吉芳英,顏海波,何 強,趙 艮,牛鳳霞 (重慶大學三峽庫區(qū)生態(tài)環(huán)境教育部重點實驗室,低碳綠色建筑國際聯(lián)合研究中心,重慶 400045)
龍景湖龍景溝匯水區(qū)沉積物-水界面氮形態(tài)空間分布特征
吉芳英*,顏海波,何 強,趙 艮,牛鳳霞 (重慶大學三峽庫區(qū)生態(tài)環(huán)境教育部重點實驗室,低碳綠色建筑國際聯(lián)合研究中心,重慶 400045)
龍景湖是在原有河道基礎上閘壩新形成的深水湖泊,為研究龍景溝匯水區(qū)沉積物-水界面氮形態(tài)的空間分布特征,了解其遷移轉(zhuǎn)化過程,為內(nèi)源負荷預測分析、內(nèi)源控制及水質(zhì)治理提供基礎,依據(jù)形成歷史和水位深度將沉積物分為原河道、新淹沒底部和新淹沒邊坡3個區(qū),分別采集沉積物柱樣對沉積物上覆水和間隙水中各形態(tài)氮的濃度和表層沉積物泥樣總氮的含量進行分析.結(jié)果表明,沉積物上覆水和沉積物間隙水的總氮(TN)、氨氮(NH4+-N)、溶解態(tài)有機氮(DON)的濃度以及沉積物泥樣TN含量的分布趨勢與水位深度變化趨勢一致,表現(xiàn)為原河道>新淹沒底部>新淹沒邊坡;原河道、新淹沒底部、新淹沒邊坡沉積物間隙水TN的平均濃度分別為33.59,14.62,18.06mg/L, NH4+-N的平均濃度分別為23.01,8.39,13.75mg/L, DON的平均濃度分別為8.57,2.81,5.45mg/L,坡向變化顯著且遠高于上覆水,釋放潛力較大;原河道、新淹沒底部沉積物泥樣TN含量分別為3789、2984mg/kg,都明顯高于新淹沒邊坡的1270mg/kg.
龍景湖;沉積物-水界面;氮;空間分布
氮是淡水湖泊富營養(yǎng)化的重要限制因子之一,而沉積物作為湖泊水體中氮的重要“源”和“匯”[1-2],在一定條件下沉積物中的氮通過礦化作用,形成可溶性無機氮累積在間隙水[3],通過離子交換、分子擴散及生物擾動等作用,以間隙水為媒介向上覆水擴散遷移,進而影響上覆水水質(zhì),改變水體營養(yǎng)狀況[4-5].研究表明[6-9],在湖泊外源污染得到有效控制以后,沉積物作為氮源維持水體中高濃度氮營養(yǎng)的效果更加明顯,成為水體中氮的主要貢獻者,導致湖泊持續(xù)富營養(yǎng)化.
目前,國內(nèi)外對沉積物中氮的研究多集中于淺水湖泊[10-11]和海洋[12-13]沉積物氮的形態(tài)研究和垂向分布特征研究,關(guān)于深水湖泊和新形成河道型水庫沉積物中氮的相關(guān)研究[14-15]較少,且較少考慮沉積物形成時間、水位深度對沉積物-水界面各形態(tài)氮空間分布的影響.本文以龍景湖龍景溝匯水區(qū)作為研究對象,依據(jù)沉積物的形成時間和水位深度進行分區(qū),采樣研究各區(qū)域沉積物及上覆水和間隙水的氮賦存形式及含量水平,以期揭示龍景湖沉積物-水界面氮的空間分布特征,了解其遷移轉(zhuǎn)化過程,為內(nèi)源負荷預測分析、內(nèi)源控制及水質(zhì)治理提供參考.
1.1 研究區(qū)域概況
龍景湖位于重慶北部新區(qū)園博園內(nèi),介于29.680116°N~29.688836°N、106.539547°E~106.555087°E之間,水面總面積約0.67km2,大壩上游常水位標高306m,死水位296m,總庫容663萬m3,調(diào)節(jié)庫容425萬m3,水位深20~30m,換水周期約2.5a,是典型的新建深水位河道型水庫.龍景湖是在2011年閘壩形成的深水位河道型水庫,趙家溪和龍景溝為2條匯入河流,趙家溪流域面積約15km2,龍景溝流域面積約5km2.龍景湖閘壩攔截蓄水前未進行原河道清淤處理和建設初期施工攔截蓄水的新淹沒底部區(qū)域的清庫工作,龍景湖原河道沉積物有39622m2,新淹沒底部沉積物有130640m2,新淹沒邊坡沉積物有213168m2.隨著湖庫綜合整治,2014年基本切斷了龍景湖除面源外的其他外源性污染源.綜合整治前,龍景溝是該流域生活污水的受納水體,年污水匯入量約25.6萬m3/a,也是龍景湖外源氮的主要來源.
1.2 采樣區(qū)塊劃分
根據(jù)沉積物形成時間不同可將沉積物分為原河道沉積物和新淹沒沉積物,根據(jù)沉積物水位深度可將新淹沒沉積物進一步分為新淹沒底部沉積物和新淹沒邊坡沉積物.原河道沉積物是指2009年園博園規(guī)劃建設前就已經(jīng)存在的河道,由于龍景湖蓄水前未對原河道進行清淤處理,所以有一定沉積厚度的底泥;新淹沒底部沉積物和新淹沒邊坡沉積物是指(2012年)園博園建成后,湖區(qū)蓄水到設計常水位(306m)后較原河道沉積物所增加的區(qū)域,其中新淹沒底部沉積物是指水位較深的中間沉積物,由于建設初期底部區(qū)域未進行清庫工作,殘留了原始的植被和農(nóng)地,且底部區(qū)域地勢平緩,有利于有機質(zhì)的蓄積,所以沉積物相對較厚,有機質(zhì)含量相對較高;新淹沒邊坡沉積物是指水位較淺的邊緣區(qū)域沉積物,沉積物主要為裸露土壤及碎石表層.
1.3 樣品的采集與處理
2014年10月用柱狀采樣器(Corer 60,Uwitec, Austria)根據(jù)沉積物分類結(jié)果分區(qū)采樣,所有采樣點采用GPS進行定位導航,共采得27個柱樣,采樣點位置如圖1所示,其中新淹沒邊坡15個,新淹沒底部8個,原河道4個.采得的沉積物柱樣現(xiàn)場用橡膠塞進行密封,豎直放置、低溫保存、快速運回實驗室,靜置消除擾動影響,在24h內(nèi)完成上覆水和間隙水中各形態(tài)氮的測定.
用虹吸法取沉積物-水界面上方5cm水樣作為沉積物上覆水,取表層2cm沉積物10000r/min離心10min,得到的上清液即為沉積物間隙水,將其和上覆水用0.45μm微孔濾膜過濾,用于測定各形態(tài)氮的濃度.離心后的沉積物泥樣經(jīng)冷凍干燥、研磨、過100目篩后保存在封口袋中備用.
1.4 樣品的分析方法
圖1 沉積物采樣點分布Fig.1 Distribution of sediment sampling sites in Longjinghu Lake
2.1 沉積物上覆水中氮形態(tài)空間分布特征
圖2 沉積物上覆水中各形態(tài)氮的空間分布Fig.2 Spatial distribution of nitrogen forms in the overlying water
從圖2可以看出,沉積物上覆水中各形態(tài)氮的分布差異較大,TN、、DON濃度分別為1.02~7.47,0~5.65,0.44~4.31mg/L,分布趨勢相同,表現(xiàn)為原河道和底部區(qū)域濃度較高,邊坡區(qū)域較低,整體上從原河道和底部向邊坡逐漸降低,原因在于原河道與底部區(qū)域沉積物較厚,有機質(zhì)含量較高,礦化作用比較明顯,且水位較深(9~15m),溶解氧(DO)濃度較低或處于缺氧狀態(tài),有利于沉積物中的氮釋放到上覆水[18]. DON平均占TN的48%,高低值都出現(xiàn)在相同的區(qū)域,為TN的主要存在形式,說明沉積物可能是上覆水DON的主要來源[19],這與太湖沉積物及孔隙水中氮的時空分布特征一致[20].但北部區(qū)域DON的濃度與TN濃度相反,原因在于龍景溝匯水區(qū)北部呈低凹狀,且深度達12m,底部水體基本靜止,處于強還原性環(huán)境,且外源輸入低,導致該區(qū)域DON礦化程度大為TN的主要存在形態(tài),且被有效截留,濃度較高[21].濃度為0~1.69mg/L,出現(xiàn)2個峰值區(qū),一個在龍景溝匯水區(qū)的西南部,最大值為1.69mg/L,另一個在龍景溝匯水區(qū)的東北部,最大值為1.10mg/L,其他區(qū)域濃度均低于0.50mg/L,2個峰值區(qū)水體表面裝有曝氣裝置,對水體復氧的同時增加了水體的垂直運動,有利于表層富氧水團向底層運動,增加沉積物-水界面DO濃度,增強向的轉(zhuǎn)化,并削弱的削減[22],與波羅的海表層沉積物氮的空間分布[23]和北運河無機氮降解的研究結(jié)果[24]一致.
2.2 沉積物間隙水中氮形態(tài)空間分布特征
圖3 沉積物間隙水中各形態(tài)氮的空間分布Fig.3 Spatial distribution of nitrogen forms in the interstitial water
2.3 沉積物泥樣TN的空間分布特征
由圖4可以看出,沉積物泥樣TN的含量為453.58~4393.76mg/kg,分布變化與間隙水DON、TN相似,表現(xiàn)為從原河道和底部區(qū)域向邊坡區(qū)域逐漸降低.但沉積物泥樣TN含量的最大值卻出現(xiàn)在東北角的邊坡區(qū)域,可能是由于前期雨季大量營養(yǎng)鹽顆粒物和有機碎屑隨地表徑流經(jīng)該處的雨、污水管攜入沉積于此所致,說明點源對沉積物TN含量影響較大,與內(nèi)群島沉積物[30]和梁子湖沉積物[31]中氮分布特征一致.沉積物泥樣TN的分布趨勢表現(xiàn)為原河道>新淹沒底部>新淹沒邊坡,說明了按照形成時間和水位深度對沉積物進行分區(qū)的科學性和必要性.
圖4 沉積物泥樣TN的空間分布Fig.4 Spatial distribution of total nitrogen in the sediment
2.4 氮在不同介質(zhì)中的坡向分布特征
龍景溝匯水區(qū)原河道和新淹沒底部沉積物面積較小,分別為25769,3944m2,僅占龍景溝匯水區(qū)沉積物總面積的5.95%和3.84%,但沉積物泥樣TN含量都比較高(表1),原河道沉積物泥樣TN是新淹沒底部的1.27倍,新淹沒底部是邊坡的2.35倍,原因在于龍景溝匯水區(qū)地形呈V型峽谷狀,匯入的有機質(zhì)易往中間匯集,且在蓄水前未對原河道和新淹沒底部進行清庫工作,因此原河道和底部沉積物有機質(zhì)含量較高,沉積物泥樣TN含量也相應較高.據(jù)美國EPA中沉積物 TN污染的評價標準,TN<1000mg/kg時為清潔、1000~2000mg/kg時為輕污染、>2000mg/kg時為重污染[32],龍景溝匯水區(qū)原河道和新淹沒底部沉積物為重污染水平,新淹沒邊坡沉積物為輕污染.與國內(nèi)其它一些深水湖泊沉積物TN含量相比,龍景溝匯水區(qū)邊坡沉積物泥樣TN含量水平較低,與鄱陽湖和邛海沉積物TN含量相當;新淹沒底部沉積物TN含量水平稍高,與長壽湖和鏡泊湖沉積物TN含量水平相當;原河道沉積物TN含量水平較高,與洱海沉積物TN含量相當.
表1 不同深度沉積物泥樣TN含量Table 1 Contents of total nitrogen in the sediments of different depth
表2 不同深度沉積物上覆水和間隙水各形態(tài)氮濃度Table 2 Concentrations of nitrogen forms in the overlying water and interstitial water of different depth
沉積物間隙水與沉積物上覆水中各形態(tài)氮的質(zhì)量濃度梯度很大程度上決定著沉積物間隙水中氮素向沉積物上覆水擴散的強度.由表2可知,原河道沉積物間隙水TN、、、DON濃度分別是原河道沉積物上覆水的5.21、3.89、1.65、8.44倍,新淹沒底部沉積物間隙水是底部沉積物上覆水的4.29、3.21、1.28、6.64倍,新淹沒邊坡沉積物間隙水是邊坡沉積物上覆水的3.86、8.03、0.51、4.33倍,除了邊坡間隙水中濃度低于上覆水外,其他的都高于上覆水,、DON濃度梯度較大,沉積物間隙水中氮素存在向上覆水釋放的潛能.沉積物間隙水中TN以DON為主,無機氮以為主,分別約占TN的60%和40%,間隙水中比例較低;新淹沒邊坡沉積物上覆水DON占TN的57%,其次占27%,新淹沒底部和原河道沉積物上覆水均以和DON為主,分別約占TN的50%和40%和DON是沉積物氮素向沉積物上覆水釋放的主要形式.
3.2 沉積物泥樣TN含量與沉積物上覆水和間隙水中TN、、DON濃度的坡向變化顯著,但從新淹底部到邊坡的變化幅度高于從原河道到新淹沒底部,水位深度對沉積物-水界面氮形態(tài)分布的影響大于沉積物形成時間的影響.
[1]朱元榮,張潤宇,吳豐昌.滇池沉積物中氮的地球化學特征及其對水環(huán)境的影響 [J]. 中國環(huán)境科學, 2011,31(6):978-983.
[2]Chong L S, Prokopenko M G, Berelson W M, et al. Nitrogen cycling within suboxic and anoxic sediments from the continental margin of Western North America [J]. Marine Chemistry, 2012,128(129):13-25.
[3]Denis L, Grenz C, Alliot E, et al. Temporal variability indissolved inorganicnitrogen fluxes at the sediment-water interfaceand related annual budget on a continental shelf (NW Mediterranean) [J]. Oceanologica Acta, 2001,24(1):85-97.
[4]Stimson J, Larned S T. Nitrogen efflux from the sediments of a subtropical bay and the potential contribution to macroalgae nutrient requirements [J]. Journal of Experimental Marine Biology and Ecology, 2000,252(2):159-180.
[5]Shang J G, Zhang L, Shi C J, et al. Influence of Chironomid Larvae on oxygen and nitrogen fluxes across thesediment-water interface (Lake Taihu, China) [J]. Journalof Environmental Sciences-China, 2013,25(5):978-985.
[6]張家春,林紹霞,張清海,等.貴州草海底泥-上覆水中氮磷含量時空分布特征 [J]. 廣東農(nóng)業(yè)科學, 2014,(9):184-188.
[7]史 靜,俎曉靜,張乃明,等.滇池草海沉積物磷形態(tài)、空間分布特征及影響因素 [J]. 中國環(huán)境科學, 2013,33(10):1808-1813.
[8]王秋娟,李永峰,姜 霞,等.太湖北部三個湖區(qū)各形態(tài)氮的空間分布特征 [J]. 中國環(huán)境科學, 2010,30(11):1537-1542.
[9]Testa J M, Brady D C, Ditoro D M, et al. Sediment flux modeling:Simulating nitrogen, phosphorus, and silicacycles [J]. Estuarine,Coastal and Shelf Science, 2013,131:245-263.
[10]Santos I R, Bryan K R, Pilsitch C A, et al. Influence of porewater exchange on nutrient dynamics in two NewZealand estuarine intertidal flats [J]. Marine Chemistry, 2014,167:57-70.
[11]焦立新.淺水湖泊表層沉積物氮形態(tài)特征及在生物地球化學循環(huán)中的功能 [D]. 呼和浩特:內(nèi)蒙古農(nóng)業(yè)大學, 2007.
[12]Ray R, Majumder N, Das S, et al. Biogeochemical cycle of nitrogen in a tropical mangrove ecosystem, east coast of India [J]. Marine Chemistry, 2014,167:33-43.
[13]黃小平,郭 芳,岳維忠.南海北部沉積物間隙水中營養(yǎng)鹽研究[J]. 熱帶海洋學報, 2006,25(5):43-48.
[14]胡鵬飛,何太蓉.長壽湖表層沉積物中氮的賦存形態(tài)及污染評價[J]. 水土保持研究, 2012,19(4):163-167.
[15]潘延安,雷 沛,張 洪,等.重慶園博園龍景湖新建初期內(nèi)源氮磷分布特征及擴散通量估算 [J]. 環(huán)境科學, 2014,35(5):1727-1734.
[16]王雯雯,王書航,姜 霞,等.洞庭湖沉積物不同形態(tài)氮賦存特征及其釋放風險 [J]. 環(huán)境科學研究, 2013,26(6):598-605.
[17]高悅文,王圣瑞,張偉華,等.洱海沉積物中溶解性有機氮季節(jié)性變化 [J]. 環(huán)境科學研究, 2012,25(6):659-665.
[18]Zhang L, Wang S R, Wu Z H. Coupling effect of pH and dissolved oxygen in water column on nitrogen release at watersediment interface of Erhai Lake, China [J]. Estuarine, Coastal and Shelf Science, 2011,149:629-638.
[19]Xia X H, Liu T, Yang Z F, et al. Dissolved organic nitrogen transformation in river water: Effects of suspended sediment and organic nitrogen concentration [J]. Journal of Hydrology, 2013,484:96-104.
[20]張 彥,張 遠,于 濤,等.太湖沉積物及孔隙水中氮的時空分布特征 [J]. 環(huán)境科學研究, 2010,23(11):1333-1342.
[21]陳 月,何連生,席北斗,等.流速對河道系統(tǒng)截留氮、磷的影響[J]. 環(huán)境科學研究, 2008,21(4):99-103.
[22]Jing L D, Wu C X, Liu J T, et al. The effects of dredging on nitrogen balance in sediment-water microcosms and implications to dredging projects [J]. Ecological Engineering, 2013,52:167-174.
[23]Aigars J, Carman R. Seasonal and spatial variations of carbon and nitrogen distribution in the surface sediments of the Gulf of Riga,Baltic Sea [J]. Chemophere, 2001,43(3):313-320.
[24]Yu Y, Wu J, Wang X Y, et al. Degradation of Inorganic Nitrogen in Beiyun River of Beijing, China [J]. Procedia Environmental Sciences, 2012,13:1069-1075.
[25]Gardner W S, Mccarthy M J, CARINI S A, et al. Collection of intact sediment cores with overlying water to studynitrogen- and oxygen-dynamics in regions with seasonal hypoxia [J]. Continental Shelf Reserch, 2009,29(18):2207-2213.
[26]豐民義.東湖典型區(qū)域沉積物及間隙水中碳氮磷時空分布特征研究 [D]. 武漢:中國科學院水生物研究所, 2007.
[27]Han H J, Lu X X, Burger D F, et al. Nitrogen dynamics at the sediment-water interface in a tropical reservoir [J]. Ecological Engineering, 2014:146-153.
[28]Pauer J J, Auer M T. Nitrification in the water column and sediment of a hypereutrophic lake and adjoining river system [J]. Water Research, 2000,34(4):1247-1254.
[29]Dale A W, Sommer S, Bohlen L, et al. Rates and regulation of nitrogen cycling in seasonally hypoxic sediments during winter(Boknis Eck, SW Baltic Sea): Sensitivity to environmental variables[J]. Estuarine, Coastal and Shelf Science, 2011,95(1):14-28.
[30]Bohlin H S, Morth C, Holm N G. Point source influences on the carbon and nitrogen geochemistry of sediments in the Stockholm inner archipelago, Sweden [J]. Science of the Total Environment,2006,366(1):337-349.
[31]熊漢鋒,譚啟玲,王運華.梁子湖沉積物種氮磷分布特征研究 [J].華中農(nóng)業(yè)大學學報, 2008,27(2):235-238.
[32]A Guidance Manual to support the assessment of Contaminated Sediments in Freshwater ecosystems [S]. US EPA, 2002.
[33]沈洪艷,張綿綿,倪兆奎,等.鄱陽湖沉積物可轉(zhuǎn)化態(tài)氮分布特征及其對江湖關(guān)系變化的響應 [J]. 環(huán)境科學, 2015,36(1):87-93.
[34]Huo S L, Zhang J T, Xi B D, et al. Distribution of nitrogen forms in surface sediments of lakes from different regions, China [J]. Environ Earth Sci., 2014,71:2167-2175.
[35]Wang S R, Jin X C, Niu D L, et al. Potentially mineralizable nitrogen in sediments of the shallow lakes in the middle and lower reaches of the Yangtze River area in China [J]. Applied Geochemistry, 2009,24(9):1788-1792.
Distribution of nitrogen speciation at the sediment-water interface in Longjinggou Catchment Area of Longjinghu Lake.
JI Fang-ying*, YAN Hai-bo, ZHAO Gen, HE Qiang, NIU Feng-xia (Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, National Centre for International Research of Low-carbon and Green Buildings, Chongqing University, Chongqing 400045, China). China Environmental Science, 2015,35(10):3101~3107
Longjinghu Lake is a new deep lake based on the original channel with an artificial dam. Before comprehensive improvement, the sewage discharged into Longjinggou upstream is the main source of exogenous nitrogen of Longjinghu Lake. The paper aimed to investigate the space distribution characteristic of nitrogen forms and demonstrate the processes of nitrogen migration and transformation. According to the depth of water and aging age of sediments, sediment samples were collected from the three sampling regions including original channel, bottom region and slope of newly submerged area. Concentration of different nitrogen forms in the overlying water, interstitial water of sediment cores and total nitrogen in the surface sediment were analyzed. The results showed that there were existed similar speciation distribution trends of total nitrogen, ammonia nitrogen, and dissolved organic nitrogen in the above samples, and the distribution were: original channel > bottom region> slope area, which similar to the change trend of water depth. The average concentration of total nitrogen, ammonia nitrogen, dissolved organic nitrogen in the sediment interstitial water were 33.59, 14.62, 18.06mg/L and 23.01, 8.39, 13.75mg/L and 8.57, 2.81, 5.45mg/L respectively. The concentration change significantly along the slope and higher than that of overlying water, has great release potential. The average content of total nitrogen in the surface sediments from the original channel and the bottom region of newly submerged area were 3789 and 2984mg/kg respectively which was obviously higher than that of slope zone with the concentration of 1287mg/kg. The results could provide fundamentals for the prediction of internal load and the control of inner source pollution.
Longjinghu Lake;sediment-water interface;nitrogen;spatial distribution
X524
A
1000-6923(2015)10-3101-07
吉芳英(1964-),女,四川內(nèi)江人,教授,博士,主要從事水污染控制理論與技術(shù),環(huán)境規(guī)劃與管理,環(huán)境質(zhì)量評價等方向的研究.發(fā)表論文100篇.
2015-03-06
國家水體污染控制與治理科技重大專項(2012ZX07307-001)
* 責任作者, 教授, jfy@cqu.edu.cn