看| 亚洲欧美成人精品一区二区| 国产在线男女| 午夜视频国产福利| 亚洲成av人片在线播放无| 中文字幕av在线有码专区| 久久这里有精品视频免费| 欧美潮喷喷水| 国产精品不卡视频一区二区| 麻豆成人av视频| 亚洲国产精品合色在线| 久久久久久久久久久免费av| 岛国毛片在线播放| 夫妻性生交免费视频一级片| 高清午夜精品一区二区三区| 国产一级毛片七仙女欲春2| 国产免费一级a男人的天堂| 永久免费av网站大全| 亚洲精品乱码久久久久久按摩| 亚洲激情五月婷婷啪啪| 深夜a级毛片| 久久精品夜夜夜夜夜久久蜜豆| 亚洲欧美日韩无卡精品| 亚洲欧美精品专区久久| 亚洲国产精品sss在线观看| 色噜噜av男人的天堂激情| 久久久久精品久久久久真实原创| 国产高清视频在线观看网站| 久久人人爽人人爽人人片va| 一边亲一边摸免费视频| 国产精品爽爽va在线观看网站| 噜噜噜噜噜久久久久久91| 天美传媒精品一区二区| 亚洲四区av| 精品一区二区三区视频在线| 欧美xxxx性猛交bbbb| 国产单亲对白刺激| 99热这里只有精品一区| 午夜久久久久精精品| 欧美日本视频| 两性午夜刺激爽爽歪歪视频在线观看| 人妻制服诱惑在线中文字幕| 亚洲最大成人中文| 国内精品一区二区在线观看| 亚洲av二区三区四区| 一区二区三区高清视频在线| 天堂中文最新版在线下载 | 九九久久精品国产亚洲av麻豆| 日韩制服骚丝袜av| 国产国拍精品亚洲av在线观看| 久久久久久国产a免费观看| 中国国产av一级| 丝袜美腿在线中文| 禁无遮挡网站| 热99re8久久精品国产| 精品久久久久久久久久久久久| 又爽又黄a免费视频| 成人一区二区视频在线观看| 久久久久久久久中文| 两性午夜刺激爽爽歪歪视频在线观看| av天堂中文字幕网| 国产精品国产三级专区第一集| 亚洲国产精品sss在线观看| 日韩制服骚丝袜av| 国产成人福利小说| 在现免费观看毛片| 亚洲欧美日韩高清专用| av黄色大香蕉| 真实男女啪啪啪动态图| 久久久久久久亚洲中文字幕| 少妇的逼水好多| 国产精品乱码一区二三区的特点| 小说图片视频综合网站| 亚洲欧美精品专区久久| 色综合亚洲欧美另类图片| 一边亲一边摸免费视频| 日韩成人av中文字幕在线观看| 青春草国产在线视频| av线在线观看网站| 日韩视频在线欧美| 中文资源天堂在线| 国产精品乱码一区二三区的特点| 全区人妻精品视频| 两个人的视频大全免费| ponron亚洲| 国产一区二区在线观看日韩| 在线免费观看的www视频| 综合色av麻豆| 岛国在线免费视频观看| 亚洲综合精品二区| 久久精品夜色国产| 午夜福利成人在线免费观看| 啦啦啦韩国在线观看视频| 国产伦理片在线播放av一区| 黄色一级大片看看| 小说图片视频综合网站| 精品人妻偷拍中文字幕| 亚洲av成人av| 色播亚洲综合网| 如何舔出高潮| 久久久久久久国产电影| 久久精品国产鲁丝片午夜精品| 成人欧美大片| 岛国毛片在线播放| 国产精品一区二区性色av| av在线观看视频网站免费| 亚洲综合色惰| 国产男人的电影天堂91| 日日干狠狠操夜夜爽| 成人av在线播放网站| 高清毛片免费看| 国产激情偷乱视频一区二区| 免费av不卡在线播放| 2022亚洲国产成人精品| 久久这里只有精品中国| 精品久久久久久久久av| 精品久久久久久久末码| 99热6这里只有精品| 精品99又大又爽又粗少妇毛片| 成人综合一区亚洲| 日韩国内少妇激情av| 国产午夜福利久久久久久| 亚洲精品日韩av片在线观看| 高清av免费在线| 一级毛片久久久久久久久女| 亚洲婷婷狠狠爱综合网| 人妻少妇偷人精品九色| 欧美高清性xxxxhd video| 麻豆一二三区av精品| 老司机影院毛片| eeuss影院久久| 亚洲精品影视一区二区三区av| 日韩欧美国产在线观看| 在线天堂最新版资源| 亚洲欧洲日产国产| 国产一级毛片在线| 99视频精品全部免费 在线| av免费在线看不卡| 少妇人妻精品综合一区二区| 日日摸夜夜添夜夜添av毛片| 天天躁夜夜躁狠狠久久av| 少妇的逼好多水| 2021少妇久久久久久久久久久| 可以在线观看毛片的网站| 日本与韩国留学比较| 久久午夜福利片| 欧美极品一区二区三区四区| 大又大粗又爽又黄少妇毛片口| 亚洲成色77777| 亚洲欧美日韩无卡精品| 99九九线精品视频在线观看视频| 国产人妻一区二区三区在| 欧美97在线视频| 永久网站在线| 亚洲一级一片aⅴ在线观看| 麻豆精品久久久久久蜜桃| 国产老妇女一区| 91久久精品国产一区二区三区| 久久草成人影院| 国产精品1区2区在线观看.| 亚洲av.av天堂| 午夜精品在线福利| 啦啦啦韩国在线观看视频| 波多野结衣高清无吗| 一个人免费在线观看电影| 久久草成人影院| 国产黄片美女视频| 99热网站在线观看| 午夜爱爱视频在线播放| 日韩在线高清观看一区二区三区| 2021天堂中文幕一二区在线观| 国产黄片视频在线免费观看| 久久精品国产亚洲av天美| 亚洲电影在线观看av| 国产成人福利小说| 国产一级毛片在线| 国产精品一区二区在线观看99 | 人妻制服诱惑在线中文字幕| 九九久久精品国产亚洲av麻豆| 日本欧美国产在线视频| 看黄色毛片网站| 日日啪夜夜撸| 两个人视频免费观看高清| 国产一区有黄有色的免费视频 | 日韩欧美三级三区| 国产精品美女特级片免费视频播放器| 麻豆成人av视频| 免费播放大片免费观看视频在线观看 | 午夜日本视频在线| 综合色av麻豆| 韩国高清视频一区二区三区| 亚洲人成网站在线观看播放| 久久99蜜桃精品久久| 国产精品久久视频播放| 亚洲在线自拍视频| 三级国产精品欧美在线观看| 亚洲国产欧洲综合997久久,| 亚洲欧美一区二区三区国产| 18+在线观看网站| 国产午夜精品久久久久久一区二区三区| 久久99热这里只频精品6学生 | 亚洲av中文字字幕乱码综合| 亚洲精品自拍成人| 国产高清有码在线观看视频| 久久精品国产鲁丝片午夜精品| 熟女电影av网| 青青草视频在线视频观看| 精品久久久久久成人av| 国产午夜福利久久久久久| 欧美性感艳星| 真实男女啪啪啪动态图| 国产精品无大码| 久久久久网色| 国产伦在线观看视频一区| 国产精品久久久久久精品电影| 一级毛片我不卡| 亚洲在线观看片| 亚洲av中文av极速乱| 亚洲欧美日韩卡通动漫| 男女那种视频在线观看| 一区二区三区高清视频在线| 观看美女的网站| 欧美成人午夜免费资源| 边亲边吃奶的免费视频| 国产视频首页在线观看| 51国产日韩欧美| 国产午夜精品一二区理论片| 中文欧美无线码| 最后的刺客免费高清国语| 久久久久久久久中文| 国产不卡一卡二| 久99久视频精品免费| 欧美高清成人免费视频www| 少妇被粗大猛烈的视频| 精品欧美国产一区二区三| 亚洲欧美日韩东京热| 亚洲精品乱久久久久久| 久久久国产成人精品二区| 小说图片视频综合网站| 99九九线精品视频在线观看视频| 久热久热在线精品观看| 亚洲成色77777| 午夜亚洲福利在线播放| 久久这里有精品视频免费| 婷婷色麻豆天堂久久 | 午夜久久久久精精品| 人妻夜夜爽99麻豆av| a级毛片免费高清观看在线播放| 久久久国产成人精品二区| 国产白丝娇喘喷水9色精品| av免费在线看不卡| 精品无人区乱码1区二区| 国产精品一区二区在线观看99 | 白带黄色成豆腐渣| 日日撸夜夜添| 好男人在线观看高清免费视频| 中文资源天堂在线| 午夜a级毛片| 老司机影院成人| 一个人看视频在线观看www免费| 日韩欧美三级三区| 久久人人爽人人片av| 国语自产精品视频在线第100页| 最近最新中文字幕免费大全7| 久久精品久久久久久久性| 一级黄色大片毛片| 精品久久久久久久久av| 91精品国产九色| 日本黄大片高清| 国产亚洲最大av| 亚洲图色成人| 寂寞人妻少妇视频99o| av在线天堂中文字幕| 蜜桃久久精品国产亚洲av| 国内少妇人妻偷人精品xxx网站| 国产黄色小视频在线观看| 中文字幕人妻熟人妻熟丝袜美| 国产精品久久久久久久电影| 久久久久久伊人网av| 免费搜索国产男女视频| 小蜜桃在线观看免费完整版高清| 久久久久精品久久久久真实原创| 熟女人妻精品中文字幕| 两性午夜刺激爽爽歪歪视频在线观看| 日日啪夜夜撸| 性色avwww在线观看| 91狼人影院| 免费电影在线观看免费观看| 三级毛片av免费| 国产精品.久久久| 高清av免费在线| 成人亚洲精品av一区二区| 精品人妻偷拍中文字幕| 成人午夜高清在线视频| videos熟女内射| 2022亚洲国产成人精品| 岛国在线免费视频观看| 国产成人精品一,二区| 中文欧美无线码| 丰满少妇做爰视频| 亚洲精华国产精华液的使用体验| 亚洲一级一片aⅴ在线观看| 国产精品伦人一区二区| 蜜臀久久99精品久久宅男| 能在线免费看毛片的网站| 中文字幕av在线有码专区| 国产精品久久久久久精品电影| 99热6这里只有精品| 色综合色国产| 国产精品日韩av在线免费观看| 亚洲精品456在线播放app| 国产免费一级a男人的天堂| 两个人视频免费观看高清| 国产成人精品一,二区| www日本黄色视频网| 男人和女人高潮做爰伦理| 我要搜黄色片| 日韩视频在线欧美| 美女大奶头视频| 久久久久网色| 波野结衣二区三区在线| 色哟哟·www| 啦啦啦韩国在线观看视频| 七月丁香在线播放| 美女高潮的动态| 国产成人精品久久久久久| 一二三四中文在线观看免费高清| 国产伦精品一区二区三区四那| 亚洲欧洲国产日韩| 三级国产精品片| 国产精品一区二区性色av| 69av精品久久久久久| 一级毛片aaaaaa免费看小| 久久婷婷人人爽人人干人人爱| 久久精品国产亚洲网站| 国产一级毛片七仙女欲春2| 99国产精品一区二区蜜桃av| 青春草视频在线免费观看| 最新中文字幕久久久久| 麻豆精品久久久久久蜜桃| 国产av码专区亚洲av| 免费观看性生交大片5| 可以在线观看毛片的网站| 免费av毛片视频| 免费看日本二区| 天天躁夜夜躁狠狠久久av| 能在线免费看毛片的网站| 日本熟妇午夜| 日韩强制内射视频| 国产综合懂色| av国产免费在线观看| 精品无人区乱码1区二区| 人妻夜夜爽99麻豆av| 一区二区三区乱码不卡18| 欧美不卡视频在线免费观看| 国产高清国产精品国产三级 | 亚洲性久久影院| 激情 狠狠 欧美| 97超碰精品成人国产| 国产高清视频在线观看网站| 国产乱人偷精品视频| 久久国产乱子免费精品| 精品无人区乱码1区二区| 国产高潮美女av| 亚洲综合精品二区| 国产白丝娇喘喷水9色精品| 免费大片18禁| 少妇的逼水好多| 亚州av有码| 色尼玛亚洲综合影院| 美女大奶头视频| 久久精品国产亚洲网站| 日韩欧美 国产精品| 午夜福利视频1000在线观看| 岛国毛片在线播放| 深爱激情五月婷婷| 国产欧美日韩精品一区二区| 七月丁香在线播放| 99热这里只有精品一区| 国产真实伦视频高清在线观看| 亚洲国产精品成人久久小说| 高清午夜精品一区二区三区| 国产成人a∨麻豆精品| 日韩国内少妇激情av| 最近视频中文字幕2019在线8| 大又大粗又爽又黄少妇毛片口| 美女国产视频在线观看| 亚洲欧美精品综合久久99| 国产三级在线视频| 免费黄色在线免费观看| 男的添女的下面高潮视频| 2021少妇久久久久久久久久久| 亚洲成人av在线免费| 嫩草影院新地址| 国产伦在线观看视频一区| a级毛片免费高清观看在线播放| 成人综合一区亚洲| 亚州av有码| 高清在线视频一区二区三区 | 久久久精品94久久精品| 国产免费又黄又爽又色| 免费电影在线观看免费观看| 亚洲国产精品久久男人天堂| 97人妻精品一区二区三区麻豆| 少妇熟女欧美另类| 中文字幕av成人在线电影| 精品欧美国产一区二区三| 全区人妻精品视频| 最后的刺客免费高清国语| 人人妻人人澡人人爽人人夜夜 | 91av网一区二区| 成年免费大片在线观看| 午夜日本视频在线| 狂野欧美白嫩少妇大欣赏| 欧美精品一区二区大全| 精品欧美国产一区二区三| 亚洲第一区二区三区不卡| 欧美成人一区二区免费高清观看| 女人久久www免费人成看片 | 18+在线观看网站| 久久精品综合一区二区三区| 成人欧美大片| 精品久久久久久久久av| 日韩一区二区视频免费看| 国产国拍精品亚洲av在线观看| 久久人妻av系列| 99久久中文字幕三级久久日本| 尤物成人国产欧美一区二区三区| 国产精品av视频在线免费观看| 中文字幕免费在线视频6| 黄片wwwwww| 欧美另类亚洲清纯唯美| 黄片wwwwww| 欧美另类亚洲清纯唯美| 久久久久精品久久久久真实原创| 亚洲国产成人一精品久久久| av国产免费在线观看| 亚洲av不卡在线观看| 少妇被粗大猛烈的视频| 一卡2卡三卡四卡精品乱码亚洲| 少妇人妻一区二区三区视频| 又爽又黄无遮挡网站| 美女大奶头视频| 特大巨黑吊av在线直播| 国产不卡一卡二| 别揉我奶头 嗯啊视频| 精品久久久久久电影网 | 精品人妻偷拍中文字幕| 热99re8久久精品国产| 久久99精品国语久久久| 久久精品国产99精品国产亚洲性色| 中文欧美无线码| 91精品国产九色| 久久精品久久久久久噜噜老黄 | 91aial.com中文字幕在线观看| 啦啦啦啦在线视频资源| 成人三级黄色视频| 国产91av在线免费观看| 精品一区二区免费观看| 久久人妻av系列| 亚洲av福利一区| 成人一区二区视频在线观看| 亚洲国产欧美人成| 亚洲精华国产精华液的使用体验| 欧美性感艳星| 九草在线视频观看| 亚洲高清免费不卡视频|