• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      城市生活污水SNAD工藝的啟動(dòng)研究

      2015-11-23 05:34:18鄭照明李澤兵劉常敬陳光輝鄭林雪趙白航北京工業(yè)大學(xué)水質(zhì)科學(xué)與水環(huán)境恢復(fù)工程北京市重點(diǎn)實(shí)驗(yàn)室北京100124
      中國(guó)環(huán)境科學(xué) 2015年4期
      關(guān)鍵詞:厭氧氨硝態(tài)硝化

      鄭照明,李澤兵,劉常敬,陳光輝,鄭林雪,馬 靜,李 軍,趙白航 (北京工業(yè)大學(xué),水質(zhì)科學(xué)與水環(huán)境恢復(fù)工程北京市重點(diǎn)實(shí)驗(yàn)室,北京 100124)

      城市生活污水SNAD工藝的啟動(dòng)研究

      鄭照明,李澤兵,劉常敬,陳光輝,鄭林雪,馬 靜,李 軍*,趙白航 (北京工業(yè)大學(xué),水質(zhì)科學(xué)與水環(huán)境恢復(fù)工程北京市重點(diǎn)實(shí)驗(yàn)室,北京 100124)

      采用SBR反應(yīng)器,以城市生活污水為原水,進(jìn)行同步亞硝化、厭氧氨氧化、反硝化(SNAD)工藝的啟動(dòng)研究.首先接種厭氧氨氧化(anammox)顆粒污泥,在高曝氣量下(500L/h)培養(yǎng)得到亞硝化顆粒污泥,然后再次接種anammox顆粒污泥,在低曝氣量下(40L/h)培養(yǎng)得到SNAD顆粒污泥.在亞硝化穩(wěn)定期,氨氮平均去除率達(dá)到94%,亞硝態(tài)氮平均積累率達(dá)到95%.在SNAD穩(wěn)定期,總氮平均去除率為85%.批試實(shí)驗(yàn)結(jié)果表明,亞硝化穩(wěn)定期亞硝化顆粒污泥的好氧氨氮和亞硝態(tài)氮氧化活性分別為為0.234和0kgN/(kgVSS·d).SNAD顆粒污泥的厭氧氨氧化總氮去除、亞硝態(tài)氮反硝化、好氧氨氮氧化、好氧亞硝態(tài)氮氧化活性分別為0.158、0.104、0.281、0kg/(kgVSS·d),其中硝態(tài)氮反硝化活性在0~120min和120~360min內(nèi)分別為0.061和0.104kg/(kgVSS·d).掃描電鏡顯示,SNAD顆粒污泥表面以短桿狀菌和球狀菌為主,可能為好氧氨氧化菌(AOB)和反硝化菌,顆粒污泥內(nèi)部以火山口狀的細(xì)菌為主,可能為anammox菌.

      厭氧氨氧化;亞硝化;反硝化;生活污水;顆粒污泥

      傳統(tǒng)生物脫氮通常采用硝化和反硝化工藝,曝氣能耗高,需要額外投加有機(jī)碳源.短程硝化反硝化可以減少25%的曝氣量和40%的碳源[1].厭氧氨氧化菌在厭氧條件下將NH4+-N和NO2--N轉(zhuǎn)化為氮?dú)猓瑹o需消耗有機(jī)碳源[2-3].CANON工藝可以在一個(gè)反應(yīng)器中實(shí)現(xiàn)總氮的去除,主要應(yīng)用于高氨氮廢水處理中,如污泥脫水液[4-5].CANON工藝的反應(yīng)式如下[6]:

      高氨氮廢水容易產(chǎn)生高濃度的FA和FNA,有助于抑制NOB的生長(zhǎng),實(shí)現(xiàn)總氮的穩(wěn)定去除[7-9].最近的研究表明,CANON工藝也可以在低溫低氨氮廢水中實(shí)現(xiàn). Vazquez-Padin等[10]在SBR反應(yīng)器中,控制氨氮負(fù)荷為 0.2kgN/(m3·d),溫度為15℃,啟動(dòng)了以顆粒污泥為主體的CANON工藝.高濃度有機(jī)物對(duì)厭氧氨氧化菌的生長(zhǎng)有一定的抑制作用[11],但是當(dāng)有機(jī)物濃度較低時(shí),厭氧氨氧化菌仍然可以表現(xiàn)出較好的厭氧氨氧化性能[12-15].有研究報(bào)道亞硝化菌,厭氧氨氧化菌,反硝化菌可以在一個(gè)反應(yīng)器中共存[16-17].陳慧慧等[16]采用人工配水,溫度控制為35℃,在生物轉(zhuǎn)盤反應(yīng)器內(nèi)實(shí)現(xiàn)了SNAD工藝.徐崢勇等[17]采用間歇曝氣的方式,控制溫度為30℃,在SBR反應(yīng)器中啟動(dòng)了處理垃圾滲濾液的SNAD工藝.城市污水水量大,處理費(fèi)用高,目前對(duì)以城市生活污水為進(jìn)水的SNAD工藝的研究較少.由于AOB 和anammox的生長(zhǎng)速率緩慢[3,18],采用顆粒污泥和SBR組合工藝有助于提高反應(yīng)器對(duì)微生物的持流能力,從而提高系統(tǒng)的穩(wěn)定性.本實(shí)驗(yàn)研究了以城市污水為原水的SNAD顆粒污泥工藝的啟動(dòng)性能,以期為SNAD的工程應(yīng)用提供技術(shù)支持.

      1 材料與方法

      1.1 實(shí)驗(yàn)裝置

      試驗(yàn)采用SBR反應(yīng)器,材質(zhì)為有機(jī)玻璃,反應(yīng)器為圓柱形結(jié)構(gòu),高62cm,直徑38cm,總體積為90L,有效容積為70.3L;在底部設(shè)置曝氣盤,采用轉(zhuǎn)子流量計(jì)調(diào)節(jié)曝氣量;反應(yīng)器中安裝攪拌器(轉(zhuǎn)速200r/min)來進(jìn)行混合,以加強(qiáng)傳質(zhì)效果;采用溫度控制箱在線監(jiān)測(cè)并控制反應(yīng)器內(nèi)水溫;排水口設(shè)置在底部以上20cm處,排水比為67.7%;SBR試驗(yàn)裝置如圖1所示.

      1.2 運(yùn)行工況

      實(shí)驗(yàn)分為兩個(gè)階段,階段一(0~29d)為亞硝化顆粒污泥培養(yǎng)階段,階段二(30~74d)為SNAD顆粒污泥培養(yǎng)階段.階段一的運(yùn)行條件為:控制溫度為30℃,曝氣量為500L/h,pH不控制,控制反應(yīng)周期為8h,每個(gè)周期包括進(jìn)水(5min),曝氣(468min),沉淀(6min),排水(6min),當(dāng)反應(yīng)器開始進(jìn)水時(shí),反應(yīng)器內(nèi)曝氣系統(tǒng)就開始工作.階段二運(yùn)行條件為:曝氣量為40L/h,控制反應(yīng)周期為9h,每個(gè)周期包括進(jìn)水(5min),曝氣(528min),沉淀(6min),排水(6min),其他條件同階段一.

      圖1 SBR反應(yīng)器示意Fig.1 The schematic diagram of SBR reactor

      1.3 實(shí)驗(yàn)用水和接種污泥

      1.3.1 實(shí)驗(yàn)用水 試驗(yàn)原水采用北京工業(yè)大學(xué)家屬區(qū)生活污水,試驗(yàn)階段主要水質(zhì)指標(biāo)如下: CODCr200~300mg/L; N-N 60~80mg/L;N-N<1mg/L; N-N<1mg/L; TOC 50~60mg/L; TN 100~140mg/L; pH為7.5~8.0;堿度300~400mg/L.

      1.3.2 接種污泥 接種污泥取自于實(shí)驗(yàn)室厭氧氨氧化固定床反應(yīng)器下部的厭氧氨氧化顆粒污泥[19],厭氧氨氧化固定床采用人工配水,進(jìn)水N-N為40~50mg/L,N-N為50~60mg/L,其他組分參照文獻(xiàn)[20].溫度為24~26℃,HRT=3h,總氮平均去除負(fù)荷為0.5kg/(m3·d).為了培養(yǎng)亞硝化顆粒污泥,在第0d向SBR反應(yīng)器中加入anammox顆粒污泥4L,顆粒污泥濃度為45g/L.為了使反應(yīng)器快速表現(xiàn)出SNAD效能,在第30d,再次向SBR反應(yīng)器中加入anammox顆粒污泥4L,顆粒污泥濃度為45g/L.

      1.4 分析方法

      NH4+-N:納氏試劑光度法;NO2--N:N-(1-萘基)-乙二胺分光光度法;NO3--N:麝香草酚分光光度法;MLSS、MLVSS:重量法;DO、溫度:WTW/Multi 3420測(cè)定儀;掃描電鏡:Hitachi S-4300掃描電子顯微鏡;數(shù)碼照片:iPhone5;CODCr:按中國(guó)國(guó)家環(huán)保局和美國(guó)環(huán)境總署發(fā)布的標(biāo)準(zhǔn)方法測(cè)定,考慮NO2--N對(duì)COD測(cè)定的影響,取COD=COD檢測(cè)-8/7[NO2--N][21];采用vario TOC測(cè)定儀測(cè)定TN和TOC.

      掃描電鏡(SEM)樣品制備:固定、沖洗、脫水、置換、干燥、粘樣、鍍膜.取出少量顆粒污泥,清洗2~3次后,經(jīng)2.5%戊二醛固定1.5h,使用PBS清洗3遍,隨后經(jīng)體積分?jǐn)?shù)分別為50%,70%,80%,90%和100%的乙醇進(jìn)行梯度脫水,每次脫水10~15min,然后用乙酸異戊酯置換,置換后的樣品于37℃干燥.干燥后,在樣品表面鍍上一層厚度為1500nm的金屬膜,使用Hitachi S-4300型掃描電鏡對(duì)樣品進(jìn)行觀察.

      FA和FNA的計(jì)算公式參照文獻(xiàn)[7].

      式中:T為溫度,℃.

      1.5 批式試驗(yàn)

      1.5.1 批式試驗(yàn)水質(zhì) 試驗(yàn)采用人工配水, 主要氮素成分為NH4Cl, NaNO2, KNO3, 碳源為乙酸鈉, 堿度采用NaHCO3調(diào)節(jié).各脫氮活性測(cè)定時(shí)的配水組分見表1.

      1.5.2 批式試驗(yàn)裝置和程序 批式試驗(yàn)采用500mL血清瓶.污泥濃度的確定:用分析天平稱取20g左右濕污泥,將污泥和模擬配水一起放入有效容積為500mL血清瓶中.同時(shí)取5g左右濕污泥用濾紙包好,經(jīng)烘箱和馬弗爐處理,烘干時(shí)間及溫度同常規(guī)污泥濃度測(cè)量條件相同,得到干物質(zhì)/濕泥、揮發(fā)性物質(zhì)/濕泥的比值,然后反算血清瓶中相應(yīng)的MLSS,MLVSS.

      表1 脫氮活性測(cè)定時(shí)的主要配水組分(mg/L)Table 1 The synthetic wastewater used for measuring nitrogen removal performance (mg/L)

      厭氧氨氧化活性的測(cè)定方法參照文獻(xiàn)[22-23],為了保證顆粒污泥的厭氧氨氧化活性,進(jìn)行如下操作:(1)配置泥水混合液;(2)啟動(dòng)恒溫磁力攪拌器,轉(zhuǎn)速為200r/min,蓋緊瓶塞,通氮?dú)?0min(氮?dú)饧兌?9.999%);(3)停止通氮?dú)猓瑢⒀迤繉⑦B同磁力攪拌器放入30 ℃的恒溫培養(yǎng)箱中,每隔1h取樣測(cè)定主要組分濃度,每次取樣體積5mL.亞硝態(tài)氮和硝態(tài)氮反硝化活性測(cè)定:操作方法同厭氧氨氧化活性的測(cè)定.好氧氨氮氧化活性和亞硝態(tài)氮氧化活性測(cè)定:(1)配置泥水混合液;(2)往血清瓶中鼓入空氣,曝氣量控制為250mL/min(周期內(nèi)DO大于6mg/L),啟動(dòng)恒溫磁力攪拌器,轉(zhuǎn)速為200r/min,將血清瓶將連同磁力攪拌器放入30℃的恒溫培養(yǎng)箱中,每隔1h取樣測(cè)定主要組分濃度,每次取樣體積5mL.

      2 結(jié)果與討論

      2.1 亞硝化顆粒污泥培養(yǎng)

      2.1.1 亞硝化啟動(dòng)特性 培養(yǎng)亞硝化顆粒污泥的目的是為了在SNAD脫氮階段中給anammox菌提供NO2--N.經(jīng)過20d的馴化,成功培養(yǎng)出高效的亞硝化顆粒污泥.系統(tǒng)進(jìn)出水氮素變化規(guī)律如圖2所示.進(jìn)水NH4+-N濃度為70~80mg/L,顆粒污泥的好氧氨氮氧化活性逐漸增強(qiáng),到第20d時(shí),出水NH4+-N降低為3mg/L,NH4+-N去除率達(dá)到93%,NO2--N積累率達(dá)到95%,表明亞硝化顆粒污泥培養(yǎng)成功.Blackburne等[24]的研究表明為了防止亞硝化失穩(wěn),應(yīng)該將SBR的曝氣時(shí)間控制在N-N降解完之前,從第21~29d,雖然出水N-N在5mg/L以下,但是亞硝化顆粒污泥表現(xiàn)出良好的亞硝化穩(wěn)定性,N-N平均積累率為95%.系統(tǒng)進(jìn)出水COD變化規(guī)律如圖3所示.系統(tǒng)對(duì)COD去除能力逐漸增強(qiáng). 本實(shí)驗(yàn)階段進(jìn)水COD為210~260mg/L,從15d起,出水COD低于50mg/L,COD去除率保持在80%以上.

      圖2 亞硝化啟動(dòng)過程氮素去除特性Fig.2 The nitrogen removal performance of partial nitrification during start-up stage

      圖3 亞硝化啟動(dòng)過程COD去除特性Fig.3 The COD removal performance of partial nitrification during start-up stage

      2.1.2 亞硝化穩(wěn)定階段沿程取樣分析 亞硝化穩(wěn)定階段(第29d),SBR在一個(gè)周期內(nèi)的pH值, DO和各基質(zhì)濃度變化如圖4所示. 0~30min,溶液中的pH值上升到7.9, DO保持在4mg/L這個(gè)平臺(tái);30~480min,溶液pH值下降到7.0, DO緩慢上升至7.2mg/L.經(jīng)過480min,N-N濃度從52mg/L降低到2mg/L, N-N濃度從19.2mg/L上升到56.6mg/L,N-N濃度變化較小,保持在2mg/L左右,N-N去除率為96.1%,N-N積累率為96.6%.

      圖4 亞硝化穩(wěn)定階段周期內(nèi)主要組分濃度變化Fig.4 The variations of main constituents of partial nitrification during stable stage in one cycle

      2.1.3 亞硝化穩(wěn)定階段顆粒污泥脫氮活性 亞硝化穩(wěn)定階段(第29d)亞硝化顆粒污泥的脫氮活性結(jié)果如圖5所示.亞硝化顆粒污泥的好氧氨氮氧化和亞硝態(tài)氮氧化速率分別為0.234(圖5A)和0kgN/(kgVSS·d)(圖5B).進(jìn)一步證明本階段培養(yǎng)的亞硝化顆粒污泥顆粒具有良好的亞硝化性能. 2.1.4 亞硝化顆粒污泥培養(yǎng)成功的關(guān)鍵因素 FNA和FA對(duì)NOB的聯(lián)合抑制作用:FA和FNA對(duì)硝化過程有抑制作用,但是AOB對(duì)FA和FNA的耐受力要比NOB強(qiáng).Anthonisen等[7]發(fā)現(xiàn)FA為0.1~1.0mgN/L時(shí),NOB 的活性受到抑制,但是AOB的活性在FA為 10~150mgN/L時(shí)才受到抑制.Park等[8]對(duì)1個(gè)實(shí)際工程,2個(gè)小試污泥的研究表明FA對(duì)NOB的抑制濃度0.7mg/L,對(duì)AOB的抑制濃度4~22.4mg/L,F(xiàn)NA為 0.17mg N/L時(shí), AOB的活性將被抑制50%,而FNA為0.02~0.10mgN/L時(shí),NOB的活性將被抑制50%. Vadivelu等[9]報(bào)道FNA濃度低于0.08mg/L時(shí),nitrosomonas的合成代謝和分解代謝仍未受到抑制,但是當(dāng)FNA濃度為0.023mg/L時(shí),nitrobacter合成代謝被完全抑制.本實(shí)驗(yàn)亞硝化啟動(dòng)后期(第29d),SBR周期內(nèi)FA、FNA的變化情況如圖6所示.從0到120min, FA大于1mg/L,有助于抑制NOB的活性,隨著NN的氧化,F(xiàn)A逐漸變?yōu)榱?,但是隨著pH值的下降和N-N濃度的積累,F(xiàn)NA的濃度不斷增加,到420min時(shí),F(xiàn)NA的濃度達(dá)到0.033mg/L,處于文獻(xiàn)報(bào)道抑制N-N氧化的FNA濃度范圍[8-9].在亞硝化啟動(dòng)前期,出水N-N濃度較低,周期內(nèi)FA 對(duì)NOB的抑制起主要作用.因此啟動(dòng)初期FA對(duì)NOB的抑制,啟動(dòng)后期FNA和FA對(duì)NOB的聯(lián)合抑制作用是本實(shí)驗(yàn)亞硝化啟動(dòng)的關(guān)鍵因素.韓曉宇等[25]在連續(xù)流A/O反應(yīng)器中,采用FA和FNA聯(lián)合抑制方式處理消化污泥脫水液,實(shí)現(xiàn)了穩(wěn)定的短程硝化.研究表明,NOB對(duì)FA具有適應(yīng)性.Villaverde等[26]研究發(fā)現(xiàn)經(jīng)過4個(gè)月的運(yùn)行,F(xiàn)A對(duì)NOB的臨界抑制濃度從0.2mg NH3-N/ gVSS上升到0.7mg NH3-N/gVSS. Fux等[27]的研究表明,在MBBR反應(yīng)器中,經(jīng)過一段時(shí)間,NOB能夠適應(yīng)20mg/L的FA濃度.由于本實(shí)驗(yàn)的目的是為了培養(yǎng)亞硝化顆粒污泥,為后續(xù)階段的厭氧氨氧化菌提供亞硝酸鹽,所以沒有對(duì)FA和FNA聯(lián)合抑制NOB實(shí)現(xiàn)亞硝化的穩(wěn)定性進(jìn)行深入的研究.

      顆粒污泥粒徑對(duì)溶解氧傳質(zhì)的阻礙:大多數(shù)研究表明AOB對(duì)氧氣的親和力比NOB強(qiáng),因此在DO受限時(shí),NOB受到的影響大于AOB[28-29]. Wiesmann等[28]的研究表明AOB和NOB的氧飽和動(dòng)力學(xué)常數(shù)分別為0.3和1.1mg/L.Bae等[29]研究發(fā)現(xiàn)DO由0.5mg/L增至2.5mg/L時(shí),比氨氧化速率kA的增加量大于比亞硝態(tài)氮氧化速率kN的增加量.Tokutomi等[30]發(fā)現(xiàn)DO低于1.0mg/L時(shí),AOB的增殖速率是NOB的2.6倍.顆粒污泥粒徑對(duì)溶解氧的傳質(zhì)具有很大影響.Philips等[31]的研究結(jié)果表明,當(dāng)溶液中的DO為3.3mg/L時(shí),在生物膜表面以內(nèi)30μm處,DO降低為0mg/L. Rathnayake等[32]的研究表明,當(dāng)溶液中的DO為2mg/L時(shí),在顆粒污泥表面以內(nèi)300μm處,DO降低為0mg/L.因此當(dāng)溶液中的DO很高時(shí),在顆粒污泥內(nèi)部存在很大的低DO區(qū)域,有助于抑制NOB的活性,形成以AOB為優(yōu)勢(shì)菌的亞硝化顆粒污泥. Vazquez-Padin等[10]采用SBR反應(yīng)器,控制溶液中的DO為8mg/L,在室溫為18~24℃時(shí),成功培養(yǎng)出亞硝化顆粒污泥,亞硝化顆粒污泥的平均粒徑為3mm, N-N積累率在95%以上.楊洋等[33]采用曝氣上流式污泥床,在DO為3mg/L的條件下也成功培養(yǎng)出亞硝化顆粒污泥.由圖4可知,本實(shí)驗(yàn)周期內(nèi)的DO為4.0~7.2mg/L,亞硝態(tài)氮積累率大于90%,其中顆粒污泥平均粒徑為2mm.

      圖5 亞硝化穩(wěn)定階段顆粒污泥批試脫氮特性Fig.5 The nitrogen removal performance of partial nitrification granule during stable stage in batch test

      圖6 亞硝化穩(wěn)定階段周期內(nèi)FA和FNA濃度變化Fig.6 The evolution of FA and FNA of partial nitrification during stable stage in one cycle

      2.2 SNAD顆粒污泥的培養(yǎng)

      圖7 SNAD啟動(dòng)過程氮素去除特性Fig.7 The nitrogen removal performance of SNAD during start-up stage

      2.2.1 SNAD啟動(dòng)特性 SNAD顆粒培養(yǎng)階段出水氮素濃度變化情況如圖7所示.進(jìn)水N-N濃度為70~80mg/L,經(jīng)過18d的培養(yǎng)(30~48d),總氮去除率從22.6%上升到83.9%,在之后25d(49~74d),系統(tǒng)出水總氮平均值為10mg/L,總氮平均去除率為85%,其中出水N-N平均值為5mg/L,出水N-N和N-N濃度平均值在5mg/L以下.系統(tǒng)進(jìn)出水COD變化規(guī)律如圖8所示.進(jìn)水COD為210~260mg/L,出水COD平均值為50mg/L,COD平均去除率為80%.有機(jī)物濃度對(duì)厭氧氨氧化菌和反硝化菌的共存具有重要影響.因?yàn)榉聪趸軌蚶糜袡C(jī)物將N-N還原為氮?dú)猓蚢nammox菌競(jìng)爭(zhēng)N-N. Mollinue等[34]研究表明,以短程硝化廢水為反應(yīng)基質(zhì),當(dāng)anammox反應(yīng)器的進(jìn)水COD為121mg/L時(shí),anammox菌脫氮性能良好,但是當(dāng)進(jìn)水COD高于290mg/L時(shí),anammox菌脫氮性能惡化.楊洋等[33]研究表明,加入20mg/L葡萄糖對(duì)anammox菌影響不大,但是加入200mg/L葡萄糖可明顯抑制anammox菌.本實(shí)驗(yàn)進(jìn)水COD濃度為210~260mg/L,系統(tǒng)連續(xù)25d(49~74d)脫氮效果穩(wěn)定,有機(jī)物對(duì)系統(tǒng)的長(zhǎng)期脫氮的影響有待于進(jìn)一步研究.

      圖8 SNAD啟動(dòng)過程COD去除特性Fig.8 The COD removal performance of SNAD during start-up stage

      圖9 SNAD穩(wěn)定階段周期內(nèi)主要組分濃度變化Fig.9 The evolution of main constituents of SNAD during stable stage in one cycle

      2.2.2 SNAD穩(wěn)定階段沿程取樣分析 SNAD穩(wěn)定階段(第74d),SBR在一個(gè)周期內(nèi)的pH值,DO和各基質(zhì)濃度變化如圖9所示.0~30min,溶液pH值上升到7.9,30~480min,溶液pH值下降到7.0. 0~60min, DO保持在0.15mg/L這個(gè)平臺(tái),60~540min, DO緩慢上升至1.4mg/L.在反應(yīng)周期內(nèi),N-N濃度從55.3mg/L降低到2.6mg/L,N-N和N-N濃度變化不大,周期末N-N和N-N濃度分別為5.4mg/L和4.5mg/L,反應(yīng)器表現(xiàn)出良好的總氮去除能力,TN濃度從72.4mg/L降低為12.6mg/L,總氮去除率達(dá)到82.6%.TOC表現(xiàn)為先降低后保持不變, 0~300min,TOC從45.7mg/L降低為14.5mg/L, 300min之后TOC濃度基本保持不變.

      2.2.3 SNAD穩(wěn)定階段顆粒污泥脫氮活性SNAD穩(wěn)定階段(第74d)批試得到的脫氮活性如圖10所示.顆粒污泥的好氧氨氮氧化和亞硝態(tài)氮氧化速率分別為0.281(圖10A)和0kgN/ (kgVSS·d)(圖10B).厭氧氨氧化,亞硝態(tài)氮反硝化總氮去除速率分別為0.158(圖10C)和0.104kgN/(kgVSS·d)(圖10D).硝態(tài)氮反硝化總氮去除速率在0~120min為0.061kgN/(kgVSS·d),在120~360min為0.104kgN/(kgVSS·d)(圖10E).進(jìn)一步證明本階段培養(yǎng)的SNAD顆粒污泥具有良好的同步亞硝化、厭氧氨氧化、反硝化耦合脫氮的能力.

      圖10 SNAD穩(wěn)定階段顆粒污泥批試脫氮特性Fig.10 The nitrogen removal performance of SNAD granule during stable stage in batch test

      2.2.4 SNAD顆粒污泥培養(yǎng)成功的關(guān)鍵因素顆粒污泥內(nèi)部的低DO,厭氧氨氧化菌和反硝化菌對(duì)N-N的競(jìng)爭(zhēng)是SNAD顆粒培養(yǎng)成功的關(guān)鍵因素.

      顆粒污泥內(nèi)部的低DO對(duì)NOB的抑制:實(shí)驗(yàn)控制曝氣量為40L/h,圖9表明在一個(gè)周期內(nèi),溶液中的DO處于較低的水平,由于顆粒污泥粒徑對(duì)DO傳質(zhì)的阻礙,顆粒污泥內(nèi)部的DO將更低,由于AOB對(duì)DO的親和力比NOB強(qiáng),因此顆粒污泥內(nèi)部NOB的活性將受到抑制.

      2.3 微生物形態(tài)觀察

      圖11 亞硝化顆粒污泥照片F(xiàn)ig.11 The photo of partial nitrification granule

      2.3.1 顆粒污泥照片 亞硝化顆粒污泥的演變 如圖11所示,接種污泥為鮮紅色anammox顆粒污泥(0d),粒徑為2~3mm.經(jīng)過一段時(shí)間的運(yùn)行,anammox顆粒污泥表面逐漸被被白色絮體所包圍,結(jié)合反應(yīng)器的亞硝化特性和批試結(jié)果,這部分白色絮體可能為好氧氨氧化菌.圖12為SNAD顆粒污泥穩(wěn)定運(yùn)行階段(第74d)的照片,粒徑為1~3mm,表面被灰色和白色的絮體包圍,結(jié)合反應(yīng)器的脫氮特性和批試結(jié)果,這部分絮體可能為好氧氨氧化菌和反硝化菌的復(fù)合體.SNAD顆粒內(nèi)部為鮮紅色,這些紅菌應(yīng)為anammox菌.

      圖12 SNAD顆粒污泥Fig.12 The photo of SNAD granule

      圖13 SNAD顆粒污泥表面和內(nèi)部掃描電鏡Fig.13 The SEM images of the external and the inner part of the SNAD granule

      2.3.2 SNAD顆粒污泥掃描電鏡圖片 SNAD顆粒污泥的掃描電鏡(第74d)如圖13所示,在SNAD顆粒污泥的表面(圖13A)主要是一些短桿狀的細(xì)菌和球狀菌,短桿菌大小約為0.5μm×2μm,球狀菌直徑為0.8~1.0μm, 結(jié)合反應(yīng)器的脫氮特性和批試結(jié)果,這部分絮體可能為好氧氨氧化菌和反硝化菌的復(fù)合體,其種屬特性有待于進(jìn)一步驗(yàn)證.郭建華等[36]的研究得到的好氧氨氧化菌形態(tài)主要為短桿菌.彭安等[37]的研究表明anammox顆粒污泥表面的好氧氨氧化菌主要為球狀菌. Zhong等[38]的研究表明厭氧氨氧化反硝化耦合脫氮顆粒污泥表面的反硝化菌主要為短桿狀.在SNAD顆粒污泥內(nèi)部(圖13B)主要為火山口狀細(xì)菌,直徑為0.8~1.2μm,應(yīng)為anammox菌,和Kartal等[39]的研究一致.

      3 結(jié)論

      3.1 在SBR中,接種anammox顆粒污泥,以生活污水為進(jìn)水,在高曝氣量(500L/h)下成功培養(yǎng)出亞硝化顆粒污泥,然后再次接種anammox顆粒污泥,在低曝氣量下(40L/h)成功培養(yǎng)出SNAD顆粒污泥.批試表明亞硝化顆粒污泥的好氧氨氮氧化和亞硝態(tài)氮氧化速率分別為0.234和0kgN/ (kgVSS·d).SNAD顆粒污泥的好氧氨氮氧化和亞硝態(tài)氮氧化速率分別為0.281和0kgN/(kgVSS·d).厭氧氨氧化,亞硝態(tài)氮反硝化總氮去除速率分別為0.158和0.104kgN/(kgVSS·d).硝態(tài)氮反硝化總氮去除速率在0~120min和120~360min分別為0.061 和0.104 kgN/(kgVSS·d).

      3.2 在亞硝化顆粒污泥的培養(yǎng)過程中,F(xiàn)A和FNA的聯(lián)合抑制,顆粒污泥粒徑對(duì)溶解氧傳質(zhì)的阻礙是本實(shí)驗(yàn)實(shí)現(xiàn)亞硝化的關(guān)鍵因素.在SNAD顆粒污泥的培養(yǎng)過程中,低DO,厭氧氨氧化菌和反硝化菌對(duì)NO2--N的競(jìng)爭(zhēng)是SNAD顆粒培養(yǎng)成功的關(guān)鍵因素.

      3.3 掃描電鏡顯示,SNAD顆粒污泥表面以短桿狀菌和為主,主要是一些短桿狀的細(xì)菌和球狀菌,短桿菌大小約為0.5μm×2μm,球狀菌直徑為0.8~1.0μm,結(jié)合反應(yīng)器的脫氮特性和批式試驗(yàn)結(jié)果,這部分絮體可能為好氧氨氧化菌和反硝化菌的復(fù)合體,其種屬特性有待于進(jìn)一步驗(yàn)證.SNAD顆粒污泥內(nèi)部主要為火山口狀細(xì)菌,直徑為0.8~1.2μm,應(yīng)為anammox菌.

      [1]Fux C, Velten S, Carozzi V, et al. Efficient and stable nitritation and denitritation of ammonium-rich sludge dewatering liquor using an SBR with continuous loading [J]. Water Research,2006,40(14):2765-2775.

      [2]Mulder A, Vandegraaf A A, Robertson L A, et al. Anaerobic ammonium oxidation discovered in a denitrifying fluidized-bed reactor [J]. Fems Microbiology Ecology, 1995,16(3):177-183.

      [3]Strous M, Heijnen J J, Kuenen J G, et al. The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium-oxidizing microorganisms [J]. Applied Microbiology and Biotechnology, 1998,50(5):589-596.

      [4]Third K A, Sliekers A O, Kuenen J G, et al. The CANON system (completely autotrophic nitrogen-removal over nitrite) under ammonium limitation: Interaction and competition between three groups of bacteria [J]. Systematic and Applied Microbiology,2001,24(4):588-596.

      [5]Vazquez-Padin J R, Pozo M J, Jarpa M, et al. Treatment of anaerobic sludge digester effluents by the CANON process in an air pulsing SBR [J]. Journal of Hazardous Materials, 2009,166(1): 336-341.

      [6]Sliekers A O, Derwort N, Campos-Gomez J L, et al. Completely autotrophic nitrogen removal over nitrite in one single reactor [J]. Water Research, 2002,36(10):2475-2482.

      [7]Anthonisen A C, Loehr R C, Prakasam T, et al. Inhibition of nitrification by ammonia and nitrous-acid [J]. Journal Water Pollution Control Fedration, 1976, 48(5): 835-852.

      [8]Park S, Bae W. Modeling kinetics of ammonium oxidation and nitrite oxidation under simultaneous inhibition by free ammonia and free nitrous acid [J]. Ppocess Biochemistry, 2009,44(6):631-640.

      [9]Vadivelu V M, Keller J, Yuan Z. Free ammonia and free nitrous acid inhibition on the anabolic and catabolic processes of Nitrosomonas and Nitrobacter [J]. Water Science and Technology,2007,56(7):89-97.

      [10]Vazquez-Padin J R, Figueroa M, Campos J L, et al. Nitrifying granular systems: A suitable technology to obtain stable partial nitrification at room temperature [J]. Separation and Purification Technology, 2010,74(2):178-186.

      [11]Tang C J, Zheng P, Wang C H, et al. Suppression of anaerobic ammonium oxidizers under high organic content in high-rate Anammox UASB reactor [J]. Bioresource Technology, 2010,101(6):1762-1768.

      [12]劉常敬,李澤兵,鄭照明,等.苯酚對(duì)厭氧氨氧化工藝耦合反硝化的啟動(dòng)及脫氮性能的影響 [J]. 中國(guó)環(huán)境科學(xué), 2014,34(5): 1145-1151.

      [13]林 琳,李玉平,曹宏斌,等.焦化廢水厭氧氨氧化生物脫氮的研究 [J]. 中國(guó)環(huán)境科學(xué), 2010,30(9):1201-1206.

      [14]陳婷婷,唐崇儉,鄭 平.制藥廢水厭氧氨氧化脫氮性能與毒性機(jī)理的研究 [J]. 中國(guó)環(huán)境科學(xué), 2010,30(4):504-509.

      [15]劉常敬,李澤兵,鄭照明,等.不同有機(jī)物對(duì)厭氧氨氧化耦合反硝化的影響 [J]. 中國(guó)環(huán)境科學(xué), 2015,35(1):87-94.

      [16]Chen H H, Liu S T, Yang F L, et al. The development of simultaneous partial nitrification,anammox and denitrification (SNAD) process in a single reactor for nitrogen removal [J]. Bioresource Technology, 2009,100(4):1548-1554.

      [17]Xu Z Y, Zeng G M, Yang Z H, et al. Biological treatment of landfill leachate with the integration of partial nitrification,anaerobic ammonium oxidation and heterotrophic denitrification [J]. Bioresource Technology, 2010,101(1):79-86.

      [18]Blackburne R, Yuan Z G, Keller J. Partial nitrification to nitrite using low dissolved oxygen concentration as the main selection factor [J]. Biodegradation, 2008,19(2):303-312.

      [19]李澤兵,劉常敬,趙白航,等.多基質(zhì)時(shí)厭氧氨氧化菌、異養(yǎng)反硝化污泥活性及抑制特征 [J]. 中國(guó)環(huán)境科學(xué), 2013,33(4):648-654.

      [20]van de Graaf AA, Debruijn P, Robertson L A, et al. Autotrophic growth of anaerobic ammonium-oxidizing micro-organisms in a fluidized bed reactor [J]. Microbiology, 1996,142(8):2187-2196.

      [21]曹相生,付昆明,錢 棟,等.甲醇為碳源時(shí)C/N對(duì)反硝化過程中亞硝酸鹽積累的影響 [J]. 化工學(xué)報(bào), 2010,(11):2938-2943.

      [22]汪彩華,鄭 平,唐崇儉,等.間歇性饑餓對(duì)厭氧氨氧化菌混培物保藏特性的影響 [J]. 環(huán)境科學(xué)學(xué)報(bào), 2013,33(1):36-43.

      [23]Tang C J, Zheng P, Mahmood Q, et al. Start-up and inhibition analysis of the Anammox process seeded with anaerobic granular sludge [J]. Journal of Industrial Microbiology and Biotechnology,2009,36(8):1093-1100.

      [24]Blackburne R, Yuan Z Q, Keller J. Demonstration of nitrogen removal via nitrite in a sequencing batch reactor treating domestic wastewater [J]. Water Research, 2008,42(8/9):2166-2176.

      [25]韓曉宇,張樹軍,甘一萍,等.以FA與FNA為控制因子的短程硝化啟動(dòng)與維持 [J]. 環(huán)境科學(xué), 2009,30(3):809-814.

      [26]Villaverde S, Fdz-Polanco F, Garcia P A. Nitrifying biofilm acclimation to free ammonia in submerged biofilters. Start-up influence [J]. Water Research, 2000,34(2):602-610.

      [27]Fux C, Huang D, Monti A, et al. Difficulties in maintaining long-term partial nitritation of ammonium-rich sludge digester liquids in a moving-bed biofilm reactor (MBBR) [J]. Water Science and Technology, 2004,49(11/12):53-60.

      [28]Wiesmann U. Biological nitrogen removal from wastewater [J]. Advances in Biochemical Engineering Biotechnology, 1994,51,113-154.

      [29]Bae W, Baek S, Chung J, et al. Optimal operational factors for nitrite accumulation in batch reactors [J]. Biodegradation,2001,12(5):359-366.

      [30]Tokutomi T. Operation of a nitrite-type airlift reactor at low DO concentration [J]. Water Science and Technology, 2004,49(5/6): 81-88.

      [31]Philips S, Laanbroek H J, Verstraete W. Origin, causes and effects of increased nitrite concentrations in aquatic environments [J]. Environ. Sci. Biotechnol, 2002,1(2):115-141.

      [32]Rathnayake R M L D, Song Y, Tumendelger A, et al. Source identification of nitrous oxide on autotrophic partial nitrification in a granular sludge reactor [J]. Water Research, 2013,47(19): 7078-7086.

      [33]楊 洋,左劍惡,沈 平,等.溫度、pH值和有機(jī)物對(duì)厭氧氨氧化污泥活性的影響 [J]. 環(huán)境科學(xué), 2006,27(4):691-695.

      [34]Molinuevo B, Garcia M C, Karakashev D, et al. Anammox for ammonia removal from pig manure effluents: Effect of organic matter content on process performance [J]. Bioresource Technology, 2009,100(7):2171-2175.

      [35]van der Star W, Miclea A I, van Dongen U, et al. The membrane bioreactor: A novel tool to grow anammox bacteria as free cells [J]. Biotechnology and Bioengineering, 2008,101(2):286-294.

      [36]Guo J, Peng Y Z, Wang S Y, et al. Long-term effect of dissolved oxygen on partial nitrification performance and microbial community structure [J]. Bioresource Technology, 2009,100(11): 2796-2802.

      [37]An P, Xu X C, Yang F L, et al. Comparison of the characteristics of anammox granules of different sizes [J]. Biotechnology and Bioprocess Engineering, 2013,18(3):446-454.

      [38]Zhong Y M, Jia X S. Simultaneous ANAMMOX and denitrification (SAD) process in batch tests [J]. World Journal of Microbiology and Biotechnology, 2013,29(1):51-61.

      [39]Kartal B, Rattray J, van Niftrik L A, et al. Candidatus "Anammoxoglobus propionicus" a new propionate oxidizing species of anaerobic ammonium oxidizing bacteria [J]. Systematic and Applied Microbiology, 2007,30(1):39-49.

      The study of SNAD process start-up on domestic wastewater.


      ZHENG Zhao-ming, LI Ze-bing, LIU Chang-jing,CHEN Guang-hui, ZHENG Lin-xue, MA Jing, LI Jun*, ZHAO Bai-hang (Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China). China Environmental Science, 2015,35(4):1072~1081

      The SNAD (simultaneous partial nitrification, anaerobic ammonium oxidization and denitrification) process was successfully developed in a SBR to treat domestic wastewater. In the beginning, some anammox (anaerobic ammonium oxidation) granules were inoculated into the SBR to develop partial nitrification granules under high DO(500L/h). Afterwards, some anammox granules were added again to develop SNAD granules under low DO(40L/h). During the stable partial nitrification stage, the average ammonium removal rate was above 94% while the average nitrite accumulation rate was more than 95%. In the stable SNAD stage, 85% average total nitrogen removal rate was achieved. To the partial nitrification granules, batch tests indicated that the specific aerobic ammonium oxidation activity and nitrite oxidation activity were 0.234 and 0kgN/(kgVSS·d), respectively. To the SNAD granules, batch tests indicated that the specific anammox activity, denitrification activity over nitrite, aerobic ammonium oxidation activity and nitrite oxidation activity were 0.158、0.104、0.281、0kg/(kgVSS·d), respectively. The denitrification activity over nitrate was 0.061kg/(kgVSS·d) during 0~120min while the value was 0.104kg/(kgVSS·d) during 120~360min. The SEM observations indicated that the bacteria in the outer part of the SNAD granule were mainly short rod-shaped and spherical, which may be AOB and denitrification bacteria. In the inner part of the SNAD granule, the bacteria were mainly crater-shaped, which should be anammox bacteria.

      anammox;partial nitrification;denitrification;domestic wastewater;granules

      X703.5

      A

      1000-6923(2015)04-1072-10

      鄭照明(1989-),男,浙江嵊州市人,北京工業(yè)大學(xué)碩士研究生,主要研究厭氧氨氧化、亞硝化脫氮工藝.發(fā)表論文2篇.

      2014-09-04

      國(guó)家水體污染控制與治理科技重大專項(xiàng)(2014ZX 07201-011);北京市自然科學(xué)基金資助項(xiàng)目(8122005);國(guó)家自然科學(xué)基金青年基金(51308010);北京市教委面上項(xiàng)目(KM201210005028)

      * 責(zé)任作者, 教授, jglijun@bjut.edu.cn

      猜你喜歡
      厭氧氨硝態(tài)硝化
      苯酚對(duì)厭氧氨氧化顆粒污泥脫氮性能抑制作用的研究
      丙酸鹽對(duì)厭氧氨氧化除氮性能及群落結(jié)構(gòu)的影響
      MBBR中進(jìn)水有機(jī)負(fù)荷對(duì)短程硝化反硝化的影響
      低C/N比污水反硝化過程中亞硝態(tài)氮累積特性研究
      厭氧氨氧化與反硝化耦合脫氮除碳研究Ⅰ:
      海水反硝化和厭氧氨氧化速率同步測(cè)定的15N示蹤法及其應(yīng)用
      厭氧氨氧化細(xì)菌的培養(yǎng)及影響因素
      硝態(tài)氮供應(yīng)下植物側(cè)根生長(zhǎng)發(fā)育的響應(yīng)機(jī)制
      城市污水再生中的厭氧氨氧化生物脫氮新思路
      控釋復(fù)合肥對(duì)冷季型草坪氨揮發(fā)和硝態(tài)氮淋洗的影響
      怀化市| 永和县| 甘洛县| 望都县| 叶城县| 东至县| 遵化市| 榆树市| 邵阳市| 洪湖市| 内丘县| 抚顺县| 岗巴县| 开封县| 甘肃省| 垫江县| 原平市| 安丘市| 舒兰市| 专栏| 惠安县| 金山区| 正安县| 莆田市| 临西县| 竹山县| 当雄县| 闽侯县| 葵青区| 萍乡市| 皮山县| 丰都县| 工布江达县| 宁德市| 大渡口区| 班玛县| 凤台县| 紫阳县| 库尔勒市| 扬州市| 宜良县|