• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    MHD flow of a visco-elastic fluid through a porous medium between infinite parallel plates with time dependent suction*

    2015-11-25 11:31:35BAAGACHARYADASHMISHRA

    BAAG S., ACHARYA M. R., DASH G. C., MISHRA S. R.

    1. Department of Physics, College of Basic Science and Humanities, OUAT, Bhubaneswar-751003, India,E-mail: sbaag22@gmail.com

    2. Department of Mathematics, ITER, SOA University, Bhubaneswar-751030, India

    MHD flow of a visco-elastic fluid through a porous medium between infinite parallel plates with time dependent suction*

    BAAG S.1*, ACHARYA M. R.1, DASH G. C.2, MISHRA S. R.2

    1. Department of Physics, College of Basic Science and Humanities, OUAT, Bhubaneswar-751003, India,E-mail: sbaag22@gmail.com

    2. Department of Mathematics, ITER, SOA University, Bhubaneswar-751030, India

    2015,27(5):738-747

    This work provides a comprehensive theoretical analysis of MHD unsteady free convection viscoelastic fluid flow through a porous medium. The medium is treated as incompressible and optically transparent. The flow of the fluid is initiated by shearing action of the moving wall with time dependent suction. Radiative heat flow is considered in temperature equation. The coupled nonlinear problem has been solved asymptotically. Approximate solutions have been obtained for the mean velocity, mean temperature using multi parameter perturbation technique. The originality of the present study is to investigate the effect of viscoelastic property of the fluid (WaltersB′model) on the flow and heat transfer phenomena when the flow is permeated through a porous medium with uniform porous matrix subject to transverse magnetic field and time dependent fluctuative suction at the boundary surface. The case of viscous flow has been discussed as a particular case on comparison with the result reported earlier and it is in good agreement. Flow reversal is indicated incase of viscoelastic fluid with high heat capacity in the presence of magnetic field. The higher cooling of the plate in case of viscoelastic flow also causes a flow reversal.

    viscoelastic liquid, porosity, radiation parameter, time dependent suction

    Introduction

    Numerous applications of viscoelastic fluid in several manufacturing processes have led scientist to investigate viscoelastic boundary layer flow. The boundary layer analysis of idealized viscoelastic fluid was introduced by Beard and Walters[1]. Subsequently great interest has been shown in the investigation of natural convection of heat transfer of viscoelastic fluid. An extensive range of physical models has been developed to stimulate the diverse hydrodynamic behavior of viscoelastic (non-Newtonian) fluid. Viscoelastic fluid flow through porous media has received special attention because of increasing practical application in oil reservoir technology. The oil displacement efficiency may be improved by using non-Newtonian fluids. In view of above application, it is justified to have an adequate understanding of the flow behavior of viscoelastic fluids. Literature has witnessed a number of studies in this matter. Recent studies include the work of Choudhury and Islam[2]. They studied MHD free convection flow of viscoelastic fluid past an infinite vertical porous plate.

    Abel et al.[3]have reported viscoelastic fluid flow and heat transfer over stretching sheet with variable viscosity. Later on Asghar et al.[4]studied the flow of non-Newtonian fluid induced due to oscillation of a porous plate. Stretching of porous plate is also another important aspect. Viscoelastic boundary layer MHD flows over a porous quadratic stretching sheet have been reported by Khan and Sanjayanand[5]. Khan[6]considered radiation effect on heat transfer in a viscoelastic fluid flow over a stretching surface. By using Darcy’s law Yamamoto and Yoshida[7]considered suction and injection flow with convective acceleration through a plane porous wall. Chawla and Singh[8]studied oscillatory flow past a porous bed. The steady two-dimensional free convective flow of a viscous fluid through a porous medium bounded by a porous surface subjected to a constant suction velocity wasstudied by Raptis et al.[9].

    Singh et al.[10]discussed the oscillatory suction velocity in presence of time dependent viscosity along magnetic field. Ferdows et al.[11]analyzed free convection flow with variable suction in presence of thermal radiation. Mishra et al.[12]have studied MHD flow of a viscoelastic fluid through porous medium with oscillatory suction.

    In many instances coal slurries exhibit non-Newtonian characteristics. This is an integral part of coal based fuel production with low pollutants. This led Massoudi and Phuoe[13]to study unsteady motion of nonlinear viscoelastic fluid. A review article on single phase flow of non Newtonian fluids in porous media was addressed by Sochi[14]. In this article the flow through porous media in general are examined. Alharbi et al.[15]considered chemical reaction in heat and mass transfer of a MHD viscoelastic fluid flow. Kumar et al.[16]discussed unsteady motion in their research. Attempt was made by Sivraj et al.[17]to solve viscoelastic fluid flow in irregular channel. Recently,a visco-elastic fluid model known as Phan-Thien-Tanner (PTT) model[18]is widely used for wire coating.

    In the present work an attempt has been made to study MHD free convection flow of viscoelastic fluid(WaltersB′model) with time dependent suction in presence of radiative heat transfer through a porous medium. In the physical model the plate at y =0is at very high temperature Twand the plate at y=h is at a temperature T∞such that Tw?T∞. The originality of the present study is to investigate the effect of viscoelastic property of the fluid (Walters B′model)on the flow and heat transfer phenomena when the flow is permeated through a porous medium with uniform porous matrix subject to transverse magnetic field and time dependent fluctuative suction at the boundary surface. The case of viscous flow has been discussed as a particular case in comparison with the result reported earlier and it is in good agreement with the present one.

    The present study is of great importance in the movement of oil, gas and water through the reservoir of an oil or gas to the hydrologist in his study of the migration of underground water, and to the chemical engineer in connection with filtration processes. Beyond this, the study is widely applicable in soil mechanics, water purification, ceramic engineering and powder metallurgy. The results of the problem are also of great interest in geophysics in the study of the interaction of the geomagnetic field with the fluid in geothermal region. Water in the geothermal region is an electrical-conducting liquid because of high temperature. With the fuel crisis deepening all over the developed world, attention is turning to the utilization of the enormous power beneath the Earth’s crust in the geothermal region.

    The analytical solutions for the velocity field and temperature distribution are obtained by perturbation technique. The effect of the flow parameters on the velocity field and temperature distribution are presented with the aid of graphs.

    1. Mathematical formulation

    Free convection flow of an electrically conducting viscoelastic fluid between infinite vertical parallel porous plates with time dependent suction has been considered. The flow of the fluid is initiated by the shearing action of the moving wall with resulting suction and small pressure gradients along the direction of motion (see Fig.1). A magnetic field of uniform strength B0is applied normal to the plate. The induced magnetic field is neglected as the magnetic Reynolds number of the flow is taken to be very small. All the fluid properties are constant and the influence of density variation with temperature is considered only in the body force term. The flow is assumed to be in thex′direction, which is along the vertical plate in the upward direction and y′-axis is taken to be normal to the plate. The moving electric field is produced due to flow of electrically conducting viscoelastic fluid in a magnetic field which produces a current called the conduction current. We have assumed the magnetic field diffuses easily through the medium and when the condition is violated the Hall current is produced. Therefore, we have neglected Hall current. We have considered Darcian model to account for the permeability of the medium.

    Following Hassanien[19]for unsteady two dimensional flow of a viscous and electrically conducting fluid through a porous medium and free convection flow Alagoa et al.[20]the governing equations for above flow are

    such that εA=1

    Fig.1 Flow geometry

    The terms of Eq.(3) for two dimensional boundary layer equations for flow over plane wall are of orderandand henc[1e9]Eq.(3) has not[20]been considered,Hassanien and Alagoa et al.. WhereA is the small positive parameter,g is the acceleration due to gravity,ε is the small positive number,βis the volumetric expansion coefficient for thermal expansion,T′is the fluid temperature,k0is the rotational viscosity component,kpis the permeability parameter,αis the absorption coefficient. The radiative heat flux equation for an optically thin environment(α?1) such as intergalactic layers for which plasma gas is assumed to be of low density is given by

    where T∞denotes temperature at equilibrium. Substituting Eq.(5) in Eq.(4), we have

    The corresponding boundary conditions are

    whereh is the characteristic width of the channel,k is the thermal conductivity,cpis the specific heat,σ is the electrical conductivity and Re=v0h/n, suction Reynolds number. Introducing new variables in the non dimensional form as

    where u0and v0are the mean velocities ofu′and non-zero constant suction velocityv′.n is the kinematic viscosity (=μ/ρ),μis the dynamic viscosity,ρis the density of fluid. Substituting Eq.(1) in Eqs.(2)and (6) and introducing new variables given in Eq.(8)as well as dropping the dashes, we find

    where

    On introducing the non dimensional variables given in Eqs.(8), boundary conditions given in Eqs.(7) reduce to

    where χ2is the dimensionless porosity parameter,M2is the non dimensional magnetic parameter,is the Grashof number,Rcis the visco-elastic parameter,Pr is the Prandtl number,θis the dimensionless temperature,N2is the radiation parameter.

    2. Method of solution

    Equations (9) and (10) representing the flow variables are highly non-linear. So solutions to these non-linear equations are obtained by perturbation method. The parameters Rc,ε andA are assumedsmall such that Rc?1andε?1. Velocity and temperature in the neighborhood of the plate can be expressed as:

    where u0and θ0are the mean velocity and mean temperature respectively. Using Eqs.(13) and (14) in third order differential Eq.(9), equating harmonic and non-harmonic terms for mean velocity and mean temperature, after neglecting coefficient ofε2, we get

    with corresponding boundary conditions

    and

    with corresponding boundary conditions

    Equations (15) and (18) are third order differential equations due to presence of viscoelastic parameter. There are only two boundary conditions. Therefore, it needs one boundary condition more for unique solution. Thus, to avoid this difficulty, we adopt perturbation method. Here u0and u1are expanded following Beard and Walters[1].

    Substituting Eq.(21) in Eq.(15) and equating coefficients of zeroth order and first order of Rcwe get

    The corresponding boundary conditions are

    Substituting Eq.(21) in Eq.(15) and equating coefficients of zeroth order and first order of Rc

    The corresponding boundary conditions are

    Solution of these equations for the flow variables are obtained starting with the temperature in Eq.(16). Assuming that the temperature difference between the plate at y=0and its neighbouring point is small, the temperatureθ0can be expanded following Bestmann[21]as

    whereψis the small correction factor such that O(θw)<ψ<O(1).

    Neglecting squares and products ofψ, Eq.(15)becomes

    where

    3. Results and discussion

    In this paper the MHD boundary layer problem for momentum and heat transfer with thermal radiation in viscoelastic fluid flow through a channel embedded in a porous medium is investigated. In order to verify the accuracy we have compared our results with the results of previous authors. During the discussion we have considered the real part of the solution unless it is mentioned otherwise. The value of ε=0.01.

    Fig.2 Effect of M ,Pr and Rcon velocity profile (Gr=5,N2=5,χ2=10,ωT=π/2)

    Figure 2 displays the velocity variation for various values ofPr,M and Rcfor fixed values of Gr=5,N2=5,χ2=10,ωt=π/2. It is seen that the velocity increases almost exponentially from zero at the lower wall to unity at the upper wall. Further, it is seen that the elasticity property of the fluid(Rc= 0.2) in the presence of magnetic field causes a decrease in the velocity at all points. Moreover, higher Prandtl number fluid also decreases the velocity at all points. One remarkable finding is that when a higher Prandtl number (fluid with higher heat capacity) viscoelastic fluid is subjected to magnetic field a flow reversal is indicated.

    Fig.3 Effect of χ2,M andPr on velocity profile (G=5,r N2=5,ωT=π/2)

    Therefore, the present study suggests that a right choice of viscoelastic fluid with a controlled magnetic field strength prevents the flow reversal in the flow domain. On a careful analysis it is further revealedthat Prandtl number is a salient characteristic number based upon pure physical property (Pr=μcp/k) whereasis a resistive force of electromagnetic origin, acting along the main direction of the flow perpendicular to the direction of the magnetic field which decreases in the proportion to square of the suction velocity and elastic parameter Rc,(Rc=)which grows in proportion to square of the suction velocity. The same observation in respect of magnetic parameter and Prandtl number was observed by[19]in the study of MHD flow through a porous medium.

    Figure 3 depicts a two layer velocity profile due to high (χ2=10)and low (χ2=5)value of suction Reynolds number. High suction Reynolds number implies larger suction velocity (Re=v0h/n). As χ2is inversely proportional to square ofRe , the higher value of χ2implies low suction velocity. It is clear that for low suction velocity has a thinning effect over the boundary layer thickness and it is further reduced by higher Prandtl number and magnetic parameter. The special feature of the high χ2velocity profiles is that it steadily increases whereas for low value, it increases and slightly decreases near the upper plate. Thus, it is inferred that low suction has a decelerating effect near the permeable surface. The crossing of curves IV and VI in Fig.3 may be attributed to the interplay of Prandtl number and magnetic effects.

    Fig.4 Mean velocity profile with M =2,Rc=0.2

    Figure 4 primarily exhibits the effect of Grashof number and radiation parameter (N2)for cooling and heating of the plate. It is evident from curves II and VI,one for heating (Gr>0)and other for cooling (Gr<0) that the heating of the fluid exerts greater buoyancy force which accelerates the fluid motion and cooling acts adversely resulting a flow reversal in the presence of elasticity of the fluid. The flow reversal increases with higher value of Gr<0. The instability of the flow may be attributed to the non linearity in the constitutive equations. The flow reversal increases with higher Gr<0. These instabilities may not depend on inertia, they are mainly driven by the fluid normal stresses (elasticity), or by the boundary conditions[19]. Further it is seen that an increase in radiation parameter N2is to reduce the velocity throughout the flow field. This observation coincides with the work of Alagoa et al.[20].

    Fig.5 Effect of Rc,ωandt on velocity profile (Pr =0.71,N2=0.5,χ2=10,M =2,Gr=5)

    Fig.6 Effect ofPrand N2on temperature profile

    From Fig.5 it is seen that there is no significant variation in velocity due to variation in the values of ω, the frequency or timet as the physical property of the fluid such as elasticity associated in the flow phenomena overrides their effects.

    Figure 6 displays the temperature variation in thermal boundary layer. This two layer profile is mainly due t o hig her va lues ofPr an d lower v alues of Pr . Thenonlineardistributionisattributedduetohigher value of Pralso. The contribution of the radiation parameterN2is to increase the thermal boundary layer thickness preserving the linearity of the distribution. Equation (16) represents the steady temperature distribution. In the absence of radiation parameter(N2=0)this reduces to a simple equation for temperature distribution which varies exponentially with respect to Prandtl number which is comparable to the classical property of fluid temperature distribution.

    Table 1 shows the variation of skin friction coefficient, a measure of boundary phenomena coefficient,with phase angleωtand other pertinent parameters. It is observed that an increase in phase fromπ/4to π/2for a viscous fluid (Rc=0), skin friction decreases slightly but in case of viscoelastic fluid this decrease is significant. It is further noticed that when Rc, the elastic parameter, increases from 0.2 to 0.4 the skin friction reduces to negligibly small. This result infers that an increase in phase angle as well as elastic parameter is found to be favorable in reducing the skin friction significantly which is desirable for streamline flow. The decrease in skin friction is also noted due to the presence of porous medium as well as increase in magnetic parameter and radiation parameter. All the above results hold good for a heated plate(Gr>0). One interesting result is that for a cooled plate(Gr<0), a negative value of skin friction is recorded. This observation is important in view of flow reversal. This fact is concomitant with the observation made from Fig.3 curve VI, for (Gr<0)indicating a flow reversal.

    Table 1 Skin friction coefficient

    Table 2 presents the variation of Nusselt numberNu. It is seen that an increase in radiation parameter and suction parameter increasesNuslightly but the reverse effect is marked in case of Prandtl number. It is further noticed that phase change has no significant contribution in the variation of Nusselt number.

    Table 2 Nusselt number

    4. Conclusion

    Flow reversal is indicated incase of viscoelastic fluid with high heat capacity in the presence of magnetic field. The higher cooling of the plate in case of viscoelastic flow also causes a flow reversal. The non linearity of temperature distribution is concomitant with higher heat capacity of the fluid i.e., higherPr and the increasing radiation contributes to linearity. Increase in phase angle as well as elastic parameter isfound to be favorable in reducing the skin friction significantly in case of heated plate. For a cooled plate,negative skin friction is recorded. Suction parameter slightly increases the Nusselt number.

    Acknowledgement

    Authors express their deepest sense of gratitude to the authorities of SOA University for providing facilities to carry on the research work and thankful to the reviewers for the constructive comments.

    References

    [1] BEARD D. W., WALTERS K. Elastico-viscous boundary layer flow. Two dimensional flow near a stagnation point[J]. Proceedings of the Cambridge Philosophical Society, 1964, 60(3): 667-674.

    [2] CHOWDHURY M. K., ISLAM M. N. MHD free convection flow of viscoelastic fluid past an infinite vertival porous plate[J]. Heat and Mass Transfer, 2000,36(5): 439-447.

    [3] ABEL M. S., KHAN S. K. and PRASAD K. V. Study of viscoelastic fluid flow and heat transfer over a stretching sheet with variable viscosity[J]. International Journal of Non-Linear Mechanics, 2002, 37(1): 81-88.

    [4] ASGHAR S., MOHYUDDIN M. R. and HAYAT T. et al. The flow of non-Newtonian fluid induced due to oscillation of a porous plate[J]. Mathematical Problems in Engineering, 2004, 2: 133-143.

    [5] KHAN S. K., SANJAYANAND E. Viscoelastic boundary layer MHD flow through a porous medium over a porous quadratic stretching sheet[J]. Archives of Mechanics, 2004, 56(3): 191-204.

    [6] KHAN S. K. Heat transfer in viscoelastic fluid flow over a stretching surface with heat source/sink, suction/ blowing and radiation[J]. International Journal of Heat and Mass transfer, 2006, 49(3): 628-639.

    [7] YAMAMOTO K., YOSHIDA Z. Suction and injection flow with convective acceleration through porous wall[J]. Journal of the Physical Society of Japan,1974, 37(3): 774-779.

    [8] CHAWLA S. S., SINGH S. Oscillatory flow past a porous bed[J]. Acta Mechanics, 1979, 34(3-4): 205-213.

    [9] RAPTIS A., PEREDIKIS C. and TZIVANIDIS G. Free convection flow through a porous medium bounded by a vertical surface[J]. Journal of Physics D Applied Physics, 1981, 14(7): L99-L102.

    [10] SINGH A. K., SINGH A. K. and SINGH N. P. Heat and mass transfer in MHD flow of a viscous fluid past a vertical plate under oscillatory suction velocity[J]. Indian Journal of Pure and Applied Mathematics,2003, 34(3): 429-442.

    [11] FERDOWS M., SATTAR M. A. and SIDDIQUI M. N. A. Numerical approach on parameters of the thermal radiation interaction with convection in boundary layer flow at a vertical[J]. Thammasat International Journal of Non-Linear Mechanics, 2004, 9(3): 19-23.

    [12] MISHRA S. R., DASH G. C. and ACHARYA M. Mass and heat transfer effect on MHD flow of a visco-elastic fluid through porous medium with oscillatory suction and heat source[J]. International Journal of Heat and Mass Transfer, 2013, 57(2): 433-438..

    [13] MASSOUDI M., PHUOE T. X. Unsteady motion of a non-linear viscoelastic fluid[J]. International Journal of Non-Linear Mechanics, 2009, 44(10): 1063-1072.

    [14] SOCHI T. Non-Newtonian flow in porous media[J]. Polymer, 2010, 51(22): 5007-5023.

    [15] ALHARBI S., BAZID M. and GENDY M. Heat and mass transfer in MHD visco-elastic fluid flow through a porous medium over a stretching sheet with chemical reaction[J]. Applied Mathematics, 2010, 1(6): 446-455.

    [16] KUMAR J. G., SATYANARAYAN P. V. Mass transfer effect on MHD unsteady free convective Walters memory flow with constant suction and heat sink[J]. International Journal of Applied Mathematics and Mechanics, 2011, 7(19): 97-109.

    [17] SIVRAJ R., RUSHI KUMAR B. Unsteady MHD dusty visco-elastic fluid Couette flow in an irregular channel with varying mass diffusion[J]. International Journal of Heat and Mass Transfer, 2012, 55(11-12): 3076-3089.

    [18] Nhan-Phan-Thein. Understanding viscoelasticity. An introduction to Rheology[M]. 2nd Edition, Berlin,Germany, Springer.

    [19] HASSANIEN I. A. Unsteady hydromagnetic flow through a porous medium between two infinite parallel porous plates with time varying suction[J]. Astrophysucs and Space Science, 1991, 175(1): 135-147.

    [20] ALAGOA K. D., TAY G. and ABBEY T. M. Radiative and free convective effects of a MHD flow through a porous medium between infinite parallel plates with time dependent suction[J]. Astrophysics and Space Science, 1998, 260: 455-468.

    [21] BESTMANN A. R. Free convection effects on the flow past a vertical porous plate set impulsively into motion with negligible dissipation[J]. Acta Physical Academiae Scientiarum Hungaricae, 1979, 46(3): 129-136.

    Appendix

    The following are the constants that appear in Eqs.(26), (27), (29), (30).

    10.1016/S1001-6058(15)60536-4

    (December 15, 2013, Revised May 20, 2014)

    * Biography: BAAG S. (1976-), Female, Ph. D.,Assistant Professor

    国产精品福利在线免费观看| 一区二区三区四区激情视频| 精品久久久久久电影网| 只有这里有精品99| 少妇被粗大猛烈的视频| 久久综合国产亚洲精品| 99热6这里只有精品| 亚洲av在线观看美女高潮| 久久久久久久久久久丰满| 精品久久久久久久人妻蜜臀av| av在线亚洲专区| 人体艺术视频欧美日本| 国产欧美另类精品又又久久亚洲欧美| 在现免费观看毛片| 国产欧美日韩精品一区二区| 亚洲精品亚洲一区二区| 久久人人爽人人爽人人片va| 日韩免费高清中文字幕av| 丝瓜视频免费看黄片| 国产精品国产av在线观看| 国产女主播在线喷水免费视频网站| 我的女老师完整版在线观看| 久久精品久久精品一区二区三区| 中文字幕免费在线视频6| 日韩国内少妇激情av| 91aial.com中文字幕在线观看| 91久久精品国产一区二区三区| 男插女下体视频免费在线播放| 中文字幕制服av| 亚洲在久久综合| 久久99蜜桃精品久久| 久久ye,这里只有精品| 国产美女午夜福利| 乱码一卡2卡4卡精品| av福利片在线观看| 亚洲自偷自拍三级| 黄色视频在线播放观看不卡| 亚洲三级黄色毛片| 亚洲精品自拍成人| 超碰av人人做人人爽久久| 51国产日韩欧美| 国产伦精品一区二区三区四那| 午夜福利网站1000一区二区三区| 亚洲国产欧美在线一区| 国产老妇伦熟女老妇高清| 真实男女啪啪啪动态图| 中文天堂在线官网| 一级二级三级毛片免费看| 97精品久久久久久久久久精品| 日韩一区二区视频免费看| 国产高潮美女av| 少妇的逼好多水| 简卡轻食公司| 91狼人影院| 亚洲精品亚洲一区二区| 青青草视频在线视频观看| a级毛色黄片| 国产又色又爽无遮挡免| 日本与韩国留学比较| 美女xxoo啪啪120秒动态图| 国产乱来视频区| 在线播放无遮挡| 自拍偷自拍亚洲精品老妇| av在线天堂中文字幕| 人妻系列 视频| 国产精品不卡视频一区二区| 亚洲精品乱码久久久久久按摩| 国产一区亚洲一区在线观看| 午夜福利视频1000在线观看| av在线老鸭窝| 男女啪啪激烈高潮av片| 国产精品精品国产色婷婷| 国产亚洲一区二区精品| 欧美+日韩+精品| 国产 一区精品| 校园人妻丝袜中文字幕| 亚洲精品456在线播放app| 久久久久久久久久成人| 久久99热这里只有精品18| 丰满少妇做爰视频| 亚洲丝袜综合中文字幕| 亚洲自拍偷在线| 黄色怎么调成土黄色| 欧美3d第一页| h日本视频在线播放| 亚洲国产精品专区欧美| 精品人妻熟女av久视频| 男女无遮挡免费网站观看| 国产免费福利视频在线观看| xxx大片免费视频| 国产淫片久久久久久久久| 久久精品熟女亚洲av麻豆精品| 亚洲欧美一区二区三区黑人 | 国产免费一级a男人的天堂| 一级片'在线观看视频| 国产精品一区www在线观看| 少妇的逼水好多| 只有这里有精品99| av国产久精品久网站免费入址| 97在线人人人人妻| 我的老师免费观看完整版| 五月玫瑰六月丁香| 精品一区二区三区视频在线| av黄色大香蕉| 99热这里只有精品一区| videos熟女内射| 成人高潮视频无遮挡免费网站| 女人久久www免费人成看片| 九草在线视频观看| 制服丝袜香蕉在线| 美女主播在线视频| 草草在线视频免费看| 国产黄a三级三级三级人| 99九九线精品视频在线观看视频| 一本一本综合久久| 亚洲不卡免费看| 日日摸夜夜添夜夜添av毛片| 青春草视频在线免费观看| 91久久精品国产一区二区三区| 久久久久精品性色| 中文字幕免费在线视频6| 国产又色又爽无遮挡免| freevideosex欧美| 大片电影免费在线观看免费| 久久久久久久精品精品| 性插视频无遮挡在线免费观看| 在线免费十八禁| 亚洲国产成人一精品久久久| 精品久久久噜噜| 国产精品99久久久久久久久| 夜夜爽夜夜爽视频| 欧美高清成人免费视频www| av黄色大香蕉| 日本熟妇午夜| 两个人的视频大全免费| 日韩不卡一区二区三区视频在线| 午夜免费鲁丝| 成年人午夜在线观看视频| 内地一区二区视频在线| 日本熟妇午夜| 亚洲精品乱码久久久久久按摩| 欧美性猛交╳xxx乱大交人| 如何舔出高潮| 永久免费av网站大全| 日韩强制内射视频| 九九爱精品视频在线观看| 美女脱内裤让男人舔精品视频| 久久人人爽人人爽人人片va| 国产精品一二三区在线看| h日本视频在线播放| 国产男人的电影天堂91| 晚上一个人看的免费电影| 色网站视频免费| 日韩大片免费观看网站| 亚洲精品中文字幕在线视频 | 色视频www国产| 人人妻人人看人人澡| 亚洲成人中文字幕在线播放| 最后的刺客免费高清国语| 国产淫语在线视频| 日本午夜av视频| 亚洲综合精品二区| 久久久精品免费免费高清| 97人妻精品一区二区三区麻豆| 能在线免费看毛片的网站| 国产欧美日韩精品一区二区| 哪个播放器可以免费观看大片| 日韩欧美精品免费久久| 尾随美女入室| 777米奇影视久久| 国产精品一二三区在线看| .国产精品久久| 精品久久国产蜜桃| 久久精品国产亚洲av天美| 国产免费一级a男人的天堂| 视频中文字幕在线观看| 联通29元200g的流量卡| 精华霜和精华液先用哪个| 2021少妇久久久久久久久久久| kizo精华| 久久精品国产自在天天线| 男人和女人高潮做爰伦理| 国产伦理片在线播放av一区| 久久久成人免费电影| av女优亚洲男人天堂| 国产成人一区二区在线| xxx大片免费视频| 99热全是精品| 在线播放无遮挡| 精品熟女少妇av免费看| 中文欧美无线码| a级毛片免费高清观看在线播放| 性插视频无遮挡在线免费观看| 天堂俺去俺来也www色官网| 一级爰片在线观看| 欧美日韩综合久久久久久| 深夜a级毛片| 我要看日韩黄色一级片| 麻豆成人午夜福利视频| 丝袜喷水一区| 人人妻人人澡人人爽人人夜夜| 黄片无遮挡物在线观看| 一级毛片电影观看| 亚洲人与动物交配视频| 亚洲丝袜综合中文字幕| 国产精品一区二区性色av| 午夜激情久久久久久久| 禁无遮挡网站| 在线亚洲精品国产二区图片欧美 | 一级毛片黄色毛片免费观看视频| 免费av毛片视频| 最近中文字幕高清免费大全6| 人妻系列 视频| 欧美日本视频| 成人毛片60女人毛片免费| 国产精品国产三级国产av玫瑰| 一个人观看的视频www高清免费观看| 香蕉精品网在线| 内射极品少妇av片p| 亚洲自拍偷在线| 成人漫画全彩无遮挡| 最近2019中文字幕mv第一页| 国产又色又爽无遮挡免| 久久久精品94久久精品| 成人特级av手机在线观看| 乱码一卡2卡4卡精品| av网站免费在线观看视频| 久久综合国产亚洲精品| 男人和女人高潮做爰伦理| 小蜜桃在线观看免费完整版高清| 亚洲av中文av极速乱| 欧美激情在线99| 麻豆精品久久久久久蜜桃| 免费大片黄手机在线观看| 亚洲av成人精品一二三区| 亚洲国产精品成人综合色| 免费观看性生交大片5| 深爱激情五月婷婷| 亚州av有码| 99精国产麻豆久久婷婷| 日本午夜av视频| av一本久久久久| 国产美女午夜福利| 观看免费一级毛片| 日本-黄色视频高清免费观看| 草草在线视频免费看| 卡戴珊不雅视频在线播放| 亚洲久久久久久中文字幕| 久久久久国产网址| 国产一区二区三区av在线| 亚洲精品国产色婷婷电影| 99热这里只有是精品在线观看| 亚洲,欧美,日韩| 99久久中文字幕三级久久日本| 三级国产精品片| 国产精品久久久久久久电影| 精品少妇久久久久久888优播| 成年女人在线观看亚洲视频 | 天堂俺去俺来也www色官网| 国产免费福利视频在线观看| 国精品久久久久久国模美| 国产在线男女| 免费不卡的大黄色大毛片视频在线观看| 亚洲精品456在线播放app| 在线看a的网站| 嫩草影院入口| 日韩成人伦理影院| 噜噜噜噜噜久久久久久91| 亚洲av成人精品一区久久| 黄片wwwwww| 麻豆乱淫一区二区| 男女边摸边吃奶| 国产亚洲av嫩草精品影院| 国产毛片a区久久久久| 丰满乱子伦码专区| 日韩电影二区| 亚洲av福利一区| 伊人久久国产一区二区| 日本wwww免费看| 国产一级毛片在线| 自拍偷自拍亚洲精品老妇| av女优亚洲男人天堂| 欧美日韩综合久久久久久| 91在线精品国自产拍蜜月| 人人妻人人看人人澡| 大码成人一级视频| 一级爰片在线观看| 最近最新中文字幕免费大全7| 特大巨黑吊av在线直播| 成人黄色视频免费在线看| 亚洲欧美日韩另类电影网站 | 91aial.com中文字幕在线观看| 丝袜脚勾引网站| 熟女电影av网| 午夜福利视频精品| 看十八女毛片水多多多| 亚洲aⅴ乱码一区二区在线播放| 欧美日本视频| 欧美性猛交╳xxx乱大交人| 国产欧美日韩精品一区二区| 日韩三级伦理在线观看| 一级爰片在线观看| 国产一区亚洲一区在线观看| 97在线人人人人妻| 久久久久久久久大av| 嘟嘟电影网在线观看| 蜜臀久久99精品久久宅男| 久久久色成人| 国内精品美女久久久久久| 亚洲高清免费不卡视频| 三级男女做爰猛烈吃奶摸视频| 日本av手机在线免费观看| 18+在线观看网站| 欧美精品国产亚洲| 男女无遮挡免费网站观看| 99久久中文字幕三级久久日本| 亚洲精品国产av蜜桃| 国产午夜精品久久久久久一区二区三区| 精品人妻熟女av久视频| 日韩一本色道免费dvd| 国内精品宾馆在线| 国产成人精品久久久久久| 18禁裸乳无遮挡免费网站照片| 五月开心婷婷网| 成人漫画全彩无遮挡| 小蜜桃在线观看免费完整版高清| 国产男女内射视频| 国产探花在线观看一区二区| 国产成年人精品一区二区| 伊人久久国产一区二区| 精品国产三级普通话版| 免费黄网站久久成人精品| 亚洲熟女精品中文字幕| 亚洲精品中文字幕在线视频 | 伦精品一区二区三区| 国产国拍精品亚洲av在线观看| av在线老鸭窝| 久久久久久伊人网av| 日本三级黄在线观看| 身体一侧抽搐| 日韩亚洲欧美综合| av在线蜜桃| 久久国内精品自在自线图片| 熟女电影av网| 国内精品宾馆在线| 欧美精品一区二区大全| 狂野欧美激情性bbbbbb| 婷婷色麻豆天堂久久| 熟女人妻精品中文字幕| 亚洲精品自拍成人| 99热这里只有是精品在线观看| 亚洲av国产av综合av卡| 久久久久国产精品人妻一区二区| 男的添女的下面高潮视频| 成年人午夜在线观看视频| 永久网站在线| 人妻少妇偷人精品九色| 永久免费av网站大全| 国产淫片久久久久久久久| 麻豆久久精品国产亚洲av| 大香蕉97超碰在线| 午夜福利网站1000一区二区三区| 国产淫片久久久久久久久| 成人毛片60女人毛片免费| 中文乱码字字幕精品一区二区三区| 国产成人精品久久久久久| 日本欧美国产在线视频| 交换朋友夫妻互换小说| 午夜激情福利司机影院| 国产精品偷伦视频观看了| 欧美丝袜亚洲另类| 一区二区三区精品91| 国产成人aa在线观看| 国产高潮美女av| 亚洲成人久久爱视频| av网站免费在线观看视频| 水蜜桃什么品种好| av天堂中文字幕网| 色视频在线一区二区三区| 国产亚洲一区二区精品| 少妇熟女欧美另类| 成人亚洲精品一区在线观看 | 免费av不卡在线播放| 国国产精品蜜臀av免费| 麻豆精品久久久久久蜜桃| 身体一侧抽搐| 精品少妇久久久久久888优播| 中文字幕久久专区| 久久精品久久久久久噜噜老黄| 久久久久精品性色| av福利片在线观看| 欧美日韩视频高清一区二区三区二| 欧美一级a爱片免费观看看| 国产真实伦视频高清在线观看| 久久久久精品性色| 欧美区成人在线视频| 综合色丁香网| 成年女人在线观看亚洲视频 | 亚洲精品乱码久久久v下载方式| 亚洲精品视频女| 日本欧美国产在线视频| 一个人看的www免费观看视频| 亚洲av一区综合| 国产探花在线观看一区二区| 久久99热这里只有精品18| 亚洲成人一二三区av| 日韩av在线免费看完整版不卡| 一本久久精品| 精品熟女少妇av免费看| 亚洲人与动物交配视频| 欧美日韩视频精品一区| av线在线观看网站| av又黄又爽大尺度在线免费看| 青春草视频在线免费观看| 久久精品综合一区二区三区| 亚洲精品一二三| 精品一区在线观看国产| av在线老鸭窝| 精品一区二区免费观看| 人妻系列 视频| av.在线天堂| 国产高清有码在线观看视频| 亚洲,欧美,日韩| 舔av片在线| 成人午夜精彩视频在线观看| 草草在线视频免费看| 久久国内精品自在自线图片| 搞女人的毛片| 久久ye,这里只有精品| 免费人成在线观看视频色| 亚洲av.av天堂| 欧美成人精品欧美一级黄| 成人毛片60女人毛片免费| 嫩草影院入口| 中国美白少妇内射xxxbb| 国产国拍精品亚洲av在线观看| 伊人久久国产一区二区| 精华霜和精华液先用哪个| 久久人人爽人人片av| 国内精品美女久久久久久| 好男人视频免费观看在线| 特级一级黄色大片| 嫩草影院精品99| av专区在线播放| 大码成人一级视频| 中文在线观看免费www的网站| 国内揄拍国产精品人妻在线| 干丝袜人妻中文字幕| 男女啪啪激烈高潮av片| 好男人在线观看高清免费视频| 99精国产麻豆久久婷婷| 女人十人毛片免费观看3o分钟| 中文资源天堂在线| 日韩强制内射视频| 午夜免费观看性视频| xxx大片免费视频| 国产亚洲av片在线观看秒播厂| 久久99热这里只有精品18| 99热这里只有精品一区| 国产真实伦视频高清在线观看| 久久99热6这里只有精品| 特级一级黄色大片| 亚洲精品日韩av片在线观看| 舔av片在线| 99re6热这里在线精品视频| 91久久精品国产一区二区三区| 少妇人妻久久综合中文| 久久精品夜色国产| 男的添女的下面高潮视频| 高清欧美精品videossex| 伦理电影大哥的女人| 少妇裸体淫交视频免费看高清| 看黄色毛片网站| 久久久久久久午夜电影| av专区在线播放| 少妇的逼好多水| 日韩电影二区| 国产亚洲91精品色在线| 国产一区有黄有色的免费视频| 国产成人免费观看mmmm| 精品亚洲乱码少妇综合久久| 最新中文字幕久久久久| 国产91av在线免费观看| 免费观看a级毛片全部| 国产精品久久久久久精品古装| 久久99蜜桃精品久久| a级毛色黄片| 黄片无遮挡物在线观看| 国产视频内射| 国产黄频视频在线观看| 成年免费大片在线观看| 亚洲欧美精品专区久久| 久久久久性生活片| 一区二区三区精品91| 久久精品久久久久久久性| 久久99蜜桃精品久久| a级毛色黄片| 国产一区二区在线观看日韩| 精品一区二区三卡| 最近中文字幕高清免费大全6| 日本免费在线观看一区| 美女高潮的动态| 日日撸夜夜添| 中国美白少妇内射xxxbb| 国产免费一区二区三区四区乱码| 男女边摸边吃奶| 成年av动漫网址| 九色成人免费人妻av| 日韩国内少妇激情av| 国产亚洲av嫩草精品影院| 亚洲真实伦在线观看| 久久精品国产a三级三级三级| 久久久久久九九精品二区国产| 国产69精品久久久久777片| 日日撸夜夜添| 亚洲国产精品999| 97热精品久久久久久| 亚洲av中文av极速乱| 亚洲图色成人| av一本久久久久| 久久女婷五月综合色啪小说 | 91精品一卡2卡3卡4卡| 久久午夜福利片| 国产乱人视频| 成年av动漫网址| 亚洲欧洲日产国产| 成人亚洲精品一区在线观看 | 熟妇人妻不卡中文字幕| 国产国拍精品亚洲av在线观看| 日韩,欧美,国产一区二区三区| 亚洲四区av| 国产真实伦视频高清在线观看| 国产高清三级在线| 校园人妻丝袜中文字幕| 三级国产精品欧美在线观看| 女的被弄到高潮叫床怎么办| 2018国产大陆天天弄谢| 国产欧美亚洲国产| 国产 精品1| 搡女人真爽免费视频火全软件| 成人午夜精彩视频在线观看| 欧美成人a在线观看| 亚洲一区二区三区欧美精品 | 激情五月婷婷亚洲| 三级男女做爰猛烈吃奶摸视频| 99热全是精品| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 精品久久久久久电影网| 欧美高清成人免费视频www| 最后的刺客免费高清国语| 国产精品偷伦视频观看了| 丝袜喷水一区| 免费观看性生交大片5| 欧美精品一区二区大全| 日本三级黄在线观看| 搡老乐熟女国产| 夜夜看夜夜爽夜夜摸| 免费看av在线观看网站| 一级片'在线观看视频| 女人久久www免费人成看片| 狂野欧美白嫩少妇大欣赏| 免费av毛片视频| 国产成人一区二区在线| 好男人在线观看高清免费视频| 久久精品国产自在天天线| 80岁老熟妇乱子伦牲交| videossex国产| 街头女战士在线观看网站| 99热这里只有是精品50| 亚洲,一卡二卡三卡| 天天躁夜夜躁狠狠久久av| 伊人久久国产一区二区| 超碰av人人做人人爽久久| 在线看a的网站| 蜜桃久久精品国产亚洲av| 激情 狠狠 欧美| 午夜福利在线观看免费完整高清在| 特大巨黑吊av在线直播| 成人特级av手机在线观看| 欧美区成人在线视频| 国产精品伦人一区二区| 麻豆国产97在线/欧美| 国产高清不卡午夜福利| 又爽又黄无遮挡网站| 有码 亚洲区| 色网站视频免费| 国产精品久久久久久精品古装| 九色成人免费人妻av| 国产高清不卡午夜福利| 国产精品久久久久久精品古装| 精品久久久久久久久av| 国产精品一区二区在线观看99| 久久精品久久久久久久性| 午夜激情久久久久久久| 亚洲成色77777| 欧美丝袜亚洲另类| 啦啦啦在线观看免费高清www| 97超碰精品成人国产| 色播亚洲综合网| 制服丝袜香蕉在线| 男女下面进入的视频免费午夜| 干丝袜人妻中文字幕| 99久久精品热视频| 涩涩av久久男人的天堂| 日韩三级伦理在线观看| 日韩在线高清观看一区二区三区| 69av精品久久久久久| 亚洲欧美一区二区三区黑人 | 成人综合一区亚洲| 听说在线观看完整版免费高清| 精品酒店卫生间| 欧美日韩国产mv在线观看视频 | 亚洲真实伦在线观看| 丝瓜视频免费看黄片| 国产黄a三级三级三级人|