• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    氮磷比對(duì)長(zhǎng)江中下游地區(qū)淺水湖泊群浮游植物類群的影響

    2015-11-25 03:59:42吳世凱謝平倪樂(lè)意張
    集成技術(shù) 2015年6期
    關(guān)鍵詞:中等水平長(zhǎng)江中下游地區(qū)淺水

    吳世凱謝 平倪樂(lè)意張 琳

    1(中國(guó)科學(xué)院深圳先進(jìn)技術(shù)研究院 深圳 518055)

    2(廣東省膜材料與膜分離重點(diǎn)實(shí)驗(yàn)室 廣州中國(guó)科學(xué)院先進(jìn)技術(shù)研究所 廣州 511458)

    3(東湖湖泊生態(tài)系統(tǒng)試驗(yàn)站 淡水生態(tài)與生物技術(shù)國(guó)家重點(diǎn)實(shí)驗(yàn)室 中國(guó)科學(xué)院水生生物研究所 武漢 430072)

    氮磷比對(duì)長(zhǎng)江中下游地區(qū)淺水湖泊群浮游植物類群的影響

    吳世凱1,2謝 平3倪樂(lè)意3張 琳1,2

    1(中國(guó)科學(xué)院深圳先進(jìn)技術(shù)研究院 深圳 518055)

    2(廣東省膜材料與膜分離重點(diǎn)實(shí)驗(yàn)室 廣州中國(guó)科學(xué)院先進(jìn)技術(shù)研究所 廣州 511458)

    3(東湖湖泊生態(tài)系統(tǒng)試驗(yàn)站 淡水生態(tài)與生物技術(shù)國(guó)家重點(diǎn)實(shí)驗(yàn)室 中國(guó)科學(xué)院水生生物研究所 武漢 430072)

    2003年夏和 2004年夏對(duì)中國(guó)長(zhǎng)江中下游地區(qū)的 30 個(gè)淺水湖泊的浮游植物類群進(jìn)行調(diào)查。為了研究不同氮磷比(TN/TP)對(duì)浮游植物組成的影響,將浮游植物的六個(gè)門,分別在 TN/TP>30、12<TN/TP<30、TN/TP<12 三個(gè)區(qū)間隨總磷的變化規(guī)律進(jìn)行研究。當(dāng) TN/TP 從高水平(>30)降到中等水平(12~30)時(shí),除藍(lán)藻門外的其他五個(gè)浮游植物門的斜率均隨總磷的升高而增加。但是當(dāng) TN/TP從中等水平(12~30)降到低水平(<12)時(shí),除綠藻和隱藻門外,其他浮游植物門的斜率均隨總磷的升高呈下降趨勢(shì)。當(dāng) TN/TP 從高水平(>30)降到降至低水平(<12)時(shí),藍(lán)藻門的斜率不斷降低,說(shuō)明藍(lán)藻在較高 TN/TP 有更好的生長(zhǎng)潛力。同樣發(fā)現(xiàn),綠藻和隱藻門則隨 TN/TP 的降低有更好的生長(zhǎng)潛力。當(dāng) TN/TP 在高水平(>30)和低水平(<12)時(shí),硅藻、甲藻和裸藻門的斜率均發(fā)生下降,說(shuō)明這三個(gè)門的藻類在 TN/TP 為中等水平(12~30)的環(huán)境中有更好的生長(zhǎng)潛力。

    氮磷比;浮游植物;淺水湖泊;類群;長(zhǎng)江

    1 Introduction

    Transitions between nitrogen and phosphorus limitation for phytoplankton growth are common in lakes[1,2]noted that the chlorophyll in Japanese lakes was a logarithmic function of both total phosphorus(TP) and total nitrogen (TN), and concluded that over the range of 10TN/TP17, chlorophyll was very nearly balanced with respect to both TP and TN but that chlorophyll was dependent only on TN when TN/TP ratio was below 10, and only on TP when TN/TP ratio was above 17 (>17). Dillon and Rigler[3]dealt with the problem of nitrogen limitation by restricting their analysis to lakes where TN/TP ratios were above 12. Thus, variability of the TN/TP ratios may provide an explanation for the variability in phosphorus-chlorophyll relationships.

    Numerous corresponding studies have shown the TN/TP ratios were related with structure of phytoplankton community. Smith[4]found that cyanobacteria dominated when the epilimnetic TN/TP ratios had values less than 29:1 and when TN/TP ratios had values greater than 29:1, noncyanobacteria became the dominated species. Bulgakow and Levich[5]reported that high TN/TP ratio (20-50) was benefit for the growth of Chlorococcales, whereas Cyanophyta dominated in the community when TN/TP ratios decreased to 5-10. Yang et al.[6]proved that Cyanophyta subjoined with the increase of nitrogen and phosphorus when TN/TP ratios had values greater than 28:1 and Euglenophyta dominated in the community with higher content of nitrogen and phosphorus.

    Several studies have described the biomass of cyanobacteria and other groups increased with the increase of total phosphorus in north temperate[7-10]and subtropical lakes[11]. And some other studies have measured the changes of the average proportions of some algal groups with TP[12-14]. Furthermore,the balance of TN, TP and SRSi-ratios was used to determine whether the phytoplankton communities are influenced by nutrient stoichiometry[15].

    However, there are limited information about the quantitative comparisons of the changes of phytoplankton taxonomic groups affected by TP in different TN/TP ratios[16], especially in subtropical shallow lakes.

    The purpose of this paper is to investigate six predominance phytoplankton taxonomic groups of 30 shallow Chinese lakes changed with different TN/TP ratios. So, the data of the study were divided into three groups according to three TN/TP ratios intervals: >30, 12-30 and <12.

    2 Materials and Methods

    2.1 Study area

    The Yangtze River is the biggest river in China and the third biggest river in the world. Thirty shallow lakes (28.5°N-32.5°N, 113.7°E-119.2°E) included in this study ranged in size from about 1 to 3 914 km2in the middle and lower reaches of the Yangtze River area (Fig. 1). The climate is generally subtropical monsoon, and the climate is divided into dry season(November to April) and rainy season (May to October) commonly.

    All of the 30 shallow lakes are located in five provinces (Hubei, Hunan, Jiangxi, Anhui and Jiangsu) and most of these lakes are eutrophic or hypereutrophic[17]and manipulated (e.g. fertilized,dredged, acidifi ed, stocked, etc.).

    2.2 Sample collection and analysis

    Fig. 1 Geographic location of the lakes surveyed

    Considering environmental heterogeneity and surface area of the lakes, sampling sites were set from 2 to 22 in each lake. The positions were directed by a GPS system. These lakes were sampled from July to September in 2003 and 2004. Water samples in these lakes were collected each site with tygon tubing fitted with a one-way valve. Samples collected from a combination of surface, middle and bottom layers. Water samples collected were analyzed for TN, TP and phytoplankton biomass.Total nitrogen was determined by alkaline potassium persulfate digestion[18]with absorbance measured at 220 nm[19]. TP was analyzed by colorimetric methods after potassium persulfate digestion[20,21]. The water was filtered through a membrane filter(?=0.45 μm) for dissolved inorganic nitrogen and phosphorus, ammonium ion (NH4-N) by the Nessler method[22], nitrite (NO2-N) by the a-naphthylamine method[23], nitrate (NO3-N) by the UV spectro photometric method[23], and orthophosphate (PO4-P)were determined by the molybdenum blue reaction described by Koroleff[24].

    Phytoplankton were preserved in Lugol's solution from the mixed water samples. Phytoplankton were identified based on descriptions of Prescott[25]and enumerated with a microscope equipped with a calibrated micrometer[26].

    2.3 Statistics

    Data of all sites were used to analysis. STATISTICA for Windows statistical software (version 6.0) was used for all analyses. To characterize the effects of the six taxonomic groups by TP in different TN/ TP ratios, polynomial curve was used. In order to stabilize the variance for correlation and regression analysis, all the variables were log-transformed.

    3 Results

    The mean nutrient values were high in these lakes(Table 1). Linear correlation analyses show that over the entire TP range, the summer biomass of each phytoplankton taxonomic group and total phytoplankton biomass were significantly and positively related to TP. However, through the polynomial regression analysis, six mainly taxonomic groups increased differently with TP in different TN/TP ratios (Fig. 2 and 3). There are three growth fashions: exponential growth, logarithmic growth and linear growth.

    Table 1 Nutrient characteristics for the data sets of the study lakes

    Table 2 Linear correlation between phytoplankton biomass and TP in different TN/TP

    Fig. 2 Ploynolmial regression analysis in six mainly taxonomic group summer biomass with total phosphorus (TP)

    Cyanophyta showed lower biomass but distinctly sharp exponential growth with TP when TN/TP were above 30 (Table 2, Fig. 2). The exponential growth of Cyanophyta biomass changed more evenly with TP in the mediate TN/TP (12-30) (Fig. 2 and 3). When TN/TP ratio was below 12, the increase of Cyanophyta changed to a logarithmic growth fashion, although the change was not significant in slope (Fig. 2). Linear correlation shows similar tendency about the change of Cyanophyta with TP. The slope of cyanobacterial biomass decreases from 1.604 (TN/TP>30) to 0.971 (12<TN/TP<30) and further to 0.461 (TN/TP<12).

    Fig. 3 Contribution(%) of phytoplankton taxonomic groups to total summer biomass

    Bacillariophyta showed more interestingchange with TN/TP ratios: when TN/TP>30,Bacillariophyta showed a quick exponential growth with TP, but when TN/TP ratios were between 12-30,the increase of Bacillariophyta biomass were faster;however, when TN/TP<12, Bacillariophyta showed a slower logarithmic growth with TP. In contrast, the linear correlation showed a similar tendency with TP. The slope of Bacillariophyta biomass increased from 0.758 (TN/TP>30) to 1.490 (12<TN/TP<30) and then decreases to 1.215 (TN/TP<12).

    However, in linear correlation mode, Chlorophyta showed a steady increase with TP from high TN/ TP ratio (>30) to low TN/TP ratio (<12), and the biomass of Chlorophyta showed exponential growth when TN/TP ratio was above 12, and linear growth with TP when TN/TP ratio was less than 12.

    As to linear correlation model, Pyrrophyta and Euglenophyta showed similar change with diatom, Cryptophyta showed similar change with Chlorophyta. However, from the polynomial curve,the three groups increased more quickly in mediate TN/TP ratios (12-30) than in high TN/TP ratios(>30). When TN/TP ratios were less than 12, these three groups all showed exponential growth with TP.

    Under different TN/TP ratios, the changes of the relative proportions about phytoplankton taxonomic groups show how summer phytoplankton community composition was relative to TP (Table 2, Fig. 3). Some groups maintained a fairly constant representation in the community. Among these,Bacillariophyta accounted for a consistently large proportion (30%-40%) of summer phytoplankton biomass from TN/TP ratios above 30 to TN/ TP ratios below 12. Crytophyta and Pyrrophyta showed constant fractions of the total biomass with increasing TP in the three TN/TP intervals, although the fraction was much smaller (<10%).

    On the other hand, the relative proportion of cyanobacteria increased at first and dominated when TN/TP ratios were in mediate (12-30) and low (<12)levels with TP, but tended to decrease in high TP concentrations. Chlorophyta maintained a constant representation in the community when TN/TP ratios were above 12, but when TN/TP ratios were below 12, Chlorophyta tended to dominate in phytoplankon groups. Euglenophyta decreased its proportion from high TN/TP ratios (>30) to mediate TN/TP level(12-30) and showed only a smaller fraction (<10%)when TN/TP was high (>30).

    Strongly significant relationships existed between TP and PO4, and between TN and NH4in these lakes(Fig. 4).

    Fig.4 Correlations between TP and PO4-P, TN and NH4-N. The circle area shows the low values of PO4-P and NH4-N

    4 Discussion

    The results of this study, as well as Downing and Mccauley[27], suggest that the sites with lower TN/ TP ratios often have higher TP concentration. Enrichment-related changes in the taxonomic composition of summer phytoplankton communities are widely documented[9,28-31]. However, the present study shows that the biomass of taxonomic groups changed in summer with different TN/TP ratios:when TN/TP ratios were high (>30), Cyanophyta,Bacillariophyta and Cholophyta showed positive regression with TP(Cyanophyta exhibited the most rapid increase), but Crytophyta, Pyrrophyta and Euglenophyta showed little TP-related change; in contrast, when TN/TP ratios were in mediate level(12-30), all taxonomic groups increased sharply with TP except Crytophyta; and when TN/TP ratios were below 12, Cyanophyta showed little TP-related changes, but others groups increased with TP,especially for Crytophyta (r=0.74, P<0.001).

    In the present study, the proportion of Cyanophyta showed different change with other groups in the three TN/TP ratios intervals. Species of this taxa are frequently responsible for noxious bloom in eutrophic lakes but are also an important component of phytoplankton in summer[4,5,32]. The TN/TP theory which suggests that cyanobacteria dominate in low TN/TP lakes, has been widely used to explain why cyanobacteria dominate in lakes. Also, Bulgakov and Levich[5]reported that high TN/TP ratios (20-50) favor the development of chlorococcales, while a reduction of the ratios to 5-10 frequently leads to a community dominated by Cyanophyta. Our results show that, in the mediate TN/TP ratios (12-30), cyanobacteria dominates in the phytoplankton groups, but as TN/TP ratios were below 12,proportion and increasing rate of cyanobacteria had a decrease trend. Similar results can be found in recent research by Liu, that found when N/P= 3.84, Dactylococcopsis sp. showed lowest growth rate than others higher N/P[33]. Therefore, our results may suggest that cyanobacteria tend to be restricted by TP as TN/TP ratios are above 30 and by nitrogen as TN/TP ratios are below 12. Although it is commonly accepted that cyanobacteria are abundant in hypereutrophic lakes, cyanobacteria are poor competitors in nutrient replete system, because of less light in hypereutrophic lakes and competition with bacteria for nutrition[34,35].

    As with cyanbacteria, nutrition (especially P and Si)[36]may select for the predominant diatom morphology. Diatoms generally predominate summer phytoplankton communities at intermediate TP levels[9], and efficient nutrient uptake may favor pinnate diatoms in oligotrophic environments[37]. The experiment results show that Bacillariophyta dominate as TN/TP ratios are above 30, which also indicates that Bacillariophyta tends to dominate in lower TP values.

    Chlorophyta, on the other hand, is a very diverse group[38], with a broad range of morphotypes,including both edible and inedible forms for herbivorous zooplankton. Nevertheless, this group rarely dominates in phytoplankton communities of temperate lakes, except at nutrient extremes[38],and the results also show that in low TN/TP ratio(<12), Chlorophyta increases quickly with TP, and dominates when TP>1.0 mg/L.

    Because actual limitation of phytoplankton growth will be determined by the concentrations of available dissolved inorganic nitrogen and phosphorus, theTN/TP ratios may be very important when the dissolved inorganic forms falls below limiting level. Although, in the present study, many values of NH4and PO4concentrations are very low in summer,probably due to active assimilation by phytoplankton and water bacteria in this season, the significant correlations between TN and NH4, and between TP and PO4show that the TN/TP ratio can reflect the dissolved inorganic nutrient limitation in a sense.

    In our study, Cryptophyta were abundant in oligotrophic and eutrophic waters, which in agreement with the observations of Ilmavirta[39]. Cryptophyta were found in different types of waters,with a tendency for small-sized cells to occur in less productive waters[36,40]. The result shows that Cryptophyta increases quickly as the TN/TP ratios decrease from above 30 to below 30, indicating that Cryptophyta is favoured by low TN/TP ratio(especially <12) and suggesting Cryptophyta prefers to live in high nutrition level if it don't be restricted by nitrogen and light intensity.

    Though Euglenophyta are almost entirely restricted to eutrophic lakes[41-43], our result shows that Dinophycease and Euglenophyceae increase quickly in the mediate TN/TP ratios (12-30),indicating that these taxa prefer to the middle TN/TP ratios.

    It is beyond our scope to examine the many factors that affect individual taxonomic group dynamics. A number of these factors, however, which influence phytoplankton growth and loss rate (e.g. light,nutrition uptake, division rates, motility, sinking,and grazing losses), interact with both taxon size and morphology[44].

    The ratios of TN/TP are one of the most commonly used methods to assess phytoplankton limitation in aquatic ecosystems[45]. Our study firstly applies this method in evaluating the phytoplankton taxonomic composition in different nutrient level,and the data suggest that the water column TN/ TP ratio can be an effective tool for assessing the structure of phytoplankton taxonomic composition.

    [1] Rhee GY. Effect of N:P atomic ratios and nitrate limitation on algal growth, cell composition, and nitrate uptake [J]. Limnology and Oceanography,1978, 23(1): 10-25.

    [2] Sakamoto M. Primary production by phytoplankton community in some Japanese lakes and its dependence on lake depth [J]. Archiv für Hydrobiologie, 1966, 62: 1-28.

    [3] Dillon PJ, Rigler FH. The chlorophyll-phosphorous relationship in lakes [J]. Limnology and Oceanography, 1974, 19: 767-773.

    [4] Smith VH. Low nitrogen to phosphorus ratios favor dominance by blue-green algae in lake phytoplankton [J]. Science, 1983, 221(4611): 669-671.

    [5] Bulgakov NG, Levich AP. The nitrogen: phosphorus ratio as a factor regulating phytoplankton community structure: nutrient ratios [J]. Archiv für Hydrobiologie, 1999, 146(1): 3-22.

    [6] Yang J, Yu XQ, Liu LM, et al. Algae community and trophic state of subtropical reservoirs in southeast Fujian, China [J]. Environmental Science and Pollution Research, 2012, 19(5): 1432-1442.

    [7] Smith VH. Light and nutrient effects on the relative biomass of blue-green algae in lake phytoplankton[J]. Canadian Journal of Fisheries and Aquatic Sciences, 1986, 43(1): 148-153.

    [8] McQueen DJ, Lean DRS. Influence of water temperature and nitrogen to phosphorus ratios on the dominanceof blue-green algae in Lake St.George, Ontario [J]. Canadian Journal of Fisheries and Aquatic Sciences, 1987, 44(3): 598-604.

    [9] Watson SB, McCauley E, Downing JA. Patterns in phytoplankton taxonomic composition across temperate lakes of differing nutrient status [J]. Limnology and Oceanography, 1997, 42(3): 487-495.

    [10] Eggert A, Schneider B. A nitrogen source in spring in the surface mixed-layer of the Baltic Sea:Evidence from total nitrogen and total phosphorus data [J]. Journal of Marine Systems, 2015, 148:39-47.

    [11] Canfield Jr DE, Philips E, Duarte CM. Factors influencing the abundance of blue-green algae in Florida lakes [J]. Canadian Journal of Fisheries and Aquatic Sciences, 1989, 46(7): 1232-1237.

    [12] Smith VH. Phytoplankton responses to eutrophication in inland waters [J]. Introduction to Applied Ecology, 1990: 231-249.

    [13] Duarte CM, Agusti S, Canjield Jr DE. Patterns in phytoplankton community structure in Florida lakes[J]. Limnology and Oceanography, 1992, 37(1):155-161.

    [14] Chow-Frazer P, Trew DO, Findlay D, et al. A test of hypotheses to explain the sigmoidal relationship between total phosphorus and chlorophyll a concentrations in Canadian lakes [J]. Canadian Journal of Fisheries and Aquatic Sciences, 1994,51(9): 2052-2065.

    [15] Teubner K, Dokulil MT. Ecological stoichiometry of TN: TP: SRSi in freshwaters: nutrient ratios and seasonal shifts in phytoplankton assemblages[J]. Archiv für Hydrobiologie, 2002, 154(4):625-646.

    [16] Rojo C. Differential attributes of phytoplankton across the trophic gradient: a conceptual landscape with gaps [J]. Hydrobiologia, 1998, 369: 1-9.

    [17] Wu SK, Xie P, Wang SB, et al. Changes in the patterns of inorganic nitrogen and TN/TP ratio and the associated mechanism of biological regulation in the shallow lakes of the middle and lower reaches of the Yangtze River [J]. Science in China Series D,2006, 49(1): 126-134.

    [18] Steudler PA, Corwin N. Determination of total nitrogen in aqueous samples using persulfate digestion [J]. Limnology and Oceanography, 1977,22(4): 760-764.

    [19] Rand MC, Greenberg AE, Taras MJ. Standard Methods for Examination of Water and Wastewater[M] American: American Public Health Association, 1985.

    [20] Menzel DW, Corwin N. The measurement of total phosphorus in seawater based on the liberation of organically bound fractions by persulfate oxidation[J]. Limnology and Oceanography, 1965, 10(2):280-282.

    [21] Prepas EE, Rigler FH. Improvements in quantifying the phosphorus concentration in lake water[J]. Canadian Journal of Fisheries and Aquatic Sciences, 1982, 39(6):822-829.

    [22] Ebina J, Tsutsui T, Shirai T. Simulaneous determination of total nitrogen and total phosphorus in water using peroxodisulfate oxidation [J]. Water Research, 1983, 17(12): 1721-1726.

    [23] Eaton AD, Clesceri LS, Greenberg AE. Standard Methods for the Examination of Water and Wastewater [M].Washington: American Public Health Association, 1995.

    [24] Gresshoff K, Ehrhardt M, Kremling K. Methods in Seawater Analysis [M]. Germany: Verlag Chemie,1976.

    [25] Prescott GW. How to Know the Freshwater Phytoplankton [M]. Cambridge: Cambridge University Press, 1978.

    [26] Kotak BG, Lam AKY, Prepas EE, et al. Variability of the hepatotoxin microcystin-LR in hypereutrophic drinking water lakes [J]. Journal of Phycology, 1995, 31: 248-263.

    [27] Downing JA, Mccauley E. The nitrogen:phosphorus relationship in lakes [J]. Limnology and Oceanography, 1992, 37(5): 936-945.

    [28] Reynolds CS. The Ecology of Freshwater Phytoplankton [M]. Cambridge: Cambridge Unversity Press, 1984.

    [29] Reynolds CS. What factors influence the species composition of phytoplankton in lakes of different status [J]. Hydrobiologia, 1998, 369: 11-26.

    [30] Reynolds CS, Petersen AC. The distribution ofplanktonic Cyanobacteria in Irish lakes in relation to their trophic states [M] // The Trophic Spectrum Revisited. Springer Netherlands, 2000: 91-99.

    [31] Izaguirre I, Vinocur A, Mataloni P. Phytoplankton communities in relation to trophic status in lakes from Hope Bay (Antarctic Peninsula) [J]. Hydrobiologia, 1988, 369: 73-87.

    [32] Reynolds CS. Non-determinism to probability, or N: P in the community ecology of phytoplankton:Nutrient ratios [J]. Archiv für Hydrobiologie, 1999,146(1): 23-35.

    [33] Liu L, Zhou XY, Zhao LJ, et al. Effect of nitrogen and phosphorus ratios on the growth of cyanobacteria and chlorophyta [J]. Journal of Shanghai Ocean University, 2014, 23(4): 574-581.

    [34] Blomqvist P, Petterson A, Hyenstrand P. Ammonium-nitrogen: A key regulatory factor causing dominance of non-nitrogen-fixing cyanobacteria in aquatic systems [J]. Archiv für Hydrobiologie, 1994, 132(2): 141-164.

    [35] Jensen JP, Jeppesen E, Olrik K. Impact of nutrients and physical factors on the shift from cyanobacterial to chlorophyte dominance in shallow Danish lakes[J]. Canadian Journal of Fisheries and Aquatic Sciences, 1994, 51(8): 1692-1699.

    [36] Willén E. Planktonic diatoms-an ecological review[J]. Algological Studies, 1991, 62: 69-106.

    [37] Sterner RW. Resource competition and the autecology of pennate diatoms [J]. Internationale Vereinigung für Theoretische und Angewandte Limnologie, 1990, 24(1): 518-523.

    [38] Happey-Wood CM. Ecology of freshwater planktonic green algae [J]. Growth and Reproduc-Tive Strategies of Freshwater Phytoplankton, 1988:175-226.

    [39] Ilmavirta V. The role of flagellated phytoplankton in chains of small brown-water lakes in Southern Finland [C] // Fennici Botanical Publishing Board,1983: 187-195.

    [40] Brettum P.Algae as indicators of water quality [J]. Phytoplankton. Norsk instiut for vannforskning,1989: 1-111.

    [41] Hutchinson GE. A Treatise on Limnology. Volume II. Introduction to Lake Biology and the Limnoplankton [M]. New York: John Wiley & Sons, 1967.

    [42] Tikkanen T, Willen T. Vaxtplanktonflora [Z]. Eskilstuna: Naturv?rdsverket, 1992.

    [43] Jiang YJ, He W, Liu WX, et al. The seasonal and spatial variations of phytoplankton community and their correlation with environmental factors in a large eutrophic Chinese lake (Lake Chaohu) [J]. Ecological Indicators, 2014, 40: 58-67.

    [44] Hecky RE, Kilham P. Nutrient limitation of phytoplankton in freshwater and marine environments: A review of recent evidence on the effects of enrichment [J]. Limnology and Oceanography, 1988, 33(4): 796-822.

    [45] Dzialowski AR, Wang SH, Lim NC, et al. Nutrient limitation of phytoplankton growth in central plains reservoirs, USA [J]. Journal of Plankton Research,2005, 27(6): 587-595.

    Patterns of Phytoplankton Taxonomic Composition Affected by Different Nitrogen Phosphorus Ratios in Shallow Lakes of the Yangtze River Area

    WU Shikai1,2XIE Ping3NI Leyi3ZHANG Lin1,2

    1( Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China )
    2( Guangdong Key Laboratory of Membrane Materials and Membrane Separation, Guangzhou Institute of Advanced Technology, Chinese Academy of Sciences, Guangzhou 511458, China )
    3( Donghu Experimental Station of Lake Ecosystems, The State Key Laboratory for Freshwater Ecology and Biotechnology of China,Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China )

    The phytoplankton groups were investigated in 30 shallow Chinese lakes in the middle and lowerreaches of the Yangtze River area in the summer of 2003 and 2004. To explore the effects of different nitrogen phosphorus ratios (TN/TP ratios) on the phytoplankton taxonomic composition of these study sites, six main taxonomic groups were studied with three TN/TP ratios intervals: TN/TP>30, 12<TN/TP<30 and TN/ TP<12. The biomass curves of these taxonomic groups showed corresponding increases or decreases with different TN/TP ratios. When TN/TP ratios declined from high (>30) to medium (12-30), the slopes of the total biomass curve increased, as did the relative abundances of all groups except Cyanophyta. But when the TN/TP declined from medium (12-30) to low (<12) levels, the slopes of most groups decreased except Chlorophyta and Cryptophyta. The amount of Cyanophyta increased with TP when TN/TP ratios declined from above 30 to below 12, suggesting that cyanobacteria adapted to higher TN/TP ratios. However, Chlorophyta and Cryptophyta tended to be restricted by phosphorus when TN/TP ratios declined from above 30 to below 12, and these groups adapted to lower TN/TP ratios. The biomass of Bacillariophyta, Pyrrophyta and Euglenophyta tended decreased when TN/TP ratios were above 30 and below 12, suggesting that medium TN/ TP ratios (12-30) favoured these groups.

    nitrogen phosphorus ratio, phytoplankton, shallow lakes, taxonomic groups, the Yangtze River

    X 524

    A

    Received: 2015-08-28 Revised: 2015-10-08

    Foundation: Shenzhen Science and Technology Innovation Committee Funds(Shenfagai[2014]1857);Guangdong Provincial Department of Science and Technology Funds(2013B091300015)

    Author: Wu Shikai(corresponding author), Senior Engineering. His research interests include ecological restoration and the application of algae resources,E-mail: sk.wu@giat.ac.cn; Xie Ping, Research Professor. His research interests include freshwater ecosystems and ecotoxicology of microcystins; Ni Leyi, Research Professor. Her research interests are aquatic plants and ecology; Zhang Lin, Assistant Engineer. Her research interest is water ecological restoration.

    猜你喜歡
    中等水平長(zhǎng)江中下游地區(qū)淺水
    新型淺水浮托導(dǎo)管架的應(yīng)用介紹
    云南化工(2021年10期)2021-12-21 07:33:40
    2017年長(zhǎng)江中下游地區(qū)一次持續(xù)性異常降水過(guò)程分析
    “1萬(wàn)小時(shí)定律”不靠譜?
    長(zhǎng)江中下游地區(qū)梅雨期異常年降水及大氣熱源分布特征
    青藏高原春季土壤濕度對(duì)長(zhǎng)江中下游地區(qū)初夏短期氣候影響的數(shù)值模擬
    帶阻尼的隨機(jī)淺水波方程的隨機(jī)吸引子
    意神吐槽
    意林繪閱讀(2016年5期)2016-06-13 09:52:52
    論青藏高原溫度對(duì)長(zhǎng)江中下游地區(qū)降水的影響
    (2+1)維廣義淺水波方程的Backlund變換和新精確解的構(gòu)建
    找不同
    久久热精品热| 丰满人妻一区二区三区视频av| 狂野欧美激情性xxxx在线观看| 一级毛片我不卡| 欧美丝袜亚洲另类| 搡老熟女国产l中国老女人| 精品人妻偷拍中文字幕| 亚洲无线在线观看| 国产人妻一区二区三区在| 观看免费一级毛片| 欧美区成人在线视频| 日韩精品有码人妻一区| 亚洲五月天丁香| 麻豆乱淫一区二区| 国产精品不卡视频一区二区| 人人妻,人人澡人人爽秒播| av免费在线看不卡| 露出奶头的视频| а√天堂www在线а√下载| av卡一久久| 国产人妻一区二区三区在| 国产综合懂色| 欧美日韩综合久久久久久| 少妇被粗大猛烈的视频| 99久久无色码亚洲精品果冻| 内地一区二区视频在线| 黄色日韩在线| 日韩欧美一区二区三区在线观看| 毛片女人毛片| 一级毛片aaaaaa免费看小| 欧美三级亚洲精品| 免费高清视频大片| 久久久国产成人免费| 国产在线精品亚洲第一网站| 12—13女人毛片做爰片一| 菩萨蛮人人尽说江南好唐韦庄 | 夜夜看夜夜爽夜夜摸| 日韩制服骚丝袜av| 久久国内精品自在自线图片| 免费人成在线观看视频色| 国产极品精品免费视频能看的| 久久精品国产清高在天天线| 久久午夜亚洲精品久久| 国产欧美日韩精品一区二区| 日日啪夜夜撸| а√天堂www在线а√下载| 国产单亲对白刺激| 三级经典国产精品| 99久久中文字幕三级久久日本| 亚洲婷婷狠狠爱综合网| 丝袜喷水一区| 午夜福利高清视频| 欧美一区二区国产精品久久精品| 能在线免费观看的黄片| 国产精品野战在线观看| 国产三级在线视频| 欧美zozozo另类| 精品午夜福利视频在线观看一区| 婷婷精品国产亚洲av| 久久亚洲精品不卡| 国产成人影院久久av| 中文字幕人妻熟人妻熟丝袜美| 婷婷精品国产亚洲av| 日韩制服骚丝袜av| 国产欧美日韩一区二区精品| 久久久久久久久中文| 神马国产精品三级电影在线观看| 久久久精品94久久精品| 国产视频内射| 看免费成人av毛片| 男女下面进入的视频免费午夜| 99国产精品一区二区蜜桃av| 观看免费一级毛片| 男人舔奶头视频| 精品一区二区三区av网在线观看| 久久精品人妻少妇| 日本a在线网址| 国产v大片淫在线免费观看| 久久鲁丝午夜福利片| 黄片wwwwww| 久久韩国三级中文字幕| 国产成人a区在线观看| 国产黄片美女视频| 深夜精品福利| av女优亚洲男人天堂| 黄色欧美视频在线观看| 三级国产精品欧美在线观看| 菩萨蛮人人尽说江南好唐韦庄 | 一区二区三区免费毛片| 国产真实乱freesex| 男人狂女人下面高潮的视频| 精品久久久久久久久久免费视频| 国产伦在线观看视频一区| 日本-黄色视频高清免费观看| 欧美日韩在线观看h| 久久人人爽人人爽人人片va| 99久久无色码亚洲精品果冻| 99热这里只有是精品在线观看| 真实男女啪啪啪动态图| 两性午夜刺激爽爽歪歪视频在线观看| 国产精品一区二区性色av| 国产伦精品一区二区三区视频9| 露出奶头的视频| 一本一本综合久久| 人妻久久中文字幕网| 哪里可以看免费的av片| 卡戴珊不雅视频在线播放| 国产日本99.免费观看| 国产黄色视频一区二区在线观看 | 一级av片app| 亚洲国产精品合色在线| 九九久久精品国产亚洲av麻豆| 亚洲婷婷狠狠爱综合网| 人妻丰满熟妇av一区二区三区| 中文字幕av成人在线电影| 美女xxoo啪啪120秒动态图| 亚洲精品456在线播放app| 亚洲色图av天堂| 久久久久久伊人网av| 免费观看的影片在线观看| 精品国内亚洲2022精品成人| 深夜a级毛片| 国产成人a∨麻豆精品| 国产大屁股一区二区在线视频| 成人特级黄色片久久久久久久| 天堂√8在线中文| 中文字幕精品亚洲无线码一区| 中国美白少妇内射xxxbb| 日韩中字成人| 亚洲国产精品成人久久小说 | 日本五十路高清| 亚洲av第一区精品v没综合| 精品久久久久久成人av| 成人av一区二区三区在线看| 综合色丁香网| 久久久精品大字幕| 美女大奶头视频| 夜夜爽天天搞| 真人做人爱边吃奶动态| 久久久成人免费电影| 在现免费观看毛片| 久久久久国产网址| 天堂√8在线中文| 久久99热6这里只有精品| 国产精品国产高清国产av| 99热只有精品国产| 午夜激情福利司机影院| 日本熟妇午夜| 国产一区二区在线av高清观看| 夜夜夜夜夜久久久久| 国产黄片美女视频| 国产亚洲91精品色在线| 最新在线观看一区二区三区| 国产熟女欧美一区二区| 久久综合国产亚洲精品| 91麻豆精品激情在线观看国产| 男女边吃奶边做爰视频| 国产视频内射| 国产一级毛片七仙女欲春2| 国产精品日韩av在线免费观看| 欧美中文日本在线观看视频| av在线蜜桃| 欧美一区二区国产精品久久精品| 99久国产av精品| 一级黄色大片毛片| 久久综合国产亚洲精品| 精品久久久久久久久久久久久| 国产女主播在线喷水免费视频网站 | 国产精品一区www在线观看| 国产午夜精品论理片| 日韩制服骚丝袜av| a级毛色黄片| 国产精品一区二区三区四区免费观看 | 在线看三级毛片| 老熟妇乱子伦视频在线观看| 狂野欧美激情性xxxx在线观看| 欧美另类亚洲清纯唯美| 神马国产精品三级电影在线观看| 日韩高清综合在线| 亚洲第一电影网av| 人妻制服诱惑在线中文字幕| 国产精品久久久久久亚洲av鲁大| 天堂√8在线中文| 日韩欧美精品免费久久| 亚洲av电影不卡..在线观看| 婷婷亚洲欧美| 男女下面进入的视频免费午夜| 床上黄色一级片| 麻豆国产av国片精品| 黄色欧美视频在线观看| 寂寞人妻少妇视频99o| 亚洲av成人av| 久久久国产成人免费| 可以在线观看毛片的网站| 国产极品精品免费视频能看的| 亚洲一级一片aⅴ在线观看| 97热精品久久久久久| 国产久久久一区二区三区| 亚洲av五月六月丁香网| 国产一区二区三区av在线 | 非洲黑人性xxxx精品又粗又长| 国内精品一区二区在线观看| 日韩强制内射视频| 日本三级黄在线观看| 大型黄色视频在线免费观看| 一级毛片我不卡| 日日摸夜夜添夜夜添av毛片| 波多野结衣高清作品| 又爽又黄无遮挡网站| 亚洲人成网站在线播放欧美日韩| 一区二区三区四区激情视频 | 国产午夜福利久久久久久| 亚洲无线在线观看| 国产综合懂色| 久久精品夜夜夜夜夜久久蜜豆| 简卡轻食公司| 熟女电影av网| 99久久无色码亚洲精品果冻| 伦精品一区二区三区| 日韩欧美三级三区| 校园春色视频在线观看| 最好的美女福利视频网| 国产精品嫩草影院av在线观看| 精品少妇黑人巨大在线播放 | 久久亚洲精品不卡| 干丝袜人妻中文字幕| 日本黄色视频三级网站网址| 毛片一级片免费看久久久久| 久久久久久久久久成人| 97在线视频观看| 久久久久精品国产欧美久久久| av中文乱码字幕在线| 久久久久九九精品影院| 免费无遮挡裸体视频| a级毛片免费高清观看在线播放| 蜜桃久久精品国产亚洲av| 中文字幕av成人在线电影| 欧美xxxx黑人xx丫x性爽| 看黄色毛片网站| 久久99热这里只有精品18| 乱系列少妇在线播放| 国产白丝娇喘喷水9色精品| 综合色av麻豆| 国产探花在线观看一区二区| 日韩人妻高清精品专区| 亚洲av熟女| 成人综合一区亚洲| 人人妻,人人澡人人爽秒播| а√天堂www在线а√下载| 欧美潮喷喷水| 一进一出好大好爽视频| 桃色一区二区三区在线观看| 欧美+亚洲+日韩+国产| 久久久久国内视频| 又黄又爽又免费观看的视频| 国产一区二区亚洲精品在线观看| 黄色欧美视频在线观看| 亚洲一级一片aⅴ在线观看| 国产精品久久久久久久久免| 国产男靠女视频免费网站| 免费观看的影片在线观看| 久久久久国产精品人妻aⅴ院| 一级毛片电影观看 | 99久久无色码亚洲精品果冻| 免费看光身美女| 色综合站精品国产| 中文字幕人妻熟人妻熟丝袜美| 三级国产精品欧美在线观看| 国产成年人精品一区二区| 亚洲va在线va天堂va国产| 尤物成人国产欧美一区二区三区| 亚洲国产高清在线一区二区三| 亚洲自偷自拍三级| 国产精品永久免费网站| 欧美日韩精品成人综合77777| 最近2019中文字幕mv第一页| 我的老师免费观看完整版| 性插视频无遮挡在线免费观看| 亚洲无线观看免费| 久久久精品欧美日韩精品| 精品久久久久久久久久免费视频| 我的女老师完整版在线观看| 亚洲国产精品久久男人天堂| 日韩精品有码人妻一区| 午夜福利成人在线免费观看| 91av网一区二区| 少妇人妻精品综合一区二区 | 婷婷精品国产亚洲av在线| 禁无遮挡网站| av福利片在线观看| 亚洲婷婷狠狠爱综合网| 国产白丝娇喘喷水9色精品| 日韩欧美免费精品| 日日摸夜夜添夜夜添av毛片| 最近视频中文字幕2019在线8| 日韩大尺度精品在线看网址| 国产一区亚洲一区在线观看| 国产又黄又爽又无遮挡在线| 国产成人91sexporn| 欧美中文日本在线观看视频| 国产精品无大码| 国产中年淑女户外野战色| 我的老师免费观看完整版| 亚洲精品久久国产高清桃花| av天堂中文字幕网| 亚洲高清免费不卡视频| 一个人看的www免费观看视频| 亚洲av第一区精品v没综合| 成人综合一区亚洲| av在线观看视频网站免费| 嫩草影院入口| 国产高清三级在线| 亚洲一区二区三区色噜噜| 中文字幕熟女人妻在线| 久久久国产成人精品二区| 国产毛片a区久久久久| 深夜精品福利| 韩国av在线不卡| 亚洲色图av天堂| 99热网站在线观看| 精品一区二区三区视频在线| 色5月婷婷丁香| 国内揄拍国产精品人妻在线| 久久久色成人| 精品少妇黑人巨大在线播放 | 欧美日韩国产亚洲二区| 免费电影在线观看免费观看| 国产麻豆成人av免费视频| 欧美不卡视频在线免费观看| 精品久久久久久久久av| 大又大粗又爽又黄少妇毛片口| 美女黄网站色视频| 亚洲av成人精品一区久久| 久久婷婷人人爽人人干人人爱| 成熟少妇高潮喷水视频| 精品国产三级普通话版| 亚洲不卡免费看| 少妇被粗大猛烈的视频| 亚洲美女搞黄在线观看 | 国产在线精品亚洲第一网站| 美女被艹到高潮喷水动态| 97超视频在线观看视频| 亚洲在线自拍视频| 精品午夜福利在线看| 国产高清三级在线| 亚洲av成人av| 国产av麻豆久久久久久久| 天堂√8在线中文| 午夜精品一区二区三区免费看| av免费在线看不卡| 久久久a久久爽久久v久久| 久久久久久久久大av| 亚洲国产精品国产精品| 日日撸夜夜添| 十八禁国产超污无遮挡网站| 亚洲国产欧洲综合997久久,| 精品国内亚洲2022精品成人| 97在线视频观看| 日韩一区二区视频免费看| 国产黄a三级三级三级人| 亚洲在线自拍视频| 国产成人福利小说| 在线国产一区二区在线| 欧美一区二区亚洲| 免费看光身美女| 最近中文字幕高清免费大全6| 欧美日韩国产亚洲二区| 日日干狠狠操夜夜爽| 久久鲁丝午夜福利片| 国产高清有码在线观看视频| 看十八女毛片水多多多| 卡戴珊不雅视频在线播放| 老熟妇乱子伦视频在线观看| 欧美xxxx黑人xx丫x性爽| 国产午夜精品论理片| 亚洲熟妇中文字幕五十中出| 99国产精品一区二区蜜桃av| 美女 人体艺术 gogo| 插逼视频在线观看| 精品免费久久久久久久清纯| 少妇的逼水好多| 国产精品久久久久久精品电影| 久久草成人影院| 国产男靠女视频免费网站| 久久国内精品自在自线图片| 国语自产精品视频在线第100页| 国产一区二区三区在线臀色熟女| 99热这里只有是精品50| 久久精品国产亚洲av香蕉五月| 老司机午夜福利在线观看视频| 寂寞人妻少妇视频99o| 欧美日韩乱码在线| 人人妻人人看人人澡| 国产高清视频在线观看网站| 日本三级黄在线观看| 深夜a级毛片| 国产美女午夜福利| 插逼视频在线观看| 嫩草影院新地址| 亚洲中文日韩欧美视频| 3wmmmm亚洲av在线观看| 一进一出抽搐动态| 欧美日韩综合久久久久久| 少妇裸体淫交视频免费看高清| 亚洲欧美日韩高清在线视频| 深夜a级毛片| 国产精品一区www在线观看| 少妇熟女aⅴ在线视频| 欧美bdsm另类| 国产亚洲精品久久久com| 国产欧美日韩精品一区二区| 中文字幕av成人在线电影| 一本久久中文字幕| 天天一区二区日本电影三级| 亚洲精品国产成人久久av| 国产在视频线在精品| 人人妻人人澡欧美一区二区| 国产精品美女特级片免费视频播放器| 亚洲av中文av极速乱| 99热这里只有是精品在线观看| 日韩av不卡免费在线播放| 免费搜索国产男女视频| 啦啦啦观看免费观看视频高清| 美女免费视频网站| 好男人在线观看高清免费视频| 国产伦在线观看视频一区| 亚洲av成人av| 亚洲国产精品国产精品| 精品人妻视频免费看| 午夜精品在线福利| 变态另类成人亚洲欧美熟女| 我要搜黄色片| 小蜜桃在线观看免费完整版高清| 黑人高潮一二区| 国产91av在线免费观看| 亚洲真实伦在线观看| 99久久精品国产国产毛片| 伦理电影大哥的女人| 亚洲性夜色夜夜综合| 九九在线视频观看精品| 亚洲最大成人手机在线| 久久欧美精品欧美久久欧美| 久久精品国产99精品国产亚洲性色| 日韩精品有码人妻一区| 久久久精品大字幕| 亚洲性夜色夜夜综合| 欧美激情久久久久久爽电影| 春色校园在线视频观看| 此物有八面人人有两片| 午夜精品国产一区二区电影 | 91午夜精品亚洲一区二区三区| 成年免费大片在线观看| 精品国产三级普通话版| 免费观看精品视频网站| 一级毛片久久久久久久久女| 在线观看66精品国产| 国产欧美日韩一区二区精品| 午夜福利18| 午夜精品国产一区二区电影 | a级毛片a级免费在线| 国产精品99久久久久久久久| 午夜福利在线观看吧| 日本黄大片高清| 国产黄色视频一区二区在线观看 | 性插视频无遮挡在线免费观看| 日韩国内少妇激情av| 一边摸一边抽搐一进一小说| 欧美一区二区精品小视频在线| 美女高潮的动态| 九九久久精品国产亚洲av麻豆| 国产在线精品亚洲第一网站| 亚洲性夜色夜夜综合| 日本熟妇午夜| 亚洲va在线va天堂va国产| 99久久久亚洲精品蜜臀av| 97超级碰碰碰精品色视频在线观看| 国产一区二区在线观看日韩| 国产精品永久免费网站| 麻豆国产97在线/欧美| 欧美激情国产日韩精品一区| 99riav亚洲国产免费| 老熟妇仑乱视频hdxx| 成年女人毛片免费观看观看9| 久久精品国产清高在天天线| 午夜免费男女啪啪视频观看 | 国产精品久久久久久久电影| 51国产日韩欧美| 精华霜和精华液先用哪个| 日本三级黄在线观看| 天堂动漫精品| 欧美+日韩+精品| 欧美xxxx黑人xx丫x性爽| 两个人的视频大全免费| 啦啦啦啦在线视频资源| 搡女人真爽免费视频火全软件 | av国产免费在线观看| 国产乱人偷精品视频| 成年女人永久免费观看视频| 欧美不卡视频在线免费观看| av女优亚洲男人天堂| 国产午夜精品久久久久久一区二区三区 | 精品少妇黑人巨大在线播放 | 嫩草影院新地址| 99视频精品全部免费 在线| 99久久精品国产国产毛片| 国产高清视频在线播放一区| 成年免费大片在线观看| 在线播放无遮挡| 一个人观看的视频www高清免费观看| 国产成人精品久久久久久| 国产成人aa在线观看| 亚洲av中文av极速乱| 日本撒尿小便嘘嘘汇集6| 国产精品久久久久久亚洲av鲁大| 亚洲成人久久爱视频| 日本黄色视频三级网站网址| 亚洲国产精品成人综合色| 人人妻人人看人人澡| 我要看日韩黄色一级片| 国产伦一二天堂av在线观看| 成人漫画全彩无遮挡| 亚洲性久久影院| videossex国产| 成人毛片a级毛片在线播放| 男人狂女人下面高潮的视频| 五月玫瑰六月丁香| 精品少妇黑人巨大在线播放 | 91在线精品国自产拍蜜月| 国产极品精品免费视频能看的| 亚洲一区高清亚洲精品| 免费不卡的大黄色大毛片视频在线观看 | 日韩欧美一区二区三区在线观看| 中文字幕av在线有码专区| 卡戴珊不雅视频在线播放| 91久久精品电影网| 成年av动漫网址| 国产精品三级大全| 一个人看的www免费观看视频| 日韩 亚洲 欧美在线| 一区福利在线观看| 国产激情偷乱视频一区二区| 亚洲高清免费不卡视频| 久久久午夜欧美精品| 直男gayav资源| 国产一区二区亚洲精品在线观看| 国内精品一区二区在线观看| 能在线免费观看的黄片| 久久精品国产亚洲av香蕉五月| 久久久久久久久中文| 中国美女看黄片| 亚洲真实伦在线观看| 观看免费一级毛片| 一个人免费在线观看电影| 亚洲中文字幕一区二区三区有码在线看| 久久99热6这里只有精品| 日韩欧美三级三区| 日韩国内少妇激情av| 国产片特级美女逼逼视频| 久久精品国产自在天天线| 国产伦精品一区二区三区四那| av卡一久久| 人人妻,人人澡人人爽秒播| 国产综合懂色| 搡老妇女老女人老熟妇| 免费在线观看影片大全网站| 国产91av在线免费观看| 淫秽高清视频在线观看| 国产精品久久久久久久电影| 老司机午夜福利在线观看视频| 国产av不卡久久| 99久久九九国产精品国产免费| 最近2019中文字幕mv第一页| 菩萨蛮人人尽说江南好唐韦庄 | 国产日本99.免费观看| 丰满人妻一区二区三区视频av| 内射极品少妇av片p| av女优亚洲男人天堂| 国产高清激情床上av| 欧美日本视频| 亚洲欧美清纯卡通| 神马国产精品三级电影在线观看| 中出人妻视频一区二区| 草草在线视频免费看| 丝袜喷水一区| 色哟哟·www| 亚洲成av人片在线播放无| 欧美一区二区亚洲| av在线蜜桃| 日本三级黄在线观看| 俄罗斯特黄特色一大片| 国产免费一级a男人的天堂| 免费黄网站久久成人精品| 亚洲最大成人av| 免费观看在线日韩| 欧美成人精品欧美一级黄| 欧美另类亚洲清纯唯美| 亚洲无线在线观看| 久久精品91蜜桃| 特大巨黑吊av在线直播| 久久久久久国产a免费观看| 熟女电影av网| 色av中文字幕| 久久久精品欧美日韩精品| 不卡一级毛片| 亚洲国产精品久久男人天堂| 欧美一区二区亚洲| 成人毛片a级毛片在线播放| av黄色大香蕉| 91在线精品国自产拍蜜月| 男人舔奶头视频| 成人美女网站在线观看视频| 夜夜爽天天搞| 亚洲成人精品中文字幕电影| 国产激情偷乱视频一区二区| 一本久久中文字幕|