• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A New Evaporation Duct Climatology over the South China Sea

    2015-11-21 11:23:24SHIYang史陽YANGKunde楊坤德YANGYixin楊益新andMAYuanliang馬遠良
    Journal of Meteorological Research 2015年5期
    關鍵詞:楊坤

    SHI Yang(史陽),YANG Kunde(楊坤德),YANG Yixin(楊益新),and MA Yuanliang(馬遠良)

    School of Marine Science and Technology,Northwestern Polytechnical University,Xi'an 710072

    A New Evaporation Duct Climatology over the South China Sea

    SHI Yang(史陽),YANG Kunde?(楊坤德),YANG Yixin(楊益新),and MA Yuanliang(馬遠良)

    School of Marine Science and Technology,Northwestern Polytechnical University,Xi'an 710072

    The climatology of evaporation ducts is important for shipborne electromagnetic system design and application. The evaporation duct climatology that is currently used for such applications was developed in the mid 1980s; this study presents efforts to improve it over the South China Sea (SCS) by using a stateofthe-art evaporation duct model and an improved meteorology dataset. This new climatology provides better evaporation duct height (EDH) data over the SCS, at a higher resolution of 0.312 °×0.313 ° . A comparison between the new climatology and the old one is performed. The monthly average EDH in the new climatology is between 10 and 12 m over the SCS, higher than that in the old climatology. The spatiotemporal characteristics of the evaporation duct over the SCS in different months are analyzed in detail, based on the new climatology.

    atmosphere duct, evaporation duct climatology, spatiotemporal characteristics, the South China Sea, electromagnetic wave propagation

    1.Introduction

    Evaporation ducts form due to the inherent rapid changes in humidity in the air-sea boundary layer above the ocean and have important impacts on electromagnetic wave propagation.The trapping layer of an evaporation duct behaves like a waveguide.It can decrease the path loss in microwave bands and extend radar detection and communication ranges(Anderson,1995;Yao et al.,2000;Woods et al.,2009;Cheng et al.,2013a).Evaporation ducts have been recognized as propagation mechanisms that result in substantially higher signals of over-the-horizon,over-water paths in microwave bands(Hitney and Hitney,1990).As a result,timely and accurate assessments of evaporation ducts and their impacts on electromagnetic wave propagation are very important for shipborne electromagnetic system design and application(Jiao and Zhang,2009;Cheng et al.,2013b;Zhao et al.,2013).

    The evaporation duct height(EDH)defines the strength of the ducting mechanism and can be determined by several methods,such as direct measurements(Levy and Craig,1989;Wash and Davidson,1994;Pons et al.,2003),inversion methods with radar sea clutters(Yardim et al.,2008),and numerical models(Liu et al.,1979;Paulus,1985;Musson et al.,1992;Babin et al.,1997;Frederickson et al.,2000;Babin and Dockery,2002;Li et al.,2009;Ding et al.,2015a,b). Numerical models are widely used.They are generally based on the Monin-Obukhov similarity theory and use meteorological parameters(air temperature,sea surface temperature,specific humidity,wind speed,and sea level pressure)at certain heights to estimate the EDH.

    Climatology of evaporation ducts is important for shipborne electromagnetic system design and application(Twigg,2007).The current evaporation duct climatology in use was developed in the mid 1980s by using an old bulk evaporation duct model and a limited historical dataset.This climatology was integrated in the Advanced Refractivity Effects Prediction System(AREPS),which is widely used for assessments ofelectromagnetic systems(Space and Naval Warfare Systems Center,2006).The existing climatology was computed by the Paulus-Jeske(PJ)evaporation duct model,which is now proved to be not accurate in many cases(Twigg,2007).Meanwhile,the meteorology dataset(International Comprehensive Ocean-Atmosphere Data Set,ICOADS)was collected from 1974 to 1980 by voluntary merchant ships.It is outdated and has a low spatial resolution(10°×10°).

    Supported by the National Natural Science Foundation of China(11174235)and Fundamental Research Funds for the Central Universities(3102014JC02010301).

    ?Corresponding author:ykdzym@nwpu.edu.cn.

    ?The Chinese Meteorological Society and Springer-Verlag Berlin Heidelberg 2015

    In this paper,a new evaporation duct climatology over the South China Sea(SCS)is derived by using a state-of-the-art evaporation duct model(Frederickson,2012)and an improved meteorological dataset. The evaporation duct model uses new stability functions,measured in boundary layer experiments(Cheng and Brutseaert,2005;Grachev et al.,2007),and has a better performance in stable conditions.The new climatology of the evaporation duct utilizes the NCEP Climate Forecast System Reanalysis(CFSR)dataset,which provides the best estimate of the state of the atmosphere and ocean from 1979 to 2009(Saha et al.,2010).The evaporation duct model and NCEP CFSR dataset are introduced and validated in Section 2.In Section 3,the results are presented.A comparison between the old and new climatologies and the spatiotemporal characteristics of the evaporation duct over the SCS,based on the new climatology,are discussed in Section 4.The conclusions are given in Section 5.

    2.Study area and methodology

    2.1 Study area

    The SCS(Fig.1)is chosen as the study area because this region has been the focus of much recent research.The SCS is a marginal sea that is a part of the Pacific Ocean and encompasses an area from Singapore and the Malacca Straits to the Strait of Taiwan,comprising around 3.5×106km2.The study area over 2°-23°N,105°-121°E includes parts of China,the Philippines,Brunei,Indonesia,Malaysia,and Vietnam.

    In order to investigate the spatiotemporal characteristics of the EDH,the study area is divided into four sub-domains:the Beibu Gulf,northern SCS,mid-dle SCS,and southern SCS(Fig.1 and Table 1).

    Fig.1.The study areas over the SCS.1:Beibu Gulf;2:northern SCS;3:middle SCS;and 4:southern SCS.

    2.2 Methodology

    The new evaporation duct climatology is computed from a series of procedures(Fig.2).Firstly,the atmospheric data used to calculate the EDH are obtained from the NCEP CFSR and the reliability of the data is verified by using weather buoy observations from the Pacific Ocean.Secondly,the EDHs are calculated in the study area by using an improved evaporation duct model.Thirdly,a comparison between the EDH of the new and old climatologies is presented. Finally,the spatiotemporal characteristics of the evaporation duct over the SCS are analyzed.

    2.2.1 An improved evaporation duct model

    The EDH is usually determined by using an evaporation duct model.In recent years,a number of evaporation duct models such as the PJ model(Paulus,1985),the Musson-Gauthier-Bruth(MGB)model(Musson et al.,1992),the Liu-Katsaros-Businger(LKB)model(Liu et al.,1979;Babin and Dockery,2002),the Babin-Young-Carton(BYC)mod-el(Babin et al.,1997),and the Navy Atmospheric Vertical Surface Layer(NAVSLaM)model(Frederickson et al.,2000;Frederickson,2012)have been developed to calculate EDHs.The NAVSLaM model was previously(before 2012)called the Naval Postgraduate School(NPS)model.Babin et al.(1997)and Babin and Dockery(2002)tested the PJ,NAVSLaM,BYC,MGB,and NRL models carefully using ocean buoy data;they summarized that the NAVSLaM model was the optimal model for estimating the modified refractivity profile.However,they believed that the NAVSLaM model still overestimated the EDH,especially in very strong and stable conditions.Then,F(xiàn)rederickson(2012)used new stability functions to improve the NAVSLaM model's performance in stable conditions. The NAVSLaM model uses the Beljaar and Holtslag'sstability function (Frederickson etal.,2000)in stable conditions(air-sea temperature difference(ASTD)>0℃),hereafter referred to as the NAVSLaM-BH model.The Beljjar and Holtslag's function has been proven to be suitable only for weak stable conditions and leads to very high EDHs under some stable conditions(Frederickson,2012).Cheng's stability function(Cheng and Brutseaert,2005)and Grachev's stability function(Grachev et al.,2007)are obtained from recent boundary layer experiments. These functions perform better(Frederickson,2012)in stable conditions with the NAVSLaM model(hereafter referred to as the NAVSLaM-CB and NAVSLaM-GR models,respectively).

    Table 1.The domains of the areas under study

    Fig.2.Flow chart showing the procedures used in this study to calculate and analyze EDH.

    In this study,the modified refractivity profiles calculated by using different stability functions,with air temperature of 20℃,ASTD of 2℃,relative humidity of 72%,wind speed of 5.3 m s-1,and pressure of 1022.2 hPa,show that the NAVSLaM-BH model cannot define the EDH under these stable conditions(green line in Fig.3a).The NAVSLaM-CB model defines the EDH as 70.5 m(blue line in Fig.3a)and the NAVSLaM-GR model defines the EDH as 54.9 m(red line in Fig.3a).

    The EDH sensitivity analyses performed by using the three model configurations,with air temperature of 25℃,ASTD of 0-6℃,relative humidity of 50%-90%,wind speed of 3 m s-1,and pressure of 1000 hPa,show that the EDH increases quickly as the ASTD increases(Figs.3b-d).The EDH also decreases as the relative humidity increases.Under stable conditions,the temperature inversion is the primary cause of the high EDH.The NAVSLaM-BH model cannot define the EDH when the ASTD is greater than 2℃(Fig.3b)under low relative humidity conditions.Meanwhile,the NAVSLaM-CB(Fig. 3c)and NAVSLaM-GR(Fig.3d)models have much wider regions of applicability under stable conditions,especially the NAVSLaM-GR model.

    Frederickson(2012)validated the NAVSLaM model using measurements collected during the experiment over Wallops Island,VA in 2000. Frederickson(2012)input the modified refractivity profiles computed by the NAVSLaM model into the Advanced Propagation Model(APM;Barrios and Patterson,2002)to calculate the propagation loss.The results showed that the NAVSLaM-GR model simulation agreed best with the propagation measurements. Therefore,the NAVSLaM-GR model configuration is chosen to compute the EDH in this paper.

    2.2.2 NCEP CFSR dataset

    The NCEP CFSR dataset provides effective data to investigate the spatiotemporal characteristics of evaporation ducts.The NCEP and NCAR have collaborated(and continue to do so)on this reanalysis project,to produce the record of global atmospheric fields,and support the research and climate monitor-ing communities. Their efforts involve the recovery of observational data from land,surface,ship,radiosonde,aircraft,and satellite instruments;then,quality control procedures are performed and the data are assimilated by using a data assimilation system that is kept unchanged over the specified reanalysis period.

    Fig.3.(a)Modified refractivity profiles computed by using the three different NAVSLaM model configurations.(b-d)EDH values derived from the(b)NAVSLaM-BH,(c)NAVSLaM-CB,and(d)NAVSLaM-GR model configurations.

    The NCEP CFSR product for the 31-yr period

    (1979-2009)was completed in January 2010.The CFSR was designed and executed as a global,high resolution,coupled atmosphere-ocean-land surface-sea ice system,to provide the best estimate of the state of these coupled domains over the specified period(Saha et al.,2010).One-hour reanalysis data are available from 1979 to the present day and global atmospheric fields are provided for a variety of atmospheric variables.The spatial coverage comprises 1152×576 grid points over 89.761°N-89.761°S,180°W-180°E,which provide data with a high horizontal resolution(0.313°×0.312°).The old evaporation duct climatology was computed from the ICOADS during 1974-1980 and used Marsden squares,with a spatial resolution of 10°×10°.The atmospheric variables obtained directly from the NCEP CFSR dataset and those calculated from the available data are shown in Table 2.

    Thelong-term NationalData Buoy Center(NDBC)data are used to confirm the reliability of the NCEP CFSR data.Buoy data are considered the best available as a comparison benchmark,because the measurements are not affected by the land or research vessel(Newton,2003).

    The tropical atmosphere ocean(TAO)array is in the tropical Pacific Ocean and telemeters oceanographic and meteorological data to shore in real-time.

    Table 2.Primary atmospheric variables obtained from the NCEP CFSR and those calculated from the available data

    The buoy WMO52006, located at 8°2′54′′N,165°8′31′′E,was selected to confirm the reliability of the NCEP CFSR data.The data from 16 July 1989 to 31 December 2009 were processed.Twenty years of monthly mean values were obtained by averaging the appropriate daily values of each month.

    The meteorological variables obtained by the buoy and the NCEP CFSR dataset during 1-30 April 2009 show that,in general,the NCEP CFSR data agree well with the buoy measurement data(Fig.4a). However,the NCEP CFSR data do deviate slightly from the buoy data at some points in April 2009;these deviations may be caused by data assimilation techniques and the lack of observational data.

    The monthly average(Fig. 4b)and standard deviation(Fig. 4c)of the meteorological variables derived from the NCEP CFSR dataset are consistent with the buoy data.The monthly averages of the derived EDHs also show good agreement between the NCEP CFSR and the buoy data,with the maximum difference of about 1 m (Fig.4d).From January to March,the EDH calculated from the buoy data is higher than that obtained from the NCEP CFSR dataset,because the air temperature is higher and the relative humidity is lower,according to the buoy data.The maximum difference between the monthly standard deviations of EDH is less than 0.5 m(Fig. 4e);the uncertainty of the EDH due to deviations in the NCEP CFSR data from the buoy observations is discussed in the Appendix.Overall,these comparisons show that the NCEP CFSR dataset is reliable for constructing the EDH climatology over the SCS.

    In this paper,the reference height of atmospheric variables is set to 2 m in the NAVSLaM-GR model(the same height as that used for air temperature and relative humidity).The reanalysis height of wind speed from the NCEP CFSR data is 10 m.However,as shown in Fig.4a,the NCEP CFSR data are consistent with the wind speed data from the buoy(with measurement height of about 2 m).Thus,the NCEP CFSR wind speed data are used in the evaporation duct model.

    2.2.3 The APM propagation model

    The parabolic equation(PE)method has been widely used to calculate electromagnetic wave propagation in evaporation ducts.The advantage of the PE method is that it can simulate electromagnetic wave propagation in a range-dependent troposphere environment.The standard parabolic equation can be obtained from the Helmholtz equation,with certain assumptions,and expressed in the form of

    where u represents a scalar component of the electric field for horizontal polarization,or a scalar component of the magnetic field for vertical polarization,z is the height,x is the range,k0is the free space wave number,and m is the modified refractive index.

    In this paper,the APM is used to calculate the electromagnetic wave propagation in the evaporation duct(Space and Naval Warfare Systems Center,2006;Barrios and Patterson,2002).The APM model is a hybrid model that combines the radio physical optics(RPO)model and terrain parabolic equation model(TPEM)in a relatively fast code.The APM is used in the AREPS,which is used widely for the assessment of electromagnetic systems.The APM has also been validated in various terrain and evaporation duct environments(Anderson et al.,2004;Barrios et al.,2006).

    3.Results

    The spatiotemporal characteristics of the EDHduring different months in the SCS are inhomogeneous(Fig.5;Table 3).The characteristics for the different areas in the SCS are analyzed below.

    Fig.4.Comparison between the NDBC buoy observations and the NCEP CFSR data at the nearest grid point.(a)Air temperature(AT),sea surface temperature(SST),wind speed(WS),and relative humidity(RH)during 1-30 April 2009;(b)monthly mean values and(c)standard deviations of these variables(squares:buoy data;circles:NCEP CFSR data);and(d)monthly mean values and(e)standard deviations of the EDH.

    (1)The Beibu Gulf:the average EDH is low in January and February(<10 m)and high in April,May,and July;it is highest in July(average 13.8 m). In summer,the maximal height of the EDH(>20 m)appears in the northwest of Hainan Island and thenortheast of Vietnam.The EDH decreases a little in autumn,but in November,as winter approaches,the whole area has a high EDH.The standard deviation of the EDH in the Beibu Gulf is higher than in other parts of the SCS,reaching a maximum in April(4.5 m).

    Fig.5.Spatiotemporal characteristics of the EDH(m)over the SCS.(a)-(l)January-December.

    Table 3.Statistics of the EDH(m)in different regions of the SCS(mean±standard deviation;m)

    (2)The northern SCS:during January-August,the average EDH ranges between 10 and 12 m.The average EDH increases rapidly during September-November,when it reaches its maximum value(average 14.3 m).Then,from December to next February,the EDH quickly decreases to about 10 m;the minimum average EDH occurs in April(10.2 m).The maximal EDH always appears between the Taiwan Region and the Philippines during spring-,summer-,and wintertime.In November and December,the EDH is high across the whole area.The standard deviation of the EDH is highest in November(2.5 m).

    (3)The middle SCS:the maximum and minimum average EDHs occur in December(13.1 m)and October(9.9 m),respectively.During wintertime,the whole area has a high EDH.As spring approaches,there is an obvious decrease of the EDH and the minimal EDH occurs in the south of the area.In summertime,the EDH remains above 10 m and the maximal band moves to the southeast of Vietnam;this region is far from the coast.The standard deviation of the EDH is relatively stable throughout the year(<2 m).

    (4)The southern SCS:the maximum and minimum EDHs occur in September(12.0 m)and March(9.6 m),respectively.During wintertime,the minimal EDH(<10 m)occurs in the northwest of Malaysia.As spring approaches,the EDH increases rapidly and the maximal height appears in the southern part of this area in May.During September-October,the EDH quickly decreases to around 10 m.The standard deviation of the EDH is relatively stable in this region(<2 m).

    4.Discussion

    4.1 Comparison of EDHs derived from the old and new climatologies

    Comparison between the monthly average EDHs of the old and new climatologies in the SCS reveals differences in their magnitudes(Fig.6).The old climatology overestimates the monthly average EDH,which is between 15 and 18 m(Fig.6a).The monthly average EDH is between 10 and 12 m throughout the year in the new climatology;the monthly average reaches maximum in December(12.2 m)and minimum in March(10.4 m).The standard deviation of the EDH for the new climatology is also relatively stable(<1.5 m;Fig.6b).

    A spatial comparison of the EDH between the old and new climatologies in December shows that the new climatology has a better spatial resolution of the EDH in the SCS(old:10°×10°;new:0.312°×0.313°;Figs.6c and 6d).A comparison of the statistical features of the EDH near Huangyan Island in December shows that the monthly average EDH in the old climatology is 17.95 m,but it is 12.42 m in the new one. The monthly average EDH and the standard deviation are overestimated in the old climatology.This overestimation causes significant impacts on the modeling of electromagnetic wave propagation in evapora-tion ducts.

    The APM (Barrios and Patterson,2002;Space and Naval Warfare Systems Center,2006)and the monthly average EDH in Huangyan Island are used here to model the electromagnetic wave propagation in the evaporation duct.The modified refractivityprofiles show that the EDHs of the old and new climatologies are 17.95 and 12.42 m,respectively(Fig. 7a).The modified refractivity profiles are input into the APM model to calculate path loss;in the simulation,the transmitting antenna height is 10 m,the electromagnetic wave frequency is 10 GHz,the polarization of the electromagnetic waves is horizontal,the antenna pattern is omnidirectional,and the computed distance is 100 km.

    Fig.6.Comparison between the(a)monthly average and(b)standard deviation of the EDHs in the old and new climatologies over the SCS.(c,d)Spatial variations of the EDH in December and(e,f)statistical features of the EDH near Huangyan Island in December,based on the(c,e)old and(d,f)new climatologies.

    The path loss computed by the APM shows that when the EDH is 17.95 m,the path loss at 10 m is less than that calculated when the EDH is 12.42 m(Figs.7b and 7c).The path loss simulated at 100 km with the new climatology is 145 dB,while it is 137 dB(height:10 m)with the old climatology.Thus,the new climatology results in about an 8-dB increase at the range of 100 km.This difference will cause significant impacts on the predictions of the radar detection and communication ranges.

    4.2 Spatiotemporal characteristics of the EDH over the South China Sea

    Sensitivity analyses of the meteorological parameters revealed a couple of important features(Fig. 8).Firstly,under unstable conditions(ASTD<0℃),there is a stronger evaporation duct,with higher air and sea surface temperatures,higher wind speed,and lower relative humidity.Secondly,under stable conditions(ASTD>0℃),the ASTD affects the EDH significantly,and the relationships between the EDHand the meteorological parameters are more complicated.A very high evaporation duct will occur with higher air and sea surface temperatures,lower wind speed,and lower relative humidity.

    Fig.7.Comparison of the EDH effect of the old and new climatologies on electromagnetic wave propagation in the evaporation duct.(a)The modified refractivity profile(red line:old climatology;blue line:new climatology),(b)the path loss at the height of 10 m,and the path loss(shading;dB)distributions of(c)old and(d)new EDH climatologies.

    Fig.8.Sensitivity analyses of the EDH computed by using the evaporation duct model when(a1-a4)sea surface temperature is 26℃and(b1-b4)wind speed is 5 m s-1.

    Fig.9.Spatiotemporal characteristics of(a1-a4)ASTD(℃),(b1-b4)wind speed(m s-1),and(c1-c4)relative humidity(%)over the SCS for(a1,b1,c1)January,(a2,b2,c2)April,(a3,b3,c3)July,and(a4,b4,c4)October.

    The spatiotemporal characteristics of the ASTD,wind speed,and relative humidity over the SCS during different months(Fig.9)reveal the causes of the spatiotemporal characteristics of the EDH in the different regions,as discussed below.

    (1)The Beibu Gulf:the EDH is high from October to November,and during this period the ASTD is negative,resulting in unstable conditions(Fig.9a). The high wind speeds(more than 10 m s-1;Fig. 9b)and low relative humidity(less than 70%;Fig. 9c)cause the high EDH in this area during October-November.

    (2)The northern SCS:the EDH is very high in winter,during which there are unstable conditions in this area(ASTD<-2℃;Fig.9a).The wind speeds are more than 12 m s-1and the relative humidity is less than 75%during winter(Figs.9b and 9c),which increases the EDH.In June and July,there are neutral or stable conditions in the area,and the high relative humidity makes the EDH low(Fig.9c).

    (3)The middle SCS:in this area,there are neutral or unstable conditions throughout the year.The EDH is between 10 and 12 m in most months,and the relative humidity is above 80%in this area.The wind speeds are more than 10 m from November to next February,which causes relatively high EDHs during this period.

    (4)The southern SCS:the EDH is about 10 m from April to November.During this period,there are unstable conditions in the area(ASTD<0℃). The wind speeds are less than 5 m s-1and the relative humidity is above 75%;the low wind speeds are the primary cause of the low EDH in this area.In March,stable conditions prevail,and the high relative humidity and low sea surface temperature make the EDH low.

    5.Conclusions

    This paper presents a new evaporation duct climatology over the SCS.The primary work of this paper is summarized as follows:

    (1)The new evaporation duct climatology is computed by using a state-of-the-art evaporation duct model(the NAVSLaM-GR model)and an improved meteorology dataset(NCEP CFSR dataset). The new climatology provides a better spatial resolution(0.312°×0.313°)of the EDH over the SCS.

    (2)The spatiotemporal characteristics of the evaporation duct over the SCS are analyzed based on the new climatology.Generally speaking,the EDH is higher in winter than in other seasons.The spatiotemporal characteristics for each part of the SCS are discussed.

    (3)A comparison between the EDH of the new and old climatologies is performed.In the new climatology,the monthly average EDH is between 10 and 12 m,and the standard deviation of the EDH is below 1.5 m over the SCS;the corresponding values derived from the old climatology are overestimated.

    (4)A comparison between the statistical features of the EDH near Huangyan Island in the new and old climatologies is also presented.The differences and their impacts on electromagnetic wave propagation are discussed.

    The characteristics of the new evaporation duct climatology make it possible to investigate the effects of the horizontally inhomogeneous evaporation duct on electromagnetic wave propagation.It will be valuable to study shipborne electromagnetic systems'performances,based on the statistical characteristics of the evaporation duct over the SCS.

    APPENDIX

    The uncertainty of the EDH is estimated based on the NCEP CFSR data and the buoy data(in Section 2.2.2)in 2008.The EDH derived from the NCEP CFSR data(NCEP EDH)and the EDH derived from the the buoy data(buoy EDH)in 2008 show that,in general,the EDHs derived from the two datasets are consistent(Figs.A1a and A1b),although there are some differences between the NCEP EDH and the buoy EDH.The average and standard deviation of the differences in the EDH are 1.08 and 1.64 m,respectively.The probability distribution of the differences in the EDH in 2008(between the two datasets)showsthat the probability that the differences in the EDH ranged from-2 to 2 m is near 80%for 2008(Fig.A1c).

    Fig.A1.The uncertainty of the EDH,analyzed by the differences between the EDHs derived from the NCEP CFSR data and the buoy observational data.(a1)Comparison between the buoy EDH and NCEP EDH,(a2)EDH deviation,(b)comparison between the NCEP EDH and the buoy EDH,(c1)inpterval probability of the EDH difference,and(c2)accumulation probability of the EDH difference.

    Acknowledgments.We would like to thank Lei Bo,Yan Xidang,and Zhang Qi at Northwestern Polytechnical University for their helpful discussion on this paper.

    Anderson,K.D.,1995:Radar detection of low-altitude targets in a maritime environment.IEEE Trans. Antennas Propag.,43,609-613.

    Anderson,K.D.,S.Doss-Hammel,D.Tsintikidis,et al.,2004:The RED experiment:An assessment of boundary layer effects in a trade winds regime on microwave and infrared propagation over the sea. Bull.Amer.Meteor.Soc.,85,1355-1365.

    Babin,S.M.,G.S.Young,and J.A.Carton,1997:A new model of the oceanic evaporation duct.J.Appl. Meteor.,36,193-204.

    Babin,S.M.,and G.D.Dockery,2002:LKB-based evaporation duct model comparison with buoy data.J. Appl.Meteor.,41,434-446.

    Barrios,A.E.,and W.L.Patterson,2002:Advanced propagation model(APM)ver.1.3.1 computer software configuration item(CSCI)documents,1-10.

    Barrios,A.E.,K.D.Anderson,and G.Lindem,2006:Low altitude propagation effects—A validation study of the advanced propagation model(APM)for mobile radio applications.IEEE Trans.Antennas Propag.,54,2869-2877.

    Cheng,Y.G.,and W.Brutseaert,2005:Flux-profile relationships for wind speed and temperature in the stable atmospheric boundary layer.Bound.-Layer Meteor.,114,519-538.

    Cheng Yinhe,Zhou Shengqi,and Wang Dongxiao,2013a:Review of the study of atmospheric ducts over the sea.Adv.Earth Sci.,28,318-326.(in Chinese)

    Cheng Yinhe,Zhang Yusheng,Zhao Zhenwei,et al.,2013b:Analysis on the evaporation duct environment near coast of the northern South China Sea in winter.Chinese J.Radio Sci.,28,697-703.(in Chinese)

    Ding Juli,F(xiàn)ei Jianfang,Huang Xiaogang,et al.,2015a:Development and validation of an evaporation duct model.Part I:Model establishment and sensitivity experiments.J.Meteor.Res.,29,467-481.

    Ding Juli,F(xiàn)ei Jianfang,Huang Xiaogang,et al.,2015b:Development and validation of an evaporation duct model.Part II:Evaluation and improvement of stability functions.J.Meteor.Res.,29,482-495.

    Frederickson,P.A.,2012:Improving the Characterization of the Environment for AREPS Electromagnetic Performance Predictions.Weather Impacts Decision Aids(WIDA)Workshop.Reno,NV,6-8.

    Frederickson,P.A.,K.L.Davidson,and A.K.Goroch,2000:Operational evaporation duct model for MORIAH.Naval Postgraduate School Report,10-25.

    Grachev,A.A.,E.L.Andreas,C.W.Fairall,et al.,2007:SHEBA flux-profile relationships in the stable atmospheric boundary layer.Bound.-Layer Meteor.,124,315-333.

    Hitney,H.V.,and L.R.Hitney,1990:Frequency diversity effects of evaporation duct propagation.IEEE Trans.Antennas Propag.,38,1694-1700.

    Jiao Lin and Zhang Yonggang,2009:An evaporation duct prediction model coupled with the MM5.Acta Meteor.Sinica,67,382-387.(in Chinese)

    Levy,M.F.,and K.H.Craig,1989:Case studies of transhorizon propagation:Reliability of predictions using radiosonde data.Sixth International Conference on Antennas and Propagation.IEEE,Coventry,456-460.

    Li Yunbo,Zhang Yonggang,Tang Haichuan,et al.,2009:Oceanic evaporation duct diagnosis model based on air-sea flux algorithm.J.Appl.Meteor.Sci.,20,628-633.(in Chinese)

    Liu,W.T.,K.B.Katsaros,and J.A.Businger,1979:Bulk parameterization of air-sea exchanges of heat and water vapor including the molecular constraints at the interface.J.Atmos.Sci.,36,1722-1735.

    Musson-Genon,G.L.,S.Gauthier,and E.Bruth,1992:A simple method to determine evaporation duct height in the sea surface boundary layer. Radio Sci.,27,635-644.

    Newton,D.A.,2003:COAMPS modeled surface layer refractivity in the roughness and evaporation duct experiment 2001.Naval Postgraduate Dissertation,23 pp.

    Paulus,P.A.,1985:Practical application of an evaporation duct model.Radio Sci.,20,887-896.

    Pons,J.,S.C.Reising,S.Padmanabhan,et al.,2003:Passive polarimetric remote sensing of the ocean surface during the Rough Evaporation Duct experiment(RED 2001).2003 IEEE International Geoscience and Remote Sensing Symposium.IEEE,Toulouse,2732-2734.

    Saha,S.,S.Moorthi,H.L.Pan,et al.,2010:The NCEP climate forecast system reanalysis. Bull. Amer. Meteor.Soc.,91,1015-1057.

    Space and Naval Warfare Systems Center,2006:User's manual(UM)for Advanced Refractive Effects Prediction System Version 3.6,285 pp.

    Twigg,K.L.,2007:A smart climatology of evaporation duct height and surface radar propagation in the Indian Ocean.Ph.D.dissertation,Naval Postgraduate School,26 pp.

    Wash,C.H.,and K.L.Davidson,1994:Remote measurements and coastal atmospheric refraction.Geoscience and Remote Sensing Symposium. IEEE,Pasadena,397-401.

    Woods,G.S.,A.Ruxton,C.Huddlestone-Holmes,et al.,2009:High-capacity,long-range,over ocean microwave link using the evaporation duct.IEEE J. Oceanic Eng.,34,323-330.

    Yao Zhanyu,Zhao Bolin,Li Wanbiao,et al.,2000:The analysis on charateristics of atmospheric duct and its effects on the propagation of eletromagnetic wave. Acta Meteor.Sinica,58,605-616.(in Chinese)

    Yardim,C.,P.Gerstoft,and W.S.Hodgkiss,2008:Tracking refractivity from clutter using Kalman and particle filters.IEEE Trans.Antennas Propag.,56,1058-1070.

    Zhao Xiaofeng,Wang Dongxiao,Huang Sixun,et al.,2013:Statistical estimations of atmospheric duct over the South China Sea and the tropical eastern Indian Ocean.Chin.Sci.Bull.,58,2794-2797.

    Shi Yang, Yang Kunde, Yang Yixin, et al., 2015: A new evaporation duct climatology over the South China Sea. J. Meteor. Res., 29(5), 764-778,

    10.1007/s13351-015-4127-6.

    (Received December 11,2014;in final form June 30,2015)

    猜你喜歡
    楊坤
    青春是可以雕塑的
    青春是可以雕塑的
    Degradation of tiamulin by a packed bed dielectric barrier plasma combined with TiO2 catalyst
    Generation of domain-wall solitons in an anomalous dispersion fiber ring laser*
    楊坤推出全新專輯首支主打歌曲《路》
    青年歌聲(2019年8期)2019-08-22 02:02:38
    圓錐曲線的一題多解
    楊坤:留下“心靈導師”做愛人
    楊坤:我的撒手锏就是掏心窩子
    中國好聲音之“楊三十二郎”
    意林(2012年17期)2012-05-30 01:09:35
    就想當介好兵的大學生
    金色年華(2010年5期)2010-04-29 08:07:07
    亚洲精品乱久久久久久| 三级国产精品欧美在线观看| 人妻夜夜爽99麻豆av| 日韩一本色道免费dvd| 汤姆久久久久久久影院中文字幕| 国产精品国产三级国产av玫瑰| 91久久精品国产一区二区三区| 69av精品久久久久久| 日本欧美国产在线视频| 久热久热在线精品观看| 赤兔流量卡办理| 国产成人精品福利久久| h日本视频在线播放| 韩国高清视频一区二区三区| 色5月婷婷丁香| 色视频www国产| 一区二区三区免费毛片| 久久久久久久久大av| 日韩中字成人| 亚洲av国产av综合av卡| 久久精品国产亚洲av涩爱| av在线app专区| 免费看日本二区| 成年免费大片在线观看| 少妇熟女欧美另类| 水蜜桃什么品种好| 国产欧美日韩一区二区三区在线 | 偷拍熟女少妇极品色| 亚洲,一卡二卡三卡| 国产精品久久久久久精品电影小说 | 大又大粗又爽又黄少妇毛片口| 免费看不卡的av| 在线天堂最新版资源| 日本与韩国留学比较| 亚州av有码| 观看美女的网站| 亚洲av免费高清在线观看| 国产精品久久久久久久久免| a级一级毛片免费在线观看| .国产精品久久| 国产精品福利在线免费观看| 欧美精品国产亚洲| 啦啦啦中文免费视频观看日本| 大香蕉97超碰在线| 国产久久久一区二区三区| kizo精华| 日本黄大片高清| 99热国产这里只有精品6| 国产视频首页在线观看| 人妻少妇偷人精品九色| 国产色爽女视频免费观看| 亚洲在久久综合| 交换朋友夫妻互换小说| 一本色道久久久久久精品综合| 欧美一区二区亚洲| 国产成人aa在线观看| 亚洲精品乱码久久久v下载方式| 最近最新中文字幕大全电影3| 不卡视频在线观看欧美| 2021天堂中文幕一二区在线观| 国产男人的电影天堂91| 禁无遮挡网站| 免费黄频网站在线观看国产| 国产男女超爽视频在线观看| 久久精品久久久久久噜噜老黄| 成人特级av手机在线观看| 99久久精品国产国产毛片| 亚洲国产成人一精品久久久| 一个人看视频在线观看www免费| 天天躁夜夜躁狠狠久久av| 免费电影在线观看免费观看| 91精品伊人久久大香线蕉| 一级黄片播放器| 亚洲人成网站高清观看| 女人久久www免费人成看片| 久久99蜜桃精品久久| 亚洲内射少妇av| 能在线免费看毛片的网站| 久久99热6这里只有精品| 久久精品国产a三级三级三级| 亚洲,欧美,日韩| 久久久亚洲精品成人影院| 中国三级夫妇交换| 97热精品久久久久久| 男人狂女人下面高潮的视频| 国产伦在线观看视频一区| 日韩av在线免费看完整版不卡| 激情五月婷婷亚洲| 日韩亚洲欧美综合| 欧美高清成人免费视频www| 日日啪夜夜撸| 色播亚洲综合网| 日本三级黄在线观看| 夫妻性生交免费视频一级片| 国产成人精品婷婷| 亚洲精品第二区| 国产伦理片在线播放av一区| 国产精品秋霞免费鲁丝片| 一本久久精品| 久久久欧美国产精品| 亚洲一区二区三区欧美精品 | 免费看不卡的av| 午夜福利在线在线| 国产av不卡久久| 精品久久久精品久久久| 老女人水多毛片| 国产精品一区二区在线观看99| 久久国产乱子免费精品| 国产高清有码在线观看视频| 又爽又黄无遮挡网站| 亚洲精华国产精华液的使用体验| 国产永久视频网站| 激情 狠狠 欧美| 国产人妻一区二区三区在| 国产精品麻豆人妻色哟哟久久| 亚洲成色77777| 欧美bdsm另类| 免费观看无遮挡的男女| 亚洲精品乱码久久久v下载方式| 国产一区二区三区综合在线观看 | 亚洲精品日韩在线中文字幕| 一级毛片电影观看| 亚洲精品第二区| 免费黄频网站在线观看国产| 日韩成人伦理影院| 国产精品不卡视频一区二区| 午夜精品一区二区三区免费看| 91精品国产九色| 免费看日本二区| 久久精品国产a三级三级三级| 亚洲精品国产av蜜桃| 国产成人aa在线观看| 久久久久精品性色| 久久精品国产亚洲网站| 蜜桃亚洲精品一区二区三区| 免费黄色在线免费观看| 亚洲成人久久爱视频| 国产精品久久久久久久久免| 日韩国内少妇激情av| 精品人妻视频免费看| 欧美性猛交╳xxx乱大交人| 久久人人爽人人片av| 成年女人在线观看亚洲视频 | av在线播放精品| 国产视频内射| 国产精品.久久久| 精品国产乱码久久久久久小说| 亚洲精品久久午夜乱码| 中文字幕免费在线视频6| 亚洲在久久综合| 亚洲第一区二区三区不卡| 日韩中字成人| 成人无遮挡网站| videos熟女内射| 国产熟女欧美一区二区| 亚洲av福利一区| av国产久精品久网站免费入址| 毛片女人毛片| 亚洲丝袜综合中文字幕| 免费av不卡在线播放| 街头女战士在线观看网站| 偷拍熟女少妇极品色| 性色av一级| 熟女av电影| 免费高清在线观看视频在线观看| 最近中文字幕高清免费大全6| 又爽又黄无遮挡网站| 联通29元200g的流量卡| 天天一区二区日本电影三级| 欧美亚洲 丝袜 人妻 在线| 亚洲欧洲日产国产| 国产精品久久久久久精品古装| 欧美日本视频| freevideosex欧美| 亚洲精品国产色婷婷电影| 69人妻影院| 美女视频免费永久观看网站| 九草在线视频观看| 18禁裸乳无遮挡动漫免费视频 | 性色av一级| 国产高清三级在线| 亚洲一区二区三区欧美精品 | 小蜜桃在线观看免费完整版高清| 22中文网久久字幕| 美女xxoo啪啪120秒动态图| 极品教师在线视频| 免费观看av网站的网址| 国产男人的电影天堂91| a级毛色黄片| 亚洲在久久综合| 久久国产乱子免费精品| 少妇猛男粗大的猛烈进出视频 | 国内揄拍国产精品人妻在线| 婷婷色综合www| 97超碰精品成人国产| 欧美日韩在线观看h| 久久久久久久精品精品| 国产久久久一区二区三区| 美女脱内裤让男人舔精品视频| 免费电影在线观看免费观看| 大码成人一级视频| 免费观看性生交大片5| 少妇熟女欧美另类| 黄色一级大片看看| 精品久久久久久电影网| 在线 av 中文字幕| 国产伦理片在线播放av一区| 26uuu在线亚洲综合色| 97在线视频观看| 色视频www国产| 日韩,欧美,国产一区二区三区| 亚洲欧美精品专区久久| av国产久精品久网站免费入址| 又黄又爽又刺激的免费视频.| 制服丝袜香蕉在线| 国产亚洲最大av| 国产69精品久久久久777片| www.av在线官网国产| 看非洲黑人一级黄片| av国产久精品久网站免费入址| 久久久久久久亚洲中文字幕| 22中文网久久字幕| 亚洲欧美日韩卡通动漫| 免费看日本二区| 成年版毛片免费区| 国产精品一及| 亚洲国产精品成人久久小说| 日日摸夜夜添夜夜添av毛片| 22中文网久久字幕| 亚洲国产精品成人综合色| 又爽又黄a免费视频| 麻豆久久精品国产亚洲av| 一级毛片电影观看| 亚洲不卡免费看| 插逼视频在线观看| 国产成人福利小说| 美女视频免费永久观看网站| 大话2 男鬼变身卡| 听说在线观看完整版免费高清| 人妻系列 视频| 天天一区二区日本电影三级| 99热网站在线观看| 乱系列少妇在线播放| 伦精品一区二区三区| 精品一区二区免费观看| 免费黄色在线免费观看| 人人妻人人澡人人爽人人夜夜| 亚洲精品乱久久久久久| 少妇 在线观看| 十八禁网站网址无遮挡 | 插阴视频在线观看视频| 国产免费又黄又爽又色| 九九在线视频观看精品| 交换朋友夫妻互换小说| 午夜福利高清视频| 日韩av在线免费看完整版不卡| 婷婷色综合大香蕉| 国产av不卡久久| 亚洲精品久久午夜乱码| 别揉我奶头 嗯啊视频| 人人妻人人看人人澡| 亚洲成人精品中文字幕电影| 国产精品爽爽va在线观看网站| 国产中年淑女户外野战色| 日韩视频在线欧美| 中文天堂在线官网| 黄片无遮挡物在线观看| 女人十人毛片免费观看3o分钟| 免费黄频网站在线观看国产| 少妇丰满av| 一级黄片播放器| 国产有黄有色有爽视频| 天天躁日日操中文字幕| 久久鲁丝午夜福利片| 97在线视频观看| 日本一本二区三区精品| av免费在线看不卡| 高清毛片免费看| 亚洲真实伦在线观看| 在线 av 中文字幕| 亚洲欧美精品自产自拍| 一级毛片我不卡| 久久久久国产网址| 日本av手机在线免费观看| 亚洲丝袜综合中文字幕| 又粗又硬又长又爽又黄的视频| 日本三级黄在线观看| 亚洲熟女精品中文字幕| 亚洲成人一二三区av| 中文字幕av成人在线电影| 婷婷色综合www| 白带黄色成豆腐渣| 亚洲国产精品成人综合色| 亚洲性久久影院| 欧美少妇被猛烈插入视频| 亚洲人成网站高清观看| 国产精品国产三级国产av玫瑰| 久久久久久久国产电影| 久久精品国产自在天天线| 成年免费大片在线观看| 亚洲精品日韩在线中文字幕| 男人和女人高潮做爰伦理| 成人亚洲精品一区在线观看 | 国产精品久久久久久av不卡| 五月开心婷婷网| 国产视频首页在线观看| 国产成人午夜福利电影在线观看| 欧美少妇被猛烈插入视频| 夜夜爽夜夜爽视频| 精品午夜福利在线看| 亚洲国产精品国产精品| 国产精品秋霞免费鲁丝片| 免费看日本二区| 久久99精品国语久久久| 国产亚洲一区二区精品| 亚洲精品视频女| 国产片特级美女逼逼视频| 最近中文字幕2019免费版| 啦啦啦中文免费视频观看日本| av在线亚洲专区| av一本久久久久| 可以在线观看毛片的网站| 大码成人一级视频| 中文在线观看免费www的网站| 国产亚洲5aaaaa淫片| 中文乱码字字幕精品一区二区三区| www.av在线官网国产| 亚洲av一区综合| 国产成人午夜福利电影在线观看| 亚洲最大成人av| 秋霞伦理黄片| 国产精品av视频在线免费观看| 久热久热在线精品观看| 欧美bdsm另类| 亚洲不卡免费看| 少妇丰满av| 国产精品蜜桃在线观看| 黄片wwwwww| 欧美成人精品欧美一级黄| 国产精品成人在线| 婷婷色av中文字幕| 3wmmmm亚洲av在线观看| 中文字幕免费在线视频6| av国产免费在线观看| 一级av片app| av播播在线观看一区| 99热6这里只有精品| 22中文网久久字幕| 99热全是精品| 国产午夜精品久久久久久一区二区三区| 亚洲精品成人av观看孕妇| 国内少妇人妻偷人精品xxx网站| 国产片特级美女逼逼视频| 制服丝袜香蕉在线| 中文乱码字字幕精品一区二区三区| 国产成人精品久久久久久| 99久久精品国产国产毛片| 夜夜看夜夜爽夜夜摸| 丰满少妇做爰视频| 午夜福利在线观看免费完整高清在| 高清欧美精品videossex| 亚洲精品一区蜜桃| 成人国产av品久久久| 精品国产三级普通话版| 亚洲图色成人| 我的女老师完整版在线观看| 免费少妇av软件| av又黄又爽大尺度在线免费看| 男女那种视频在线观看| 一边亲一边摸免费视频| 一级爰片在线观看| 中文精品一卡2卡3卡4更新| 一级爰片在线观看| 色哟哟·www| 欧美一级a爱片免费观看看| 亚洲一级一片aⅴ在线观看| 国产大屁股一区二区在线视频| 一级毛片 在线播放| 在线观看人妻少妇| 在线观看三级黄色| 人妻 亚洲 视频| 91久久精品国产一区二区三区| 秋霞伦理黄片| av在线天堂中文字幕| 熟女av电影| 听说在线观看完整版免费高清| 色5月婷婷丁香| a级毛片免费高清观看在线播放| 人妻 亚洲 视频| 综合色av麻豆| 在线精品无人区一区二区三 | 少妇人妻精品综合一区二区| 亚洲精品自拍成人| 久久99热6这里只有精品| av在线观看视频网站免费| 国产精品一二三区在线看| 22中文网久久字幕| 性色av一级| 少妇人妻一区二区三区视频| 欧美成人午夜免费资源| 色吧在线观看| 日韩视频在线欧美| 久久ye,这里只有精品| av在线亚洲专区| 天美传媒精品一区二区| 久久女婷五月综合色啪小说 | 少妇高潮的动态图| 国语对白做爰xxxⅹ性视频网站| 你懂的网址亚洲精品在线观看| 亚洲av免费高清在线观看| 日韩欧美 国产精品| 国产黄色视频一区二区在线观看| 中文欧美无线码| 成人二区视频| 菩萨蛮人人尽说江南好唐韦庄| 观看免费一级毛片| 一级片'在线观看视频| 亚洲av中文字字幕乱码综合| 在线观看美女被高潮喷水网站| 99re6热这里在线精品视频| 亚洲aⅴ乱码一区二区在线播放| h日本视频在线播放| 国语对白做爰xxxⅹ性视频网站| 天堂中文最新版在线下载 | 国产熟女欧美一区二区| 丝袜脚勾引网站| 国内少妇人妻偷人精品xxx网站| 国产精品久久久久久精品电影小说 | 女的被弄到高潮叫床怎么办| 全区人妻精品视频| 精品少妇久久久久久888优播| av线在线观看网站| 日本黄大片高清| 国产成人福利小说| 国产v大片淫在线免费观看| 欧美日韩综合久久久久久| 九九久久精品国产亚洲av麻豆| 国产 精品1| 亚洲性久久影院| 亚洲国产欧美在线一区| 好男人在线观看高清免费视频| 欧美最新免费一区二区三区| 亚洲精品乱久久久久久| 亚洲国产精品国产精品| 五月伊人婷婷丁香| 久久99热6这里只有精品| av国产免费在线观看| 尤物成人国产欧美一区二区三区| 啦啦啦在线观看免费高清www| 美女被艹到高潮喷水动态| 国产精品爽爽va在线观看网站| 日本熟妇午夜| 美女cb高潮喷水在线观看| 午夜福利高清视频| 亚洲精品456在线播放app| 亚洲国产精品专区欧美| 成年女人在线观看亚洲视频 | 久久久欧美国产精品| 在线观看美女被高潮喷水网站| 伊人久久精品亚洲午夜| 国产在视频线精品| 国内揄拍国产精品人妻在线| 乱系列少妇在线播放| 久久久午夜欧美精品| 国产精品国产三级国产专区5o| 22中文网久久字幕| 国产精品国产三级国产专区5o| 成人黄色视频免费在线看| 久久精品国产a三级三级三级| 亚洲av福利一区| 国产伦理片在线播放av一区| 国产免费视频播放在线视频| 亚洲电影在线观看av| 麻豆成人午夜福利视频| 只有这里有精品99| 久久精品国产亚洲av天美| 国产成人精品婷婷| 99re6热这里在线精品视频| 欧美成人一区二区免费高清观看| 两个人的视频大全免费| 女人被狂操c到高潮| 日韩精品有码人妻一区| 欧美高清性xxxxhd video| 久久久成人免费电影| 成人综合一区亚洲| 一级毛片久久久久久久久女| 国产黄片美女视频| 国产精品熟女久久久久浪| 神马国产精品三级电影在线观看| 久久久久久久大尺度免费视频| 一级毛片 在线播放| 久久精品熟女亚洲av麻豆精品| av在线天堂中文字幕| 亚洲av二区三区四区| 最后的刺客免费高清国语| 日本黄大片高清| 国产69精品久久久久777片| 亚洲欧美成人综合另类久久久| 新久久久久国产一级毛片| 亚洲国产欧美人成| 成人高潮视频无遮挡免费网站| 王馨瑶露胸无遮挡在线观看| 亚洲激情五月婷婷啪啪| 在线亚洲精品国产二区图片欧美 | 久久亚洲国产成人精品v| 一二三四中文在线观看免费高清| 亚洲精品aⅴ在线观看| 国产精品国产三级国产专区5o| 九九久久精品国产亚洲av麻豆| 成人欧美大片| 少妇猛男粗大的猛烈进出视频 | 女的被弄到高潮叫床怎么办| 免费不卡的大黄色大毛片视频在线观看| 亚洲精品一二三| 一区二区三区免费毛片| 亚洲av国产av综合av卡| 日日啪夜夜爽| 狂野欧美激情性xxxx在线观看| 成人亚洲精品一区在线观看 | 狂野欧美白嫩少妇大欣赏| 少妇被粗大猛烈的视频| 亚洲丝袜综合中文字幕| av在线播放精品| av在线蜜桃| 特大巨黑吊av在线直播| 又粗又硬又长又爽又黄的视频| 十八禁网站网址无遮挡 | 亚洲精品国产色婷婷电影| 亚洲成色77777| 久久久久国产精品人妻一区二区| 99久久精品热视频| 午夜免费观看性视频| 最近中文字幕高清免费大全6| 高清午夜精品一区二区三区| 国产精品国产三级国产专区5o| 亚洲怡红院男人天堂| 国产成人精品一,二区| 18禁在线播放成人免费| 高清午夜精品一区二区三区| 啦啦啦啦在线视频资源| 日韩三级伦理在线观看| 日本熟妇午夜| 国产人妻一区二区三区在| 久久久久精品久久久久真实原创| 成人午夜精彩视频在线观看| 亚洲国产精品成人综合色| 99热网站在线观看| 国产淫语在线视频| 午夜福利视频精品| 日韩av不卡免费在线播放| 久久精品国产a三级三级三级| 亚洲最大成人av| 美女脱内裤让男人舔精品视频| 建设人人有责人人尽责人人享有的 | av播播在线观看一区| 日本一本二区三区精品| 69人妻影院| 成人毛片a级毛片在线播放| 欧美极品一区二区三区四区| 国国产精品蜜臀av免费| 国产男女超爽视频在线观看| 99热这里只有是精品在线观看| 18禁裸乳无遮挡动漫免费视频 | 国产免费视频播放在线视频| 亚洲激情五月婷婷啪啪| videos熟女内射| 欧美一区二区亚洲| 三级国产精品欧美在线观看| 久久久久久久国产电影| 亚洲精品国产成人久久av| 插逼视频在线观看| 蜜桃亚洲精品一区二区三区| 精品久久国产蜜桃| 成人亚洲欧美一区二区av| 欧美丝袜亚洲另类| 国产欧美另类精品又又久久亚洲欧美| 成人高潮视频无遮挡免费网站| 乱系列少妇在线播放| 少妇人妻久久综合中文| 日日摸夜夜添夜夜添av毛片| 国产精品嫩草影院av在线观看| 99热国产这里只有精品6| 国产精品国产av在线观看| 日韩免费高清中文字幕av| 哪个播放器可以免费观看大片| 可以在线观看毛片的网站| videossex国产| 国产一区二区三区av在线| 亚洲丝袜综合中文字幕| 97热精品久久久久久| 国产真实伦视频高清在线观看| 成年女人在线观看亚洲视频 | 男人舔奶头视频| 真实男女啪啪啪动态图| 亚洲,一卡二卡三卡| 亚洲精品日韩在线中文字幕| 国产亚洲av片在线观看秒播厂| 啦啦啦中文免费视频观看日本| 国产爱豆传媒在线观看| 中文在线观看免费www的网站| 国产黄片视频在线免费观看| 日韩一本色道免费dvd| 在线观看人妻少妇| 欧美zozozo另类| 汤姆久久久久久久影院中文字幕| 成人美女网站在线观看视频| 欧美zozozo另类| 蜜臀久久99精品久久宅男| 中文字幕久久专区| videossex国产| 免费观看a级毛片全部| 99久久精品一区二区三区| 婷婷色综合www| 又大又黄又爽视频免费| 亚洲国产精品999|