• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Efficient Coding Unit and Prediction Unit Decision Algorithm for Multiview Video Coding

    2015-11-18 10:11:34WeiHsiangChangMeiJuanChenGwoLongLiandYuTingChen

    Wei-Hsiang Chang, Mei-Juan Chen, Gwo-Long Li, and Yu-Ting Chen

    Efficient Coding Unit and Prediction Unit Decision Algorithm for Multiview Video Coding

    Wei-Hsiang Chang, Mei-Juan Chen, Gwo-Long Li, and Yu-Ting Chen

    —To aim at higher coding efficiency for multiview video coding, the multiview video with a modified high efficiency video coding (MV-HEVC)codec is proposed to encode the dependent views. However, the computational complexity of MV-HEVC encoder is also increased significantly since MV-HEVC inherits all computational complexity of HEVC. This paper presents an efficient algorithm for reducing the high computational complexity of MV-HEVC by fast deciding the coding unit during the encoding process. In our proposal, the depth information of the largest coding units (LCUs) from independent view and neighboring LCUs is analyzed first. Afterwards, the analyzed results are used to early determine the depth for dependent view and thus achieve computational complexity reduction. Furthermore, a prediction unit(PU) decision strategy is also proposed to maintain the video quality. Experimental results demonstrate that our algorithm can achieve 57% time saving on average,while maintaining good video quality and bit-rate performance compared with HTM8.0.

    Index Terms—Coding unit, multiview video coding,prediction unit.

    1. Introduction

    Three dimensional television (3DTV), high definition television (HDTV), and free viewpoint video (FVV) have become the focus of multimedia development. The joint video team (JVT) proposed multiview video coding (MVC)as an extension of the H.264/AVC video coding standard to support multiview video applications. Furthermore, to take the advantage of high coding efficiency of H.265/HEVC[1],Muller et al. extended the high efficiency video coding(HEVC) standard for coding of multiview video (MV) and depth data[2]. Fig. 1 shows the frame structure of MV-HEVC coding. The coding order involves encoding the frame of independent view (V0) first, and then encoding the frame at the same instant in time as the dependent view(V1). Each dependent view has an interview reference frame to help the prediction. Comparing MV-HEVC with MVC extension of H.264/AVC, MV-HEVC gains a less bitrate but costs a lot in terms of computation time.

    Fig. 1. Frame structure of multiview coding system.

    To speed up the coding time of HEVC, the work in [3]considered the depth similarity in the temporal and spatial domains. According to statistical probability, two sets are defined. The α set consists of largest coding units (LCUs)with higher probabilities, while the β set consists of LCUs with lower probabilities. When encoding each LCU, the depths in the two sets will be checked and then the case will be classified according to one of three degrees of similarity(high, medium, and low). The coding unit will be predicted according to the degree of similarity. The work proposed in[4] consisted of an adaptive coding unit depth range determination (ACUDR) and three early termination methods. For ACUDR, the depths of the neighboring LCUs are multiplied by the corresponding weighting values to derive a predictive depth value, and then to decide the candidates of coding unit sizes.

    To reduce the high computational complexity problem of MV-HEVC, this paper proposes a fast coding unit (CU)and prediction unit (PU) decision algorithm to aim at that goal. In our proposal, the depth information between LCUs in view and spatial directions is analyzed first to constitute our proposed CU decision algorithm. To further decrease the computational complexity while keeping the compression efficiency, the conditional probability betweenthe depth and PU size is calculated to establish our proposed PU decision algorithm. Through the proposed algorithm, the computational complexity of MV-HEVC can be reduced significantly with ignorable rate distortion performance degradation.

    This paper is organized as follows. In Section 2, we analyze the correlation between the current LCU and interview/spatially neighboring LCUs, and then describe our proposed algorithm. Section 3 demonstrates the experimental results. Section 4 provides the conclusion.

    2. Proposed Fast Coding Unit and Prediction Unit Decision Algorithm

    In this paper, the depth relationship between LCUs is analyzed first and the algorithm is then proposed according to the observation results. Here, the depths of current LCU and neighboring LCUs are used for observing the relationship. However, to further utilize the information between views, the depth of predicted LCU from independent view will be also observed. To derive the predicted LCU depth from the independent view, our proposed algorithm first calculates the global disparity vector which represents the geometrical shift between views. Once the global disparity vector has been calculated,the global disparity vector information will be used to find the predicted LCU depths from the independent view. The detailed operations of our proposed algorithm will be explained below.

    2.1 Calculation of Global Disparity Vector

    In multiview video coding, a correlation exists between adjacent views. The independent view (V0) and the dependent view (V1) have a slight disparity due to the camera setting positions. Therefore, we can use such disparity information of V0 to predict the position of image content in V1. The global disparity vector is calculated by

    where W and H are the horizontal and vertical LCU numbers. DV(i, j) indicates the disparity vectors of the LCU in the 0th frame of the dependent view. The averaged DV is treated as the global disparity vector. Since the locations of the cameras are substantially fixed, the global disparity vector in each picture is similar. We only calculate it from the 0th frame to obtain the global disparity vector between views so that the computational complexity for deriving GDV can be reduced significantly.

    2.2 Analysis of the Correlation between Neighboring LCUs and Current LCU

    After determining the global disparity, we can derive the depth information for dependent view (V1) from independent view (V0) by using the global disparity. Fig. 2 shows the relationship between V0 and V1 by using global disparity mapping. Since the depth is predicted by LCU unit, the global disparity vector (GDV) is divided by n to obtain DXand DY, given by

    where the variable of n is set to 64 since the LCU size is 64×64 in the MV-HEVC coding system.

    Afterwards, the prediction of maximum depths can be achieved by

    Fig. 2. Deriving the maximum depth information from V0 to V1 by global disparity vector mapping.

    Fig. 3. Neighboring LCUs of the current LCU.

    Fig. 4. Probability of neighboring LCU’s max depth more than current LCU’s max depth for sequences of (a) book-arrival, (b)newspaper, and (c) average of all test sequences.

    Once all required depth information has been derived successfully, we analyze the relationship between the maximum depths of the current LCU and predicted LCUs from V0, and the neighboring LCUs, as shown in Fig. 3. Here, the predicted depth from V0 is derived by (1) to (3). Five sequences with 1028×768 resolution (kendo, balloon,newspaper, book-arrival, and lovebird) are used for analysis. Fig. 4 plots the averaged probabilities of different depth relationships. In Fig. 4, the letters of A to I correspond tothe neighboring LCUs as shown in Fig. 3. From Fig. 4, we can observe that the probabilities between views are much higher than those in the spatial domain.

    2.3 Fast Coding Unit Decision Algorithm

    Based on the analytical results shown in previous section, we propose a fast coding unit decision algorithm to reduce the computational complexity. The operation of our proposed algorithm is described below in detail. First, we divide the neighboring LCUs into two sets. V0 set represents the depths between views including LCU A, B,C, D, and E. V1 set includes F and G, which represent the depths in the spatial domain. In addition, the LCUs of H and I are not included in our proposal since they appear less probability to be selected. Fig. 5 shows the flowchart of our algorithm. For the LCU located at the upper left corner of the frame, all depths are checked to find out the best coding unit size. Thus, the MaxDepthFinalis set to 3. For the LCUs at the boundary, the MaxDepthFinalis determined by the maximum value between the respective depths with the highest probabilities of available LCUs in the V0 and V1 sets. If the LCU is not located at the boundary, the predicted maximum depth (MaxDepthP) of the current LCU is obtained by the maximum value in V0 and V1 sets. However, this may result in MaxDepthPbeing larger than the best coding unit. In order to overcome the situation, we compute AD by (4) to indicate the average difference between MaxDepthPand the combined V0 and V1 sets. Here, the variable N is set to 7, which represents the number of depth candidates within both of V0 and V1 sets. j indicates the index of LCUs of the combined sets. Nei(j) is the depth of the LCU in the combined sets.

    Afterwards, we use AD to determine the MaxDepthP. If AD is small, it means the depths of MaxDepthPand the combined set is similar. Then a variable of MaxDepthADcan be set as MaxDepthP. In contrast, if AD is large, it means the greater deviation between MaxDepthPand the combined set size. In this situation, the MaxDepthADis decreased to reduce the computation according to TH1 to TH3. In our algorithm, TH1, TH2, and TH3 are set to 0.86,1.71, and 2.57, respectively.

    Fig. 5. Flowchart of proposed fast coding unit decision algorithm.

    2.4 Determination of Prediction Units

    In the coding procedure of HEVC, a CU can be divided into several prediction units (PUs) and each PU has to be checked by the rate distortion cost. In order to avoid the performance degradation caused by early termination of the coding unit decided by MaxDepthADand further reduce the computational complexity, we propose the determination scheme of PUs in each CU based on analysis of the conditional probability of PU distributions. Table 1 tabulates the simulation results of conditional probability. From this table, we can find that the probabilities of 2N×2N,N×2N, and nL×2N are higher than the other modes for depth 1 or 2. In addition, for depth 3, 2N×2N and N×2N will also be higher than the other modes. The proposed PU determination algorithm based on the analytical results is shown in Fig. 6 and its operation is described as follow.

    Table1: Probability of PU modes for various best CU sizes

    First, the depth of current CU is checked. If DepthCur(the depth of the current CU) is less than or equal to MaxDepthFinalor MaxDepthAD, all of the prediction modes should be checked to derive best results. Otherwise, if DepthCuris larger than MaxDepthADand less than or equal to MaxDepthP, the proposed PU determination is applied. If DepthCuris equal to 1 or 2, only 2N×2N, N×2N, and nL×2N modes are checked. Otherwise, if DepthCuris equal to 3, we only check 2N×2N and N×2N modes. The reason for using these prediction modes in each corresponding CU is that the total probabilities for these modes are larger than 90%. Finally, if all above conditions have not been satisfied and DepthCuris larger than MaxDepthP, no prediction mode will be processed.

    Fig. 6. Flowchart of proposed PU decision algorithm.

    3. Experimental Results

    In this paper, we implement our algorithm in MV-HEVC reference software HTM8.0[5]with two views. Five test sequences with resolution 1024×768 (newspaper,kendo, balloon, book-arrival, and lovebird) and two test sequences with resolution 1280×960 (champagne-tower and dog) are evaluated. The experimental environment parameters are shown in Table 2.

    Table 2: Parameters of experimental environment

    Table 3 gives the comparison of hit-rate MaxDepthPand MaxDepthAD. In this table, the higher hit-rate means the higher chance to include best result after encoding. From this table, we can observe that hit-rate of MaxDepthPcan achieve 97.9%. Even for the computational complexity reduced version MaxDepthAD, the hit-rate can reach 92.7%. Table 4 shows the performance comparison of our proposed algorithm with ACUDR of [4] for dependent view by calculating the Bj?ntegaard delta (BD) bit-rate[6]and BD PSNR (peak signal-to-noise rate)[7]. Both methods are implemented on the software HTM8.0. Compared with HTM8.0, the proposed algorithm increases the BD bit-rate only 0.19%; the BD PSNR drops only 0.011dB, and gets 57.49% time saving. Compared with the ACUDR of [4], the BD bit-rate is reduced by up to 1.32% in the book-arrival test sequence, with an average reduction of 0.88%. The largest BD PSNR increase of 0.041 dB is in the kendo test sequence, with an overall average increase of 0.026 dB.

    Table 3: Comparison of hit-rate for MaxDepthPand MaxDepthAD

    Table 4: Coding performance of the proposed algorithm and ACUDR of [4] in HTM 8.0 (dependent view V1)

    The experimental results show that our proposed scheme is 14.89% faster than ACUDR of [4] and provides a better BD bit-rate and BD PSNR performance. For high motion sequences, the depth information in the temporal domain may be inaccurate. However, the interview information is irrelevant to the motion of the video and remains robust. The proposed algorithm employs the depth information between views to achieve better performance than methods relying only on temporal and spatial correlations.

    4. Conclusions

    In this paper, a fast CU decision algorithm was proposed for MV-HEVC for reducing the computational complexity. Based on the high correlation between the independent view and dependent view, the depth information between them and the neighboring LCUs were used to compose our fast CU decision algorithm. In addition, we proposed the PU decision algorithm to maintain the coded vide quality based on the observing results between CU and PU. Simulation results demonstrated that our proposed algorithm can achieve 57% coding time saving on average with ignorable rate distortion performance degradation compared with HTM8.0,and achieve higher coding time savings and less rate distortion performance degradation on average compared with previous work ACUDR of [4].

    [1] High Efficiency Video Coding, Recommendation ITU-T H.265, 2013.

    [2] K. Muller, H. Schwarz, D. Marpe, C. Bartnik, S. Bosse, H. Brust, T. Hinz, H. Lakshman, P. Merkle, F. H. Rhee, G. Tech,M. Winken, and T. Wiegand, “3D high efficiency video coding for multi-view video and depth data,” IEEE Trans. on Image Processing, vol. 22, no. 9, pp. 3366-3378, 2013.

    [3] Y. Zhang, H. Wang, and Z. Li, “Fast coding unit depth decision algorithm for inter-frame coding in HEVC,” in Proc. of Data Compression Conf., 2013, pp. 53-62.

    [4] L. Shen, Z. Liu, X. Zhang, W. Zhao, and Z. Zhang, “An effective CU size decision method for HEVC encoders,”IEEE Trans. on Multimedia, vol. 15, no. 2, pp. 465-470,2013.

    [5] L. Zhang, G. Tech, K. Wegner, and S. Yea, “Test model of 3D-HEVC and MV-HEVC,” Document JCT3V-G1005 of Joint Collaborative Team on 3D Video Coding Extension Development, January 2014.

    [6] G. Bjontegaard, “Calculation of average PSNR differences between RD curves,” ITU-T SG16/Q6 Document,VCEG-M33, Austin, April 2001.

    [7] G. Bjontegaard, “Improvements of the BD-PSNR model,”ITU-T SG16/Q6, Document, VCEG-AI11, Berlin, July 2008.

    Wei-Hsiang Chang was born in Taoyuan in 1989. He received the B.S. degree in electrical engineering from Tamkang University, Taipei in 2012, and the M.S. degree in electrical engineering from National Dong Hwa University, Hualien in 2014. His research interests include multiview video coding and HEVC.

    Mei-Juan Chen received her B.S., M.S.,and Ph.D. degrees in electrical engineering from National Taiwan University, Taipei in 1991, 1993, and 1997, respectively. Since August 2005, she has been a professor with the Department of Electrical Engineering,National Dong Hwa University, Hualien. She also served as the Chair of the department from 2005 to 2006. Her research topics include image/video processing, video compression, motion estimation,error concealment, and video transcoding.

    Dr. Chen was the recipient of many awards: including the Dragon Paper Awards in 1993 and the Xeror Paper Award in 1997,K.T. Li Young Researcher Award in 2005, Distinguished Young Engineer Award in 2006, Jun S. Huang Memorial Foundation best paper awards in 2005 and 2012, and IPPR society best paper award in 2013.

    Gwo-Long Li received his B.S. degree from the Department of Computer Science and Information Engineering, Shu-Te University,Kaohsiung in 2004; M.S. degree from the Department of Electrical Engineering,National DongHwa University, Hualien in 2006; and Ph.D. degree from the Department of Electronics Engineering, National Chiao-Tung University, Hsinchu in 2011. During 2011 to 2014, he was an engineer with Industrial Technology Research Institute(ITRI), Hsinchu. In 2006, he received the Excellent Master Thesis Award from Institute of Information and Computer Machinery. He is currently a senior engineer with Novatek Microelectronics Corp., Hsinchu. His research interests include the video signal processing and coding and its VLSI architecture design.

    Yu-Ting Chen was born in Taipei in 1993. She is now pursuing her B.S. degree in electrical engineering with National Dong Hwa University, Hualien. Her research interest mainly lies in 3D video coding.

    Manuscript received November 1, 2014; revised January 13, 2015. This work was supported by NSC under Grant No. NSC 100-2628-E-259 -002 -MY3.

    W.-H. Chang and Y.-T. Chen are with the Department of Electrical Engineering, National Dong Hwa University, Hualian (e-mail: destiny20216@hotmail.com; 410023017@ems.ndhu.edu.tw).

    M.-J. Chen is with the Department of Electrical Engineering, National Dong Hwa University, Hualian (Corresponding author e-mail: cmj@mail.ndhu.edu.tw).

    G.-L. Li is with Novatek Microelectronics Corp., Hsinchu (e-mail: gwolong@gmail.com).

    Color versions of one or more of the figures in this paper are available online at http://www.journal.uestc.edu.cn.

    Digital Object Identifier: 10.3969/j.issn.1674-862X.2015.02.001

    国产不卡一卡二| 国产精品 欧美亚洲| 1024香蕉在线观看| 国产亚洲精品久久久久久毛片| 美女国产高潮福利片在线看| 久久久久久久久免费视频了| 老司机福利观看| 欧美成人性av电影在线观看| 欧美激情 高清一区二区三区| 多毛熟女@视频| tocl精华| 亚洲五月天丁香| 人人妻人人爽人人添夜夜欢视频| 精品国产超薄肉色丝袜足j| 757午夜福利合集在线观看| 国产精品野战在线观看 | 久久久久久亚洲精品国产蜜桃av| 狠狠狠狠99中文字幕| 亚洲男人天堂网一区| 巨乳人妻的诱惑在线观看| 激情视频va一区二区三区| 免费在线观看视频国产中文字幕亚洲| 亚洲第一欧美日韩一区二区三区| 免费人成视频x8x8入口观看| 国产午夜精品久久久久久| 中文字幕人妻丝袜一区二区| 一进一出好大好爽视频| 午夜免费成人在线视频| 欧美一区二区精品小视频在线| 国产成+人综合+亚洲专区| 国产激情欧美一区二区| 黄色a级毛片大全视频| 搡老乐熟女国产| 高清在线国产一区| 亚洲男人的天堂狠狠| aaaaa片日本免费| 国产成人av教育| 日本wwww免费看| 操出白浆在线播放| 波多野结衣一区麻豆| 亚洲精华国产精华精| 极品教师在线免费播放| 国产精品日韩av在线免费观看 | 日韩成人在线观看一区二区三区| 亚洲成人免费电影在线观看| 亚洲成人免费电影在线观看| 欧美成人午夜精品| 亚洲色图综合在线观看| 精品久久蜜臀av无| 很黄的视频免费| 午夜老司机福利片| 桃红色精品国产亚洲av| 久久精品成人免费网站| 一级片免费观看大全| 精品福利永久在线观看| 一夜夜www| 国产伦人伦偷精品视频| av在线天堂中文字幕 | 亚洲熟妇熟女久久| 国产欧美日韩精品亚洲av| 深夜精品福利| 90打野战视频偷拍视频| 久久人妻福利社区极品人妻图片| videosex国产| 免费在线观看完整版高清| 久久亚洲精品不卡| 少妇被粗大的猛进出69影院| 天天躁狠狠躁夜夜躁狠狠躁| 91成人精品电影| 天天躁夜夜躁狠狠躁躁| 国产高清视频在线播放一区| 午夜视频精品福利| 久久久久久免费高清国产稀缺| 91在线观看av| 精品卡一卡二卡四卡免费| 50天的宝宝边吃奶边哭怎么回事| www国产在线视频色| 波多野结衣一区麻豆| 午夜精品久久久久久毛片777| 国产精品久久久久久人妻精品电影| 午夜福利,免费看| 亚洲av美国av| 在线永久观看黄色视频| 在线观看一区二区三区| 在线永久观看黄色视频| 1024香蕉在线观看| 亚洲片人在线观看| 波多野结衣av一区二区av| 成人三级黄色视频| 亚洲国产精品sss在线观看 | 国产主播在线观看一区二区| 久热这里只有精品99| 男人舔女人下体高潮全视频| av视频免费观看在线观看| 久久精品国产清高在天天线| 国产精品国产av在线观看| 99re在线观看精品视频| 亚洲精品一二三| 免费少妇av软件| 在线观看一区二区三区激情| 亚洲专区中文字幕在线| 精品久久久久久,| 日韩 欧美 亚洲 中文字幕| 一区二区日韩欧美中文字幕| 亚洲成人免费av在线播放| 黑人巨大精品欧美一区二区蜜桃| 每晚都被弄得嗷嗷叫到高潮| 久久久久久人人人人人| 久久人人97超碰香蕉20202| 亚洲精品在线美女| 丰满饥渴人妻一区二区三| 亚洲成人久久性| 少妇粗大呻吟视频| 亚洲av成人不卡在线观看播放网| 18禁观看日本| 午夜影院日韩av| 国产主播在线观看一区二区| 久久久水蜜桃国产精品网| 嫩草影院精品99| 精品免费久久久久久久清纯| 中亚洲国语对白在线视频| 别揉我奶头~嗯~啊~动态视频| 别揉我奶头~嗯~啊~动态视频| 欧美日韩视频精品一区| 在线观看免费午夜福利视频| 人人妻人人澡人人看| 国产国语露脸激情在线看| 老司机午夜福利在线观看视频| 久久久久国产一级毛片高清牌| 一级片'在线观看视频| 精品久久蜜臀av无| 国内久久婷婷六月综合欲色啪| 91老司机精品| av国产精品久久久久影院| 男男h啪啪无遮挡| 精品高清国产在线一区| 欧美日韩国产mv在线观看视频| 亚洲av片天天在线观看| 日韩国内少妇激情av| 欧美日韩精品网址| 麻豆久久精品国产亚洲av | 久久中文字幕人妻熟女| 久久精品国产亚洲av高清一级| 超色免费av| 一个人观看的视频www高清免费观看 | 这个男人来自地球电影免费观看| 母亲3免费完整高清在线观看| 久久久久久久久久久久大奶| 国产精华一区二区三区| 热99re8久久精品国产| 欧美中文日本在线观看视频| √禁漫天堂资源中文www| 99精品在免费线老司机午夜| 国产成+人综合+亚洲专区| 日韩精品中文字幕看吧| 日本黄色视频三级网站网址| 亚洲成人久久性| 日本免费一区二区三区高清不卡 | 国产成人欧美| 自线自在国产av| 国产精品久久久av美女十八| 欧美午夜高清在线| 99国产精品免费福利视频| av在线天堂中文字幕 | 国产精品亚洲av一区麻豆| 高清av免费在线| 国产aⅴ精品一区二区三区波| 精品第一国产精品| 亚洲av片天天在线观看| 久久精品亚洲熟妇少妇任你| 日韩国内少妇激情av| 国产精品1区2区在线观看.| 天堂俺去俺来也www色官网| 纯流量卡能插随身wifi吗| 波多野结衣av一区二区av| 天天影视国产精品| 欧美黑人欧美精品刺激| 亚洲精品粉嫩美女一区| 日韩欧美免费精品| 18禁裸乳无遮挡免费网站照片 | 亚洲国产中文字幕在线视频| 成人18禁在线播放| 国产日韩一区二区三区精品不卡| svipshipincom国产片| 黄色a级毛片大全视频| 色播在线永久视频| 女性被躁到高潮视频| 国产一区二区三区视频了| 最好的美女福利视频网| 他把我摸到了高潮在线观看| 久久精品人人爽人人爽视色| 免费搜索国产男女视频| 757午夜福利合集在线观看| 亚洲va日本ⅴa欧美va伊人久久| 日韩精品中文字幕看吧| 亚洲成人久久性| 最好的美女福利视频网| 国产精品国产av在线观看| 琪琪午夜伦伦电影理论片6080| 一个人免费在线观看的高清视频| 亚洲九九香蕉| 99国产精品一区二区蜜桃av| 99香蕉大伊视频| 欧美日韩亚洲国产一区二区在线观看| 天堂影院成人在线观看| 国产亚洲精品综合一区在线观看 | 国产伦一二天堂av在线观看| 麻豆成人av在线观看| 亚洲伊人色综图| 亚洲成av片中文字幕在线观看| 国产有黄有色有爽视频| 久久久国产成人免费| 国产片内射在线| 亚洲av片天天在线观看| 亚洲熟女毛片儿| 黑人巨大精品欧美一区二区蜜桃| 国产av一区二区精品久久| 国内毛片毛片毛片毛片毛片| 欧美色视频一区免费| 国产精品久久电影中文字幕| 日日夜夜操网爽| 妹子高潮喷水视频| 欧美黑人精品巨大| 欧美日韩亚洲综合一区二区三区_| 国产精品 国内视频| 精品无人区乱码1区二区| 丰满迷人的少妇在线观看| 97人妻天天添夜夜摸| 亚洲自拍偷在线| 女生性感内裤真人,穿戴方法视频| 成人亚洲精品一区在线观看| 久久久久九九精品影院| 国产成人欧美在线观看| 麻豆一二三区av精品| 亚洲国产欧美日韩在线播放| 国产主播在线观看一区二区| 午夜福利免费观看在线| 欧美成狂野欧美在线观看| 午夜久久久在线观看| 高清欧美精品videossex| 日韩免费av在线播放| 亚洲av成人av| 这个男人来自地球电影免费观看| 伦理电影免费视频| 免费在线观看视频国产中文字幕亚洲| 夜夜看夜夜爽夜夜摸 | 久久久精品欧美日韩精品| 亚洲一卡2卡3卡4卡5卡精品中文| √禁漫天堂资源中文www| 欧美乱色亚洲激情| 欧美日韩黄片免| 精品乱码久久久久久99久播| 日韩视频一区二区在线观看| 欧美色视频一区免费| 夜夜躁狠狠躁天天躁| 一区二区三区激情视频| 1024香蕉在线观看| 久久久久国内视频| 制服人妻中文乱码| 午夜激情av网站| 免费少妇av软件| 琪琪午夜伦伦电影理论片6080| 一区二区三区精品91| 久久午夜综合久久蜜桃| 亚洲欧美精品综合一区二区三区| 久久久久亚洲av毛片大全| 久久久水蜜桃国产精品网| 久9热在线精品视频| 久久人人爽av亚洲精品天堂| 水蜜桃什么品种好| 国产真人三级小视频在线观看| 淫秽高清视频在线观看| 欧美色视频一区免费| 亚洲情色 制服丝袜| 精品少妇一区二区三区视频日本电影| 日韩成人在线观看一区二区三区| 国产精品一区二区三区四区久久 | svipshipincom国产片| 九色亚洲精品在线播放| 午夜免费观看网址| 久久精品亚洲av国产电影网| 久久久久久久久免费视频了| 国产无遮挡羞羞视频在线观看| 丰满的人妻完整版| 视频在线观看一区二区三区| 久久久国产一区二区| 丝袜美足系列| 嫩草影视91久久| 国产精品日韩av在线免费观看 | 超色免费av| 在线播放国产精品三级| 超碰成人久久| 国产三级在线视频| 国产成人精品在线电影| 欧美乱妇无乱码| 夜夜躁狠狠躁天天躁| 国产高清视频在线播放一区| 91麻豆精品激情在线观看国产 | 欧美国产精品va在线观看不卡| 亚洲 国产 在线| 成人免费观看视频高清| 在线观看日韩欧美| 老司机亚洲免费影院| 十八禁网站免费在线| 狂野欧美激情性xxxx| 精品国产超薄肉色丝袜足j| 99精品欧美一区二区三区四区| 日韩精品免费视频一区二区三区| 90打野战视频偷拍视频| 最新在线观看一区二区三区| 亚洲国产精品合色在线| 老汉色av国产亚洲站长工具| 久久久国产一区二区| 亚洲精品中文字幕在线视频| 国产精品日韩av在线免费观看 | 欧美乱妇无乱码| 一区二区三区国产精品乱码| 亚洲精品在线观看二区| 精品福利永久在线观看| 正在播放国产对白刺激| 丰满饥渴人妻一区二区三| 国产三级黄色录像| 日本撒尿小便嘘嘘汇集6| 国产成+人综合+亚洲专区| av在线播放免费不卡| 嫁个100分男人电影在线观看| 欧美大码av| ponron亚洲| 91av网站免费观看| 久久午夜综合久久蜜桃| 午夜精品国产一区二区电影| 99精国产麻豆久久婷婷| 可以免费在线观看a视频的电影网站| 搡老熟女国产l中国老女人| 99re在线观看精品视频| 色精品久久人妻99蜜桃| 精品第一国产精品| 午夜免费成人在线视频| 日韩欧美免费精品| 成人亚洲精品av一区二区 | 国产av精品麻豆| 黑人猛操日本美女一级片| 在线观看www视频免费| 亚洲精品美女久久av网站| bbb黄色大片| 老司机亚洲免费影院| 亚洲成人国产一区在线观看| 久久久国产成人免费| 午夜福利影视在线免费观看| 丰满的人妻完整版| 日本wwww免费看| 欧美激情久久久久久爽电影 | 国产精品久久久av美女十八| 国产成人影院久久av| 亚洲精品av麻豆狂野| 国产男靠女视频免费网站| 亚洲黑人精品在线| 亚洲精品国产色婷婷电影| 不卡一级毛片| 琪琪午夜伦伦电影理论片6080| bbb黄色大片| 免费日韩欧美在线观看| 在线永久观看黄色视频| 久久精品亚洲av国产电影网| 欧美乱码精品一区二区三区| 久久国产精品男人的天堂亚洲| а√天堂www在线а√下载| 最新美女视频免费是黄的| 波多野结衣av一区二区av| 黄片大片在线免费观看| 国产成人av激情在线播放| 国产精品久久久av美女十八| 国产有黄有色有爽视频| 伦理电影免费视频| 亚洲中文字幕日韩| 成人亚洲精品一区在线观看| 国产成人欧美在线观看| 在线观看66精品国产| 99在线人妻在线中文字幕| 日本vs欧美在线观看视频| 岛国在线观看网站| 一进一出好大好爽视频| 亚洲免费av在线视频| 超碰97精品在线观看| 婷婷六月久久综合丁香| 亚洲国产欧美一区二区综合| 久久国产亚洲av麻豆专区| 91成人精品电影| 露出奶头的视频| www.www免费av| 在线观看舔阴道视频| 男人舔女人的私密视频| 亚洲精品国产精品久久久不卡| 免费在线观看亚洲国产| 老司机亚洲免费影院| 五月开心婷婷网| av网站在线播放免费| 欧美亚洲日本最大视频资源| 美女高潮到喷水免费观看| 性少妇av在线| 精品少妇一区二区三区视频日本电影| 午夜免费观看网址| 亚洲人成电影免费在线| 超碰成人久久| 亚洲熟妇中文字幕五十中出 | 97人妻天天添夜夜摸| 亚洲精品一二三| 免费在线观看亚洲国产| 欧美日韩国产mv在线观看视频| 久久午夜综合久久蜜桃| 国产一区二区三区视频了| 叶爱在线成人免费视频播放| 久久伊人香网站| 午夜视频精品福利| 国产精品av久久久久免费| 最近最新中文字幕大全电影3 | 88av欧美| 中文字幕人妻熟女乱码| 久久精品亚洲熟妇少妇任你| 亚洲精品一二三| 在线观看免费午夜福利视频| 美女国产高潮福利片在线看| 88av欧美| 在线av久久热| 丰满饥渴人妻一区二区三| 一个人免费在线观看的高清视频| 69精品国产乱码久久久| 亚洲自偷自拍图片 自拍| 久久国产乱子伦精品免费另类| a级毛片在线看网站| 99精品在免费线老司机午夜| 丁香欧美五月| 中文字幕人妻熟女乱码| 在线观看66精品国产| 美女高潮到喷水免费观看| 欧美另类亚洲清纯唯美| 999精品在线视频| 国产伦人伦偷精品视频| 最新美女视频免费是黄的| 美女大奶头视频| 波多野结衣一区麻豆| 久久久久久亚洲精品国产蜜桃av| www.熟女人妻精品国产| ponron亚洲| 亚洲五月天丁香| 日日爽夜夜爽网站| 日韩欧美一区视频在线观看| 久久九九热精品免费| 一本大道久久a久久精品| 精品国产美女av久久久久小说| av天堂在线播放| 女生性感内裤真人,穿戴方法视频| x7x7x7水蜜桃| 丰满饥渴人妻一区二区三| 亚洲aⅴ乱码一区二区在线播放 | 国产精品一区二区在线不卡| 日本黄色视频三级网站网址| 国产蜜桃级精品一区二区三区| 老司机午夜福利在线观看视频| 在线观看免费视频日本深夜| 日韩av在线大香蕉| 高清欧美精品videossex| 中文字幕另类日韩欧美亚洲嫩草| 伦理电影免费视频| 天天躁狠狠躁夜夜躁狠狠躁| 中文欧美无线码| 国产熟女xx| 国产黄a三级三级三级人| 看片在线看免费视频| 99精品欧美一区二区三区四区| 免费在线观看亚洲国产| 夜夜看夜夜爽夜夜摸 | 国产单亲对白刺激| 亚洲精品在线观看二区| 操美女的视频在线观看| 欧美日韩黄片免| av网站免费在线观看视频| 国产片内射在线| 91成人精品电影| 精品无人区乱码1区二区| 女人被躁到高潮嗷嗷叫费观| 黄色片一级片一级黄色片| 老司机靠b影院| 91国产中文字幕| 亚洲 欧美 日韩 在线 免费| 成年人黄色毛片网站| 热re99久久精品国产66热6| 国产精品偷伦视频观看了| 亚洲欧美精品综合一区二区三区| 嫩草影院精品99| 高清在线国产一区| 久久精品国产清高在天天线| 久久国产精品人妻蜜桃| 国产一区二区三区综合在线观看| 成人18禁在线播放| 黄色女人牲交| 欧美日韩亚洲国产一区二区在线观看| av天堂在线播放| 久久久国产成人免费| 曰老女人黄片| 日韩欧美免费精品| 成人精品一区二区免费| 99精品欧美一区二区三区四区| 成熟少妇高潮喷水视频| 久久人人精品亚洲av| 免费在线观看黄色视频的| 久久久久久免费高清国产稀缺| 精品免费久久久久久久清纯| 午夜91福利影院| 国产黄a三级三级三级人| 丰满迷人的少妇在线观看| 18禁国产床啪视频网站| svipshipincom国产片| 久久国产精品男人的天堂亚洲| 久久香蕉激情| 国产精品亚洲一级av第二区| 国产精品久久久久久人妻精品电影| 香蕉久久夜色| 极品教师在线免费播放| 久久精品亚洲精品国产色婷小说| 久久精品人人爽人人爽视色| 精品国产乱子伦一区二区三区| 在线观看一区二区三区激情| 国产麻豆69| 国产成人欧美| 国产成人影院久久av| 曰老女人黄片| 亚洲精品中文字幕一二三四区| 色综合婷婷激情| 91成年电影在线观看| 久久精品国产综合久久久| 国产精品自产拍在线观看55亚洲| 欧美久久黑人一区二区| 成人三级黄色视频| 国产97色在线日韩免费| 男女午夜视频在线观看| 欧美一级毛片孕妇| 亚洲欧美日韩无卡精品| 性欧美人与动物交配| 国产深夜福利视频在线观看| 欧美日韩视频精品一区| 一二三四在线观看免费中文在| 久久人妻熟女aⅴ| 香蕉久久夜色| 国产亚洲欧美在线一区二区| 欧美久久黑人一区二区| 国产精品久久久人人做人人爽| 老司机午夜福利在线观看视频| 12—13女人毛片做爰片一| 18禁裸乳无遮挡免费网站照片 | 亚洲成人免费电影在线观看| 18禁裸乳无遮挡免费网站照片 | 亚洲男人天堂网一区| 91大片在线观看| 欧美老熟妇乱子伦牲交| 在线播放国产精品三级| 丰满的人妻完整版| 久久热在线av| 在线免费观看的www视频| 久久影院123| 国产91精品成人一区二区三区| 久久草成人影院| 午夜影院日韩av| 首页视频小说图片口味搜索| 亚洲精品在线观看二区| 很黄的视频免费| 久久人人精品亚洲av| 两人在一起打扑克的视频| 久久久国产欧美日韩av| 日本wwww免费看| 新久久久久国产一级毛片| 日本wwww免费看| av中文乱码字幕在线| e午夜精品久久久久久久| 亚洲成人免费av在线播放| 婷婷丁香在线五月| 国产在线观看jvid| www国产在线视频色| 精品国产一区二区三区四区第35| 国产成人欧美在线观看| 国产高清激情床上av| 黑人猛操日本美女一级片| 国产精品久久久人人做人人爽| 精品久久久久久成人av| av在线播放免费不卡| 夫妻午夜视频| 在线永久观看黄色视频| 国产在线精品亚洲第一网站| 日本精品一区二区三区蜜桃| 日韩大尺度精品在线看网址 | av欧美777| 亚洲一区二区三区色噜噜 | 人妻久久中文字幕网| 美女大奶头视频| 中文字幕色久视频| 美女大奶头视频| 精品久久久久久成人av| 免费av毛片视频| 日日夜夜操网爽| 欧美激情极品国产一区二区三区| 制服人妻中文乱码| 亚洲视频免费观看视频| 久久久久久久久免费视频了| 女生性感内裤真人,穿戴方法视频| 搡老乐熟女国产| 十八禁网站免费在线| 黄色毛片三级朝国网站| 美女高潮到喷水免费观看| 亚洲av成人一区二区三| 久久久精品欧美日韩精品| 久久精品亚洲熟妇少妇任你| 最近最新免费中文字幕在线| 一级黄色大片毛片| 国产精品偷伦视频观看了| 三上悠亚av全集在线观看|