• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    System identification mo*delling of ship manoeuvring motion based onεsupport vector regression

    2015-11-24 05:28:04WANGXuegang王雪剛ZOUZaojian鄒早建HOUXianrui侯先瑞XUFeng徐鋒

    WANG Xue-gang (王雪剛), ZOU Zao-jian (鄒早建), HOU Xian-rui (侯先瑞), XU Feng (徐鋒)

    1. School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240,China

    2. CCCC Fourth Harbor Engineering Institute Co., Ltd., Guangzhou 510230, China, E-mail:510simon@163.com

    3. State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

    4. Wuhan Second Ship Design and Research Institute, Wuhan 430064, China

    System identification mo*delling of ship manoeuvring motion based onεsupport vector regression

    WANG Xue-gang (王雪剛)1,2, ZOU Zao-jian (鄒早建)1,3, HOU Xian-rui (侯先瑞)1, XU Feng (徐鋒)4

    1. School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240,China

    2. CCCC Fourth Harbor Engineering Institute Co., Ltd., Guangzhou 510230, China, E-mail:510simon@163.com

    3. State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

    4. Wuhan Second Ship Design and Research Institute, Wuhan 430064, China

    Based on the ε-support vector regression, three modelling methods for the ship manoeuvring motion, i.e., the white-box modelling, the grey-box modelling and the black-box modelling, are investigated. The10o/10o,20o/20ozigzag tests and the 35oturning circle manoeuvre are simulated. Part of the simulation data for the 20o/20ozigzag test are used to train the support vectors, and the trained support vector machine is used to predict the whole20o/20ozigzag test. Comparison between the simulated and predicted20o/20ozigzag test shows a good predictive ability of the three modelling methods. Then all mathematical models obtained by the modelling methods are used to predict the10o/10ozigzag test and 35oturning circle manoeuvre, and the predicted results are compared with those of simulation tests to demonstrate the good generalization performance of the mathematical models. Finally, the modelling methods are analyzed and compared with each other in terms of the application conditions, the prediction accuracy and the computation speed. An appropriate modelling method can be chosen according to the intended use of the mathematical models and the available data for the system identification.

    ship manoeuvring, hydrodynamic coefficients, mathematical model, system identification,ε-support vector regression

    Introduction

    The ship manoeuvrability is explicitly required in the Standards for Ship Manoeuvrability promulgated by the International Maritime Organization[1]. To predict the ship manoeuvrability at the ship design stage,some methods are available, including the database and/or empirical formula method, the free-running model test method, the numerical method and the computer simulation method based on mathematical models. The last one is popular and effective to predict the ship manoeuvrability. To use this method, constructing accurately the mathematical model is a necessary precondition. The application of the system identification (SI) based on the free-running model tests or the full-scale trials plays an important role in modelling the ship manoeuvring motion.

    Various classical SI methods, e.g., the extended Kalman filter method[2,3], the maximum likelihood method[4], the recursive prediction error method[5]and the least squares method[6], were applied in modelling the ship manoeuvring motion and identifying the hydrodynamic coefficients. However, they have some inherent defects, such as the sensitivity to the initial values, the ill-conditioned solutions and the simultaneous drift. To eliminate these defects, some modern SI methods were proposed for estimating the hydrodynamic coefficients, including the frequency domain identification method[7,8], the neural network[9], the su-pport vector machines (SVM)[10-13]and the genetic algorithm[14]. Among them, the neural network and the support vector machines, as two kinds of artificial intelligence algorithms, can not only be used for the parametric identification, but also, even more suitably,for the nonlinear regression. Rajesh and Bhattacharyya[15]adopted the artificial neural network to regress the nonlinear dynamic model of a large tanker. Moreira and Guedes Soares[16]applied the recursive neural network to simulate the ship manoeuvring motion. Compared with the neural network, the SVM is direct at finite samples and has better generalization performances and a global optimal extremum[17]. It is mainly used for pattern recognition and parameter identification. It is known as the support vector regression (SVR) when it is used for parameter identification. Luo and Zou[10,11], Zhang and Zou[12]identified the hydrodynamic coefficients in the Abkowitz model of the ship manoeuvring motion by using the least squares support vector regression (LS-SVR) and the ε-support vector regression (ε-SVR), respectively. The modelling method used in these two papers is only the white-box modelling, and to reduce the extent of parameter drift, a series of random signals is added into the training samples. However, the introduced random signal brings about another problem: the amplitude of the random signals is difficult to determine. Moreover, in order to obtain the hydrodynamic coefficients in the sway and yaw equations, it is necessary to solve a series of combined equations.

    In the present paper, three modelling methods for the ship manoeuvring motion using the ε-SVR, i.e.,the white-box modelling, the grey-box modelling and the black-box modelling, are investigated. The whitebox modelling method is improved by reconstructing the identification formulas to avoid adding the random signals into the training samples and solving a series of combined equations. The grey-box modelling and the black-box modelling are clearly defined. The 10o/10o,20o/20ozigzag tests and the 35oturning circle manoeuvre are simulated by using the hydrodynamic coefficients obtained from the PMM test[18]. 5% of the simulation data of the 20o/20ozigzag test are used to train the support vectors, and the trained support vector machines are used to predict the whole 20o/20ozigzag test. The predicted results are compared with those of simulation tests to demonstrate the good predictive ability of the mathematical models obtained by the modelling methods. Then, the mathematical models are used to predict the 10o/10ozigzag test and the 35oturning circle manoeuvre, and the predicted results are compared with those of simulation tests to demonstrate the generalization performance of the mathematical models. The modelling methods are analyzed and compared with each other in terms of the application conditions, the prediction accuracy and the computation speed. An appropriate modelling method can be chosen according to the intended use of the mathematical models and the available data for the system identification.

    Fig.1 Coordinate systems

    1. Mathematical model of ship manoeuvring motion

    As shown in Fig.1, two right-handed coordinate systems, the earth-fixed inertial frame (the global coordinate system)o0-x0y0z0and the body-fixed moving frame (the local coordinate system)o-xyz , are adopted, with the plane o0-x0y0z0on the undisturbed free surface and z0-axis pointing downwards. At the initial instant, these two coordinate systems coincide with each other.

    Generally, the manoeuvring motion of a surface ship can be described by the equations of the surge,sway and yaw motions in the following form[18]

    where

    m is the mass of the ship,Izis the moment of inertia of the ship aboutz -axis and xGis the longitudinal coordinate of the ship gravity centre in the bodyfixed coordinate system,u,vandrare the surge speed, the sway speed and the yaw rate, respectively,δis the rudder angle,Δuis the disturbing quantity of the surge speed.Xu,Yv,Nretc. are the hydrodynamic coefficients,Y0and N0are the hydrodynamic force in the direction of y-axis and the yaw moment aboutz-axis during the straight forward motion with constant speed.

    Denoting the kinetic parameters at the state of the straight forward motion with constant speed by subscript 0, we have u0=U0,Δu=u-u0,v0=r0=δ0===˙=0. The resultant speedU=[(u0+ Δu)2+v2]1/2.

    2.ε-support vector regression

    Based on the statistical learning theory, the SVM is effective to improve the generalization performance and can be used to obtain the globally optimal and unique solution[17]. Initially, the SVM was applied in the area of pattern recognition, with the introduction of the insensitive loss function, the SVM was extended to solve non-linear regression estimations,known as the support vector regression (SVR).

    The main idea of the SVR is to map the input data into a high-dimensional feature space and to do linear regression in this space. The optimum regression function can be described as

    wherexandy are the input and output vectors of the system, respectively, and they are defined in the high-dimensional feature space,Φ(x)represents the high-dimensional feature space, which is nonlinearly mapped from the input spacex,wis the weight matrix,b is the bias,R is the Euclidean space,l andn are the dimensions of the Euclidean space.

    The SVR aims to find a function that represents the deviation ofεfrom the actual output. The coefficientswandb are estimated by minimizing the regularized risk function:

    Introducing the slack variablesandinto Eqs.(3) and (4), they are transformed to form the dual optimization problem: minimize:

    To avoid computing explicitly the mapping Φ(x), introducing K(xi,xj)=Φ(xi)Φ(xj)in Eq.(7),K(xi,xj)is known as the kernel function, it follows that

    Any function that satisfies the Mercer condition can be used as the kernel function. Some commonly used kernel functions are: (1) the linear kernel function, (2) the polynomial kernel function, (3) the RBF kernel function, (4) the sigmoid kernel function, and(5) the B-spline kernel function.

    3. System identification modelling

    The SI combined with the free-running model tests or the full-scale trials is one of the effective methods for modelling the ship manoeuvring motion. There are three kinds of SI modelling, including the white-box modelling, the grey-box modelling and the black-box modelling. The white-box modelling is also known as the mechanism modelling. In the white-box modelling, the motion of the system is analyzed based on the structure of the system; and the mathematical model of the system is built. The black-box modelling is a modelling method that uses only the input-output data of the system, even if both the structure and the parameters of the system are unknown. It aims to obtain an appropriate approximation of the actual system. The grey-box modelling is a hybrid modelling method combining the white-box modelling and the black-box modelling for the system that is not fully known.

    3.1White-box modelling

    In the white-box modelling, the mathematical model structure of the objective ship, the principal parameters of the ship and the acceleration derivatives in the mathematical model are known. Firstly, the Lagrangian multipliers are trained by using the samples of the input and output to identify the hydrodynamic coefficients; secondly, the ship manoeuvring motion is predicted with the identified hydrodynamic coefficients and Eqs.(1)-(4).

    In the process of identification, the parameter drift happens inevitably. How to reduce the parameter drift is vital to the identification accuracy of the hydrodynamic coefficients. To reduce the extent of the parameter drift, Luo and Zou[10], Zhang and Zou[12]added a series of random signals into the training samples. However, the introduction of the random signals brings about another problem: the amplitude of the random signals is difficult to determine. Moreover, to obtain the hydrodynamic coefficients in the sway and yaw equations, it is necessary to solve a series of combined equations. In the present work, the identification formulas are reconstructed to avoid adding the random signals into the training samples and solving a series of combined equations. First of all, the continuous equation of motion is discretized using Euler's stepping method as

    whereh is the sampling interval,kand k +1are the adjacent sampling time steps.

    Substituting Eq.(9) into Eq.(1), the reconstructed identification formulas are obtained as

    where L is the ship length, and the coefficient vectors and the variable vectors are

    Note that in order to facilitate the identification, the motion state parameters (U,u,v,randδ) maintain in the dimensional form in Eq.(10), while the hydrodynamic coefficients are written in the non-dimensional form[18].

    The above coefficient vectors can be identified by using the ε-SVR. Here the linear kernel function K(x,x′)=xx′is selected and Eq.(8) is rewritten as

    Comparing Eq.(10) with Eq.(11), if the ε-SVR can provide a good approximation of the objective function (which means thatb is infinitely close to zero),are the identified hydrodynamic coefficients.

    The detailed process of the white-box modelling and the prediction of the ship manoeuvring motion using the ε-SVR is depicted in Fig.2.

    Fig.3 Process of grey-box modelling using ε-SVR

    3.2Grey-box modelling

    If it is not necessay to know the hydrodynamic coefficients apart from the prediction of the ship manoeuvring motion, the grey-box modelling is a better choice. In this case, only the structures of the mathematical model are known, while other information,even the ship's principal particulars, is unknown. In the grey-box modelling, the support vectors are firstly trained by using the samples of the input and output,and then the ship manoeuvring motion is predicted by using the trained support vectors, without using Eq.(1).

    Table 1 Main particulars of mariner class vessel

    Substituting Eq.(9) into Eq.(1), the output can be rearranged as:

    Fig.2 Process of white-box modelling using ε-SVR

    Fig.4 Process of black-box modelling using ε-SVR

    Table 2 Comparison of identified hydrodynamic coefficients (×10-5) with PMM test data

    where the coefficient vectors and the variable vectors are

    The process of the grey-box modelling and the prediction of the ship manoeuvring motion using the ε-SVR is depicted in Fig.3.

    3.3Black-box modelling

    When neither the ship's principal parameters, nor the structures of the mathematical model are known,the black-box modelling is the only choice for modelling the ship manoeuvring motion. In the black-box modelling, only the motion state variables at the last time step are used to predict those at the next time step.

    From Eqs.(12)-(14), it can be seen that Δu(k+1),v(k +1)and r(k +1)are functions of U(k),Δu(k),v(k),r(k )and δ(k). These equations can be rewritten as

    The process of the black-box modelling and the prediction of the ship manoeuvring motion using ε-SVR is depicted in Fig.4.

    4. Prediction and generalization verification

    4.1Prediction

    A Mariner Class Vessel[18]is taken as the study object. Table 1 gives the main particulars of the ship. The non-dimensional mass of the ship m′=7.98× 10-3, the non-dimensional moment of inertia of the ship about z-axis′=3.92×10-4and the non-dimensional longitudinal coordinate of the ship's centre of gravity-2.3×10-2.

    The 10o/10o,20o/20ozigzag tests and the 35oturning circle manoeuvre are simulated by using the hydrodynamic coefficients obtained from the PMM test[18], as given in Table 2. The zigzag tests are terminated after the rudder execution has repeated 5 times,for the turning circle manoeuvre, the rudder is deflected to the desired angle and maintains until the heading of the ship has changed by 540o. The time histories of the surge speedu , the sway speedv , the yaw rater , the resultant speedU and the heading angle ψare obtained from the simulation. The simulation sampling interval is 0.2 s.

    In the identification process, the simulation data of the 20o/20ozigzag test are used to identify the hydrodynamic coefficients. The white Gaussian noise is added to the simulation data of the surge speed, the sway speed, the yaw rate and the heading angle as the observation values, and then the data with noise are filtered with the wavelet denoising method. Figure 5 shows the comparison of the original simulation data,the simulation data with white Gaussian noise and the denoised data.

    The training sample couples are taken from the denoised simulation data of the 20o/20ozigzag test every 4 s (5% of the denoised simulation data). The penalty factor C =106and the insensitivity factor ε=10-6are chosen.

    In the white-box modelling, the training sample couples consist of

    input:{Aw,Bw,Cw}

    Fig.5 Comparison of the 20o/20ozigzag test data

    Fig.6 Comparison of the predicted motions with simulation results,20o/20ozigzag test

    Fig.7 Comparison of the predicted motions with simulation results,10o/10ozigzag test

    The hydrodynamic coefficients are identified by Eq.(11) and the results are given in Table 2 in comparison with the data obtained from the PMM test. Note that the acceleration derivatives are not identified and are treated as known constants during identification.

    It can be seen from Table 2, the identification results of the hydrodynamic coefficients are in good agreement with the PMM test data, which indicates that the white-box modelling using the ε-SVR is an effective method to identify the hydrodynamic coefficients.

    In the grey-box modelling, a linear kernel function is selected. The training sample couples consist of

    input:{Ag,Bg,Cg}

    Fig.8 Comparison of the predicted motions with simulation results,35oturning circle manoeuvre

    output:{Δu(k+1)-Δu(k),v(k+1)-v(k),

    In the black-box modelling, the RBF kernel functionis selected, with the width parameterσ=20. The training sample couples consist of

    input:{U(k),Δu(k),v(k),r(k),δ(k)}

    output:{Δu(k+1)-Δu(k),v(k+1)-v(k),

    Figure 6 shows the predicted motions of the 20o/20ozigzag test using the mathematical models obtained by the white-box modelling, the grey-box modelling and the black-box modelling in comparison with those of simulation data with noise. A satisfactory agreement demonstrates the validity of the proposed identification modelling methods.

    4.2Generalization verification

    To verify the generalization performance of the modelling methods, the 10o/10ozigzag test and the 35oturning circle manoeuvre are predicted by using the support vectors trained with the denoised simulation data of the20o/20ozigzag test. The comparisons of the predicted motions with the simulation results are shown in Fig.7 and Fig.8. As it can be seen from these figures, good agreements are achieved, which demonstrates that the modelling methods have a good generalization capability.

    4.3Comparison

    The requirements of the known conditions and the output results of the three modelling methods are listed in Table 3. According to the intended use of the mathematical models and the available data needed for the system identification, an appropriate modelling method can be chosen. If the hydrodynamic coefficients are to be determined, the white-box modelling might be chosen, however, many known data are required in the white-box modelling. When only the structures of the mathematical models are known, the grey-box modelling is a better choice. When neither the ship's principal parameters, nor the structures of the mathematical models are known, the black-box modelling is the only choice.

    Usually, the mean square error (MSE) and the correlation coefficient (CC) are two evaluation criteria used to measure the prediction accuracy. Taking the surge speed(u)as an example, the MSE and the CC are defined as:

    where the subscriptpands denote the prediction result and the simulation result, respectively,l is the number of the surge speed data,anddenote the average prediction result and the simulation result,respectively.

    Table 3 Requirements of known conditions and output of the modelling methods

    Table 4 Comparison of the prediction accuracy and computation speed

    The MSE and the CC ofu,vandrare listed in Table 4, where the computation speed is also shown. All predictions using the mathematical models obtained by the modelling methods are made under the same computation condition and software environment.

    Table 4 demonstrates that all modelling methods have a high prediction accuracy. However, the accuracy of the white-box modelling and the grey-box modelling is significantly higher than that of the blackbox modelling. It is because the inputs of the whitebox modelling and the grey-box modelling are bothhigh-dimensional vectors and hence can better reflect the system characteristics; while the input of the black-box modelling is only one-dimensional vector. The white-box modelling and the grey-box modelling have a stronger nonlinear mapping ability than the black-box modelling, although the RBF kernel function is chosen in the black-box modelling.

    Table 4 also demonstrates that all modelling methods have a fast computation speed. However, the white-box modelling takes much less computation time than the grey-box modelling and the black-box modelling. In the white-box modelling, the ship manoeuvring motion is predicted with the identified hydrodynamic coefficients and the mathematical model(Eq.(1)), and hence is the fastest. In the grey-box modelling and the black-box modelling, the ship manoeuvring motion is predicted by using the trained support vectors, without the use of the mathematical model. The prediction based on the grey-box modelling involves a high dimensional nonlinear input, and hence takes a large amount of computation time. Although the input of the black-box modelling is very simple,the high-dimensional kernel function such as the RBF kernel function requires quite large memory and CPU time.

    5. Conclusions

    Based on the ε-SVR, this paper studies three system identification modelling methods for the ship manoeuvring motion, i.e., the white-box modelling,the grey-box modelling and the black-box modelling. The conclusions can be summarized as follows:

    (1) Good predictive ability and generalization performance of the modelling methods are demonstrated by comparing the predicted results with those of simulation tests.

    (2) An appropriate modelling method can be chosen according to the intended use of the mathematical models and the available data for the system identification. When the hydrodynamic coefficients are to be determined, the white-box modelling might be chosen,when only the structures of the mathematical models are known, the gray-box modelling is a better choice,when neither the ship's principal parameters, nor the structures of the mathematical models are known, the black-box modelling is the only choice.

    (3) By comparing the MSE and the CC between the predicted results and the simulation data, it is shown that the accuracy of the white-box modelling and the grey-box modelling is significantly higher than that of the black-box modelling.

    (4) It is shown that all modelling methods have a fast computation speed, because of theε-SVR characteristics. In comparison, the white-box modelling requires much less computation time than the grey-box modelling and the black-box modelling.

    References

    [1]IMO. Standards for ship manoeuvrability[S]. Resolution MSC.137(76), International Maritime Organization(IMO), 2002.

    [2]ABKOWITZ M. A. Measurement of hydrodynamic characteristic from ship maneuvering trials by system identification[J]. Transactions of Society of Naval Architects and Marine Engineers, 1980, 88: 283-318.

    [3]HWANG W. Y. Application of system identification to ship maneuvering[D]. Doctoral Thesis, Boston, USA:Massachusetts Institute of Technology, 1980.

    [4]?STR?M K. J., K?LLSTR?M C. G. Identification of ship steering dynamics[J]. Automatica, 1976, 12(1): 9-22.

    [5]ZHOU W. W., BLANKE M. Identification of a class of nonlinear state-space models using RPE techniques[J]. IEEE Transactions on Automatic Control, 1989, 34(3):312-316.

    [6]RHEE K. P., LEE S. Y. and SUNG Y. J. Estimation of manoeuvring coefficients from PMM test by genetic algorithm[C]. Proceedings of International Symposium and Workshop on Force Acting on a Manoeuvring Vessel. Val de Reuil, France, 1998, 77-87.

    [7]BHATTACHARYYA S. K., HADDARA M. R. Parametric identification for nonlinear ship manoeuvring[J]. Journal of Ship Research, 2006, 50(3): 197-207.

    [8]PEREZ T., FOSSEN T. I. Practical aspects of frequencydomain identification of dynamic models of marine structures from hydrodynamic data[J]. Ocean Engineering,2011, 38(2-3): 426-435.

    [9]HADDARA M. R., WANG Y. Parametric identification of manoeuvring models for ships[J]. International Shipbuilding Progress, 1999, 46(445): 5-27.

    [10]LUO W., ZOU Z. Parametric identification of ship maneuvering models by using support vector machines[J]. Journal of Ship Research, 2009, 53(1): 19-30.

    [11]LUO Wei-lin, ZOU Zao-jian. Elimination of simultaneous drift and sensitivity analysis in the hydrodynamic modeling of ship manoeuvring[J]. Journal of Shanghai Jiaotong University, 2008, 42(8): 1358-1362(in Chinese).

    [12]ZHANG Xin-guang, ZOU Zao-jian. Identification of Abkowitz model for ship manoeuvring motion using ε-support vector regression[J]. Journal of Hydrodynamics, 2011, 23(3): 353-360.

    [13]XU Feng, ZOU Zao-jian and YIN Jian-chuan et al. Parametric identification and sensitivity analysis for autonomous underwater vehicles in diving plane[J]. Journal of Hydrodynamics, 2012, 24(5): 744-751.

    [14]SUTULO S., GUEDES SOARES C. An algorithm for offline identification of ship manoeuvring mathematical models from free-running tests[J]. Ocean Engineering,2014, 79: 10-25.

    [15]RAJESH G., BHATTACHARYYA S. K. System identification for nonlinear maneuvering of large tankers using artificial neural network[J]. Applied Ocean Research,2008, 30(4): 256-263.

    [16]MOREIRA L., GUEDES SOARES C. Dynamic model of manoeuvrability using recursive neural networks[J]. Ocean Engineering, 2003, 30(13): 1669-1697.

    [17]VAPNIK V. N. The nature of statistical learning theory[M]. New York, USA: Springer Verlag, 2000.

    [18]FOSSEN T. I. Handbook of marine craft hydrodynamics and motion control[M]. New York, USA: John Wiley and Sons, 2011.

    (March 17, 2014, Revised October 31, 2014)

    * Project supported by the National Natural Science Foundation of China (Grant No. 51279106), the Special Research Fund for the Doctoral Program of Higher Education of China(Grant No. 20110073110009).

    Biography: WANG Xue-gang (1983-), Male, Ph. D.

    ZOU Zao-jian,

    E-mail: zjzou@sjtu.edu.cn

    亚洲性夜色夜夜综合| 色播在线永久视频| 亚洲在线自拍视频| 真人做人爱边吃奶动态| 9热在线视频观看99| 下体分泌物呈黄色| 日韩制服丝袜自拍偷拍| 精品国产一区二区三区四区第35| 天天躁夜夜躁狠狠躁躁| 国产一区在线观看成人免费| 美国免费a级毛片| 看片在线看免费视频| 午夜福利影视在线免费观看| 麻豆乱淫一区二区| 国产精品综合久久久久久久免费 | xxxhd国产人妻xxx| 亚洲情色 制服丝袜| 一级毛片高清免费大全| 咕卡用的链子| 午夜视频精品福利| 免费看a级黄色片| 亚洲国产毛片av蜜桃av| 精品乱码久久久久久99久播| 亚洲熟妇中文字幕五十中出 | 亚洲国产精品sss在线观看 | 亚洲精品中文字幕在线视频| 悠悠久久av| 嫩草影视91久久| 午夜影院日韩av| 一区福利在线观看| 久久亚洲精品不卡| 亚洲精品一二三| 久久精品人人爽人人爽视色| 成年人免费黄色播放视频| 欧美激情高清一区二区三区| 一区在线观看完整版| 日韩一卡2卡3卡4卡2021年| 狂野欧美激情性xxxx| 国产高清videossex| 热re99久久国产66热| 免费日韩欧美在线观看| 精品一区二区三区视频在线观看免费 | 国产精品亚洲av一区麻豆| 亚洲精品自拍成人| 香蕉国产在线看| 国产成人欧美在线观看 | a级毛片黄视频| 日韩中文字幕欧美一区二区| 亚洲欧美色中文字幕在线| 国产精品国产av在线观看| 国产一区二区激情短视频| 大型av网站在线播放| 欧美日韩福利视频一区二区| 精品一区二区三区av网在线观看| 怎么达到女性高潮| 一本综合久久免费| 欧美+亚洲+日韩+国产| 少妇粗大呻吟视频| 欧美老熟妇乱子伦牲交| 日韩欧美免费精品| 午夜精品久久久久久毛片777| 久久久久久亚洲精品国产蜜桃av| 窝窝影院91人妻| 日日摸夜夜添夜夜添小说| 亚洲午夜精品一区,二区,三区| 国产精品综合久久久久久久免费 | 久久久久久久久久久久大奶| 国产精品秋霞免费鲁丝片| 丰满人妻熟妇乱又伦精品不卡| 久久久久久久久免费视频了| 久热爱精品视频在线9| 亚洲全国av大片| 久热这里只有精品99| 视频区欧美日本亚洲| 叶爱在线成人免费视频播放| 午夜老司机福利片| 国产高清videossex| 91九色精品人成在线观看| 国产精品99久久99久久久不卡| 国产无遮挡羞羞视频在线观看| 久久国产精品男人的天堂亚洲| 国产一卡二卡三卡精品| 亚洲国产精品一区二区三区在线| 一进一出抽搐动态| 精品国产乱子伦一区二区三区| 丰满饥渴人妻一区二区三| 日韩欧美一区视频在线观看| 一夜夜www| 老司机福利观看| 亚洲一区中文字幕在线| 日韩欧美一区二区三区在线观看 | 欧美乱码精品一区二区三区| 国产一区在线观看成人免费| 久久久久国内视频| 国产成人免费无遮挡视频| 久久人人97超碰香蕉20202| 视频区欧美日本亚洲| 日本撒尿小便嘘嘘汇集6| 色播在线永久视频| 亚洲美女黄片视频| 久久亚洲真实| 精品国产乱子伦一区二区三区| 亚洲精品国产区一区二| 国产亚洲欧美在线一区二区| 18禁裸乳无遮挡动漫免费视频| 国产精品乱码一区二三区的特点 | 国产野战对白在线观看| 天堂中文最新版在线下载| av网站在线播放免费| 欧美精品亚洲一区二区| 另类亚洲欧美激情| 热99re8久久精品国产| 亚洲成人手机| 久久精品熟女亚洲av麻豆精品| 久久精品91无色码中文字幕| 窝窝影院91人妻| 十八禁高潮呻吟视频| 精品国产美女av久久久久小说| 这个男人来自地球电影免费观看| 热re99久久国产66热| 无遮挡黄片免费观看| а√天堂www在线а√下载 | 99国产综合亚洲精品| 少妇的丰满在线观看| 欧美不卡视频在线免费观看 | 国产成人影院久久av| 欧美大码av| 欧美日韩黄片免| 欧美激情极品国产一区二区三区| x7x7x7水蜜桃| 一级a爱视频在线免费观看| 免费在线观看完整版高清| 国产欧美日韩一区二区精品| 欧美人与性动交α欧美软件| 国产免费av片在线观看野外av| 91国产中文字幕| 看片在线看免费视频| 亚洲国产精品sss在线观看 | 亚洲人成伊人成综合网2020| 欧美日韩精品网址| 久久香蕉国产精品| 多毛熟女@视频| 天堂俺去俺来也www色官网| 日本黄色日本黄色录像| 精品欧美一区二区三区在线| 亚洲精品在线美女| 天堂中文最新版在线下载| 久久久久精品国产欧美久久久| 超碰97精品在线观看| 午夜福利在线免费观看网站| 黑人猛操日本美女一级片| 建设人人有责人人尽责人人享有的| 欧美激情 高清一区二区三区| 99精品久久久久人妻精品| 在线观看舔阴道视频| 巨乳人妻的诱惑在线观看| 母亲3免费完整高清在线观看| 久久影院123| 国产99白浆流出| 亚洲精品国产精品久久久不卡| 精品无人区乱码1区二区| 国产亚洲精品一区二区www | 精品一区二区三区av网在线观看| 久久国产乱子伦精品免费另类| 国产精品久久久久久人妻精品电影| 正在播放国产对白刺激| 丝瓜视频免费看黄片| 精品国产一区二区三区久久久樱花| 女警被强在线播放| a级毛片黄视频| 91麻豆精品激情在线观看国产 | 极品人妻少妇av视频| 热re99久久国产66热| 免费少妇av软件| 视频在线观看一区二区三区| 看免费av毛片| 午夜福利欧美成人| 亚洲色图 男人天堂 中文字幕| 啦啦啦视频在线资源免费观看| 波多野结衣av一区二区av| 交换朋友夫妻互换小说| 人人妻人人添人人爽欧美一区卜| 欧美av亚洲av综合av国产av| 后天国语完整版免费观看| 亚洲国产欧美网| 巨乳人妻的诱惑在线观看| 18在线观看网站| 国产成人av激情在线播放| 亚洲专区中文字幕在线| 免费人成视频x8x8入口观看| 国产1区2区3区精品| 村上凉子中文字幕在线| 大香蕉久久成人网| 午夜日韩欧美国产| 91麻豆精品激情在线观看国产 | 国产精品一区二区在线不卡| 自线自在国产av| 日本a在线网址| 久久久久久久久免费视频了| 天天躁狠狠躁夜夜躁狠狠躁| 欧美日韩视频精品一区| 国产精品国产高清国产av | 少妇猛男粗大的猛烈进出视频| 免费少妇av软件| 男人的好看免费观看在线视频 | 欧美激情久久久久久爽电影 | 999久久久国产精品视频| 99国产综合亚洲精品| 男女高潮啪啪啪动态图| 午夜福利视频在线观看免费| 亚洲黑人精品在线| 日日夜夜操网爽| 欧美在线黄色| 久久久精品国产亚洲av高清涩受| 建设人人有责人人尽责人人享有的| 丝袜美腿诱惑在线| 欧美久久黑人一区二区| 久久亚洲精品不卡| 狂野欧美激情性xxxx| 老汉色∧v一级毛片| 免费高清在线观看日韩| 正在播放国产对白刺激| 国产一区有黄有色的免费视频| 香蕉国产在线看| 成人永久免费在线观看视频| 99国产精品免费福利视频| 久久久久视频综合| 天天躁夜夜躁狠狠躁躁| a在线观看视频网站| 91在线观看av| 日本精品一区二区三区蜜桃| 夜夜夜夜夜久久久久| 久久久久久免费高清国产稀缺| 国内毛片毛片毛片毛片毛片| 日日摸夜夜添夜夜添小说| 两个人免费观看高清视频| 99久久国产精品久久久| 飞空精品影院首页| 久久久久国内视频| 欧美日韩av久久| 美女高潮到喷水免费观看| 欧美日韩亚洲国产一区二区在线观看 | 亚洲精品久久成人aⅴ小说| 欧美日韩福利视频一区二区| 999久久久精品免费观看国产| 狠狠婷婷综合久久久久久88av| 国产在线精品亚洲第一网站| 国产精品国产av在线观看| 国产成人免费观看mmmm| 日韩制服丝袜自拍偷拍| 在线观看日韩欧美| 久久久久久免费高清国产稀缺| 国产成人精品久久二区二区91| 99精品在免费线老司机午夜| 水蜜桃什么品种好| 亚洲五月色婷婷综合| 人妻一区二区av| 亚洲综合色网址| 日韩制服丝袜自拍偷拍| av福利片在线| 国产亚洲一区二区精品| a级毛片在线看网站| 午夜福利影视在线免费观看| 久久国产精品大桥未久av| 国产成人av激情在线播放| avwww免费| e午夜精品久久久久久久| 午夜激情av网站| 日韩视频一区二区在线观看| 久久久国产一区二区| 亚洲伊人色综图| 欧美乱妇无乱码| 曰老女人黄片| 久久国产精品大桥未久av| 人人妻人人添人人爽欧美一区卜| 亚洲,欧美精品.| 亚洲avbb在线观看| 丁香欧美五月| 日本vs欧美在线观看视频| 悠悠久久av| 又大又爽又粗| 亚洲精品成人av观看孕妇| 国产伦人伦偷精品视频| 国产99久久九九免费精品| 国产主播在线观看一区二区| 精品午夜福利视频在线观看一区| 欧美精品高潮呻吟av久久| 99热国产这里只有精品6| 日本黄色视频三级网站网址 | 亚洲精品在线美女| 男人的好看免费观看在线视频 | 91麻豆精品激情在线观看国产 | 亚洲欧美精品综合一区二区三区| 在线看a的网站| 看片在线看免费视频| 免费在线观看完整版高清| 欧洲精品卡2卡3卡4卡5卡区| 欧美av亚洲av综合av国产av| 操美女的视频在线观看| av线在线观看网站| 国产国语露脸激情在线看| www日本在线高清视频| 亚洲av电影在线进入| 最近最新中文字幕大全电影3 | 亚洲自偷自拍图片 自拍| 亚洲av日韩精品久久久久久密| 欧美久久黑人一区二区| 午夜福利,免费看| √禁漫天堂资源中文www| 村上凉子中文字幕在线| 首页视频小说图片口味搜索| 99国产极品粉嫩在线观看| 麻豆国产av国片精品| 亚洲三区欧美一区| 一边摸一边抽搐一进一小说 | tocl精华| 精品国产超薄肉色丝袜足j| 亚洲国产欧美一区二区综合| 老熟妇乱子伦视频在线观看| 大型av网站在线播放| 欧美人与性动交α欧美软件| 18禁美女被吸乳视频| 韩国av一区二区三区四区| 欧美激情极品国产一区二区三区| 黄色a级毛片大全视频| 国产精品久久久人人做人人爽| 精品久久蜜臀av无| 波多野结衣av一区二区av| 性少妇av在线| av中文乱码字幕在线| 在线观看免费午夜福利视频| 国产精品综合久久久久久久免费 | 99国产精品免费福利视频| 久久影院123| 日韩欧美一区二区三区在线观看 | 日韩成人在线观看一区二区三区| 国产97色在线日韩免费| 91成人精品电影| 国产成人精品久久二区二区免费| 99精品欧美一区二区三区四区| 久久午夜综合久久蜜桃| 一本一本久久a久久精品综合妖精| 国产人伦9x9x在线观看| 欧美黄色片欧美黄色片| 国产精品一区二区免费欧美| 亚洲精品美女久久久久99蜜臀| av天堂久久9| 欧美黑人精品巨大| 国产精品 欧美亚洲| 久久精品aⅴ一区二区三区四区| 亚洲avbb在线观看| 国产精品久久久人人做人人爽| 夫妻午夜视频| 久久中文看片网| 国产aⅴ精品一区二区三区波| 久久精品国产亚洲av香蕉五月 | 99国产精品免费福利视频| 亚洲情色 制服丝袜| 欧美激情 高清一区二区三区| 搡老乐熟女国产| 丰满的人妻完整版| 国产精品一区二区免费欧美| 捣出白浆h1v1| 国产1区2区3区精品| 五月开心婷婷网| 美女福利国产在线| 午夜福利在线免费观看网站| 国产在视频线精品| 亚洲精品中文字幕一二三四区| 两性午夜刺激爽爽歪歪视频在线观看 | 久久精品国产亚洲av高清一级| av不卡在线播放| 久久中文字幕一级| 国产免费男女视频| 最近最新中文字幕大全免费视频| 国产精品99久久99久久久不卡| 国产精品 国内视频| 黄色成人免费大全| 十八禁人妻一区二区| 亚洲成人免费电影在线观看| 午夜精品在线福利| 亚洲 国产 在线| 人人妻人人澡人人看| 亚洲专区中文字幕在线| 免费不卡黄色视频| 在线观看一区二区三区激情| 国产激情久久老熟女| av欧美777| 午夜久久久在线观看| 午夜福利一区二区在线看| 成人影院久久| 国产精品二区激情视频| 看片在线看免费视频| 亚洲av电影在线进入| 91九色精品人成在线观看| 久久人妻熟女aⅴ| 亚洲一区二区三区不卡视频| а√天堂www在线а√下载 | 国产成人av教育| 伊人久久大香线蕉亚洲五| 国产国语露脸激情在线看| 国产在线一区二区三区精| 亚洲免费av在线视频| 久久久国产欧美日韩av| 欧美中文综合在线视频| 亚洲av美国av| 窝窝影院91人妻| 人人妻人人澡人人爽人人夜夜| 亚洲av成人一区二区三| 少妇裸体淫交视频免费看高清 | 丝袜在线中文字幕| 免费在线观看亚洲国产| 国产一区在线观看成人免费| 国产高清国产精品国产三级| 十八禁网站免费在线| 丰满人妻熟妇乱又伦精品不卡| 亚洲美女黄片视频| 成年女人毛片免费观看观看9 | 精品一区二区三卡| 国产片内射在线| 宅男免费午夜| 脱女人内裤的视频| 精品国产一区二区三区久久久樱花| 超碰成人久久| 在线观看午夜福利视频| 国产高清视频在线播放一区| 国产区一区二久久| 精品人妻在线不人妻| 丰满迷人的少妇在线观看| 久久久水蜜桃国产精品网| 亚洲成人手机| 大型av网站在线播放| 亚洲欧美日韩另类电影网站| 亚洲熟女精品中文字幕| av线在线观看网站| 成熟少妇高潮喷水视频| 91麻豆精品激情在线观看国产 | 亚洲全国av大片| 国产97色在线日韩免费| 日韩欧美一区视频在线观看| 黄片播放在线免费| 五月开心婷婷网| 欧美乱色亚洲激情| 日韩人妻精品一区2区三区| 久久香蕉精品热| 精品熟女少妇八av免费久了| 久久国产乱子伦精品免费另类| 美女扒开内裤让男人捅视频| 99精品欧美一区二区三区四区| 亚洲三区欧美一区| 亚洲色图 男人天堂 中文字幕| www.自偷自拍.com| 十分钟在线观看高清视频www| 日韩精品免费视频一区二区三区| 久久ye,这里只有精品| www.999成人在线观看| 免费一级毛片在线播放高清视频 | 女性生殖器流出的白浆| 欧美国产精品va在线观看不卡| 母亲3免费完整高清在线观看| 精品国产超薄肉色丝袜足j| 人人妻人人澡人人看| 在线观看一区二区三区激情| 777米奇影视久久| 日韩欧美一区二区三区在线观看 | 亚洲精品一二三| 一级毛片女人18水好多| 大陆偷拍与自拍| 成年人午夜在线观看视频| 大香蕉久久成人网| 午夜视频精品福利| bbb黄色大片| 精品人妻1区二区| 国产精品免费大片| 中文字幕人妻丝袜一区二区| 美国免费a级毛片| 久久天躁狠狠躁夜夜2o2o| 国产成人欧美| 十分钟在线观看高清视频www| 80岁老熟妇乱子伦牲交| 日日摸夜夜添夜夜添小说| 性色av乱码一区二区三区2| 精品少妇一区二区三区视频日本电影| 在线观看日韩欧美| 国产xxxxx性猛交| 丰满人妻熟妇乱又伦精品不卡| 亚洲熟妇熟女久久| 高清欧美精品videossex| 中亚洲国语对白在线视频| 一进一出抽搐gif免费好疼 | 777久久人妻少妇嫩草av网站| 18禁裸乳无遮挡免费网站照片 | 最新的欧美精品一区二区| 久久久久久久国产电影| 操美女的视频在线观看| 欧美午夜高清在线| 9191精品国产免费久久| 麻豆av在线久日| 91字幕亚洲| 美女扒开内裤让男人捅视频| 啦啦啦 在线观看视频| 成人永久免费在线观看视频| 国产成人影院久久av| 黑人巨大精品欧美一区二区蜜桃| 夫妻午夜视频| 国产免费现黄频在线看| 欧美精品亚洲一区二区| 一级作爱视频免费观看| 久久狼人影院| 中文字幕av电影在线播放| 亚洲av日韩在线播放| 婷婷成人精品国产| 欧美一级毛片孕妇| 日本黄色日本黄色录像| 又黄又爽又免费观看的视频| 99香蕉大伊视频| 亚洲国产精品sss在线观看 | 一本综合久久免费| 大香蕉久久成人网| tube8黄色片| 久久午夜综合久久蜜桃| 俄罗斯特黄特色一大片| 日韩中文字幕欧美一区二区| 欧美黄色淫秽网站| 男女床上黄色一级片免费看| av电影中文网址| 在线观看免费日韩欧美大片| 波多野结衣av一区二区av| 精品第一国产精品| 中文字幕另类日韩欧美亚洲嫩草| 精品国产亚洲在线| 成年女人毛片免费观看观看9 | 高清在线国产一区| 国产男女超爽视频在线观看| 又紧又爽又黄一区二区| x7x7x7水蜜桃| a级片在线免费高清观看视频| 色播在线永久视频| 99riav亚洲国产免费| 男人舔女人的私密视频| 国产成人啪精品午夜网站| 十八禁网站免费在线| 色婷婷久久久亚洲欧美| 亚洲人成电影免费在线| 日韩欧美一区视频在线观看| 在线国产一区二区在线| 中国美女看黄片| 丝瓜视频免费看黄片| 国内久久婷婷六月综合欲色啪| 一个人免费在线观看的高清视频| 亚洲五月色婷婷综合| e午夜精品久久久久久久| 18禁国产床啪视频网站| 免费在线观看视频国产中文字幕亚洲| 久久九九热精品免费| 天天躁狠狠躁夜夜躁狠狠躁| 免费观看精品视频网站| 国产精品久久久久久人妻精品电影| 18禁观看日本| 久久ye,这里只有精品| 久久人妻福利社区极品人妻图片| 亚洲精品中文字幕在线视频| 久久久国产一区二区| 国产亚洲欧美在线一区二区| 侵犯人妻中文字幕一二三四区| 久久久精品国产亚洲av高清涩受| 久久精品国产清高在天天线| 高清欧美精品videossex| 国产熟女午夜一区二区三区| 欧美黑人精品巨大| 咕卡用的链子| 后天国语完整版免费观看| 国产淫语在线视频| 一级毛片高清免费大全| 高清毛片免费观看视频网站 | 国产精品二区激情视频| 美女国产高潮福利片在线看| 国产精品美女特级片免费视频播放器 | 黄色成人免费大全| e午夜精品久久久久久久| 99re6热这里在线精品视频| 欧美国产精品va在线观看不卡| 免费在线观看黄色视频的| 午夜福利一区二区在线看| av电影中文网址| 国产熟女午夜一区二区三区| 久久精品国产亚洲av香蕉五月 | 亚洲人成电影观看| 亚洲第一av免费看| 成人精品一区二区免费| 丝袜人妻中文字幕| 村上凉子中文字幕在线| 99精品在免费线老司机午夜| 1024视频免费在线观看| 日韩成人在线观看一区二区三区| 国精品久久久久久国模美| 亚洲国产欧美一区二区综合| 国产亚洲精品第一综合不卡| 亚洲精品久久午夜乱码| 久久天躁狠狠躁夜夜2o2o| tube8黄色片| 看片在线看免费视频| 桃红色精品国产亚洲av| 天天影视国产精品| 亚洲中文日韩欧美视频| 高清毛片免费观看视频网站 | 精品人妻熟女毛片av久久网站| 水蜜桃什么品种好| 18禁裸乳无遮挡动漫免费视频| 岛国毛片在线播放| 中文亚洲av片在线观看爽 | 一本一本久久a久久精品综合妖精| 国产精品国产高清国产av | 另类亚洲欧美激情| 欧美 亚洲 国产 日韩一|