• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Fabrication of multiwalled carbon nanotube-surfactant modified sensor for the direct determination of toxic drug 4-aminoantipyrine☆

    2015-11-17 01:23:50JayantGowdaArunkumarBuddanavarSharanappaNandibewoor
    Journal of Pharmaceutical Analysis 2015年4期
    關(guān)鍵詞:李成人才隊(duì)伍淺談

    Jayant I.Gowda,Arunkumar T.Buddanavar,Sharanappa T.Nandibewoor

    P.G.Department of Studies in Chemistry,Karnatak University,Dharwad 580003,India

    Original Article

    Fabrication of multiwalled carbon nanotube-surfactant modified sensor for the direct determination of toxic drug 4-aminoantipyrine☆

    Jayant I.Gowda,Arunkumar T.Buddanavar,Sharanappa T.Nandibewoor*

    P.G.Department of Studies in Chemistry,Karnatak University,Dharwad 580003,India

    A R T I C L E I N F O

    Article history:

    7 January 2015

    Accepted 7 January 2015

    Available online 17 January 2015

    Voltammetry

    Modified electrode

    Diffusion controlled

    4-aminoantipyrine

    Pharmacokinetic study

    A multi-walled carbon nanotube(MWCNT)-cetyltrimethylammonium bromide(CTAB)surfactant composite modified glassy carbon electrode(GCE)was developed as a novel system for the determination of 4-aminoantipyrine(AAP).The oxidation process was irreversible over the pH range studied and exhibited a diffusion controlled behavior.All experimental parameters were optimized.The combination of MWCNT-CTAB endows the biosensor with large surface area,good biological compatibility,electricity and stability,high selectivity and sensitivity.MWCNT-CTAB/GCE electrode gave a linear response for AAP from 5.0×10-9to 4.0×10-8M with a detection limit of 1.63×10-10M.The modified electrode showed good selectivity against interfering species and also exhibited good reproducibility.The present electrochemical sensor based on the MWCNT-CTAB/GCE electrode was applied to the determination of AAP in real samples.

    ?2015 Xi'an Jiaotong University.Production and hosting by Elsevier B.V.All rights reserved.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    1.Introduction

    Electrochemistry has many advantages,making it an appealing choice for pharmaceutical analysis[1,2].Electrochemistry has always provided analytical techniques characterized by instrumental simplicity,moderate cost,and portability.These techniques have introduced the most promising methods for specific applications[3,4].Due to similarity in the electrochemical and biological reactions,it can be assumed that the oxidation/reduction mechanisms taking place at the electrode and in the body share similar principles.Biologically important molecules can be investigated electroanalytically by voltammetry in order to determine the molecule in different ways.Additional applications of electrochemistry include the determination of electrode mechanisms.The redox properties of drugs can give us insights into their metabolic fate in in vivo redox processes or pharmacological activity[5].

    Further,the electroanalytical techniques have been shown to be excellent for the determination of pharmaceutical compounds in different matrices.Many of the active constituents of formulations,in contrast to excipients,can be readily oxidized.The selectivity of this method is normally excellent because the analyte can be readily identified by its voltammetric peak potential. Experimental electrochemical techniques have advantages in simplicity,cost,and analysis time,compared to other techniques in the field of drug analysis.The use of various electrodes,viz. mercury[6],solids[7,8],and modified electrodes[9-18],for electroanalytical measurements has increased in recent years because of their applicability to the determination of active compounds that undergo oxidation reactions,which is a matter of great importance in the field of clinical and pharmaceutical analysis.

    4-Aminoantipyrine(AAP,as shown in Fig.1)is an aromatic substancewithanalgesic,antipyreticandanti-inflammatory properties[18].However,AAP usually produces side effects such as the risk of agranulocytosis[19].Although AAP is scarcely ever administered as an analgesic because of side effects,as a raw material,it is mostly used to produce 4-aminoantipyrine derivatives,which have better biological activities[20,21].In addition,it is used as a reagent for biochemical reactions producing peroxides or phenols[22,23]and can also be used to detect phenols in the environment[24].Since it is widely used in the pharmaceutical industry,biochemical research and environmental monitoring,AAP has become an environmental pollutant.

    The toxic effect of AAP on experimental animals was reported[25].AAP can reduce blood flow[26]and 13,14-dihydro-15-keto prostaglandin F2 alpha concentration[27]after it is infused into the blood.AAP can form stable complexes with heme[28].

    Different methods have been reported for the determination of AAP including liquid and gas chromatography,spectrophotometricmethod[29-31],liquid chromatography/mass spectrometry[32],capillary electrophoresis[33],solid phase spectrophotommetry[34],different HPLC methods[35-37]and voltammetric method by using graphite pencil electrode[38].The main problems encountered in using some methods are time-consuming extraction and separation procedures.

    Carbon nanotubes have several applications in the field of semiconductor devices,high performance nano-composites,energy conversion devices,sensors,etc.[39,40]because of their nano-scale structure,large surface area,high mechanical strength and extraordinary electronic properties.There are so many results on the modification of the electrode surface using carbon nanotubes[41-44].

    In this paper,we demonstrated a successful way to disperse multiwalledcarbonnanotube(MWCNT)withincetyltrimethylammonium bromide(CTAB)surfactant.In this procedure,the surfactant is adsorbed on the surface of MWCNTs,and subsequent ultrasonication of the solution,which takes several minutes,will cleave apart their aggregations and debundle nanotubes by steric or electrostatic repulsions resulted from the charge of surfactant hydrophilic groups[45-47].The resulted electrochemical sensors exhibited high sensitivity,rapid response,good reproducibility,low detection limit,renewal of the surface and freedom from other potentially interfering species.

    2.Materials and methods

    2.1.Apparatus

    Electrochemical studies were carried out by CH Instruments(Electrochemical Analyzer,Model 630D,USA),a three electrode system consisting of a glassy carbon electrode(GCE)modified with MWCN/CTAB as a working electrode,saturated Ag/AgCl/KCl as a reference electrode and a platinum wire as the counter electrode. Electrode surface morphology study was carried out by SEM instrument model OXFORD instrument INCA PENTA FETX3 CARL ZEISS(Japan)and Nanosurf Easyscan 2 atomic force microscopy(AFM)(Switzerland).An Elico LI-120pH meter(Elico Ltd.Hyderabad,India)was used to determine the pH of the buffer solution.

    2.2.Reagents and chemicals

    4-Aminoantipyrine and MWCNT powders were purchased from Sigma-Aldrich(Mumbai,India).Cetyltrimethylammonium bromide was from Merck(Bengaluru,India).Double distilled water was used throughout the work.All other solvents and materials used throughout this study were of analytical grade.

    2.3.Preparation of modified electrode

    Fig.1.Chemical structure of 4-aminoantipyrine.

    Fig.2.Schematic diagram of the proposed modification steps.

    To get reproducible results,great care was taken in the electrode pre-treatment.The GCE was pre-treated in two ways:(i)mechanical polishing over a velvet micro-cloth with 0.3 and 0.05 μm alumina slurry and(ii)electrochemical treatment by applying a potential of 1.25 V for 10 s vs.Ag/AgCl.The electrochemical pre-treatment was done in the same supporting electrolyte solution in which the measurement was carried out.After that 10 μL of solution containing 0.3 g/L MWCNTs and 0.2 g/L CTAB,which was sonicated for 60 min,was placed on the GCE surface and then evaporated in an oven at 50°C.The ultrasonication of MWCNTs via CTAB will lead to the dispersion of nanotubes,and fix the surfactants on the surface of MWCNTs(possible arrangements of CTAB on MWCNTs are illustrated in Fig.2[48]).It can be described that the cationic surfactant will makethenanotubes positively charged,and thesecharged MWCNTs are driven toward cathode to form a thin layer at the electrode surface.

    Eventually,the coated electrodes(MWCNTs-CTAB/GCE)were immersed in the bicarbonate solution(0.01 M)for 30 min in order to extract the residual surfactants from the surface of electrode. The modified electrodes were washed with distilled water and dried at room temperature(MWCNTs-GCE).Fig.3 shows surface morphology of photography of SEM images of unmodified and modified GCE,and AFM image of modifier.

    The area of the electrode was calculated by the cyclic voltammetric method using 1.0 mM K3Fe(CN)6in 0.1 M KCl by recording the current voltage curve at different scan rates(Supplementary Fig.1).For a reversible process,the following Randles-Sevcik formula can be used[49].

    where Iprefers to the cathodic peak current,n is the number of electrons transferred,A0is the surface area of the electrode,D0is diffusion coefficient,v is the scan rate and C0is the concentration of K3Fe(CN)6.For 1.0 mM K3Fe(CN)6in 0.1 M KCl electrolyte,n=1,DR=7.6×10-6cm2/s,then from the slope of the plot of Ipversus v1/2,the electro active area was calculated.In our experiment,the slope was 0.695 and the area of electrode was calculated to be 0.117 cm2.The area of the unmodified glassy carbon electrode was calculated to be 0.0448 cm2.

    2.4.Plasma sample preparation

    Human plasma sample was prepared as described in the earlier report of our work[50].Human blood samples were collected in dry and evacuated tubes(which contained saline and sodium citrate solution)from a healthy volunteer.The samples were handled at room temperature and centrifuged for 10 min at 1500 rpm for the separation of plasma within 1 h of collection.The samples were then transferred to polypropylene tubes and stored at -20°C until analysis.The plasma samples,0.2 mL,were deprotonised with 2 mL of methanol.After vortexing for 15 min,themixture was then centrifuged for 15 min at 6000 rpm,and supernatants were collected.

    Fig.3.SEM images of bare glassy carbon electrode and MWCN-CTAB modified glassy carbon electrode.(A)SEM image of bare GCE,(B)SEM image of MWCNT-CTAB modified GCE,(C)AFM topography of MWCNTs,and(D)AFM topography of MWCNT-CTAB sample.

    2.5.Pharmacokinetic study

    Serum samples of a healthy volunteer were collected as described in Section 2.4 and stored at-20°C until analysis.Into each of 10 centrifugation tubes(3 mL polypropylene microcentrifuge tubes)containing 1.0×10-8M concentration of AAP,100 μL volume of the human serum was transferred,then mixed well with 1 mL of methanol to denature and precipitate proteins.The solutions were centrifuged for 3 min at 14,000 rpm to separate out the precipitated proteins.The clear supernatant layers of these solutions were filtered through 0.45 μm millipore filters to produce protein-free human serum samples.Each sample was analyzed at different time intervals by using differential pulse voltammetry.

    3.Results and discussion

    3.1.Cyclic voltammetric study of 4-aminoantipyrine

    The electrochemical response of 0.1 mM AAP was investigated by cycle voltammetry between 0.2 and 0.8 V in phosphate buffer solution of pH 3.0 at GCE,MWCNT/GCE and MWCNT-CTAB/GCE(Fig.4).At GCE,a poorly defined oxidation peak was observed and the peak current was smaller.AAP exhibited well defined anodic peak at 0.512 V at MWCNT/GCE.The oxidation peak current increased greatly at MWCNT-CTAB/GCE(the voltammogram as shown in Fig.4).It indicates that MWCNT-CTAB/GCE can make the electron transfer of AAP easily.No reduction peak was observed in the reverse scan,suggesting that the electrochemical reaction was totally irreversible process.

    3.2.Effect of amount of MWCNT-CTAB suspension

    We examined the effect of MWCNT-CTAB suspension amount on the electrochemical behavior of AAP.The results suggested that the amount of MWCNT-CTAB suspension influenced the current responses of AAP.Supplementary Fig.2 demonstrates the relationship between the oxidation peak current of AAP and the amount of MWCNT-CTAB suspension used for coating GC electrode.As can be seen,the peak current gradually increased with increasing the amount of MWCNT-CTAB suspension from 0 to 10 μL,owing to the increased effective electrode surface area for AAP oxidation.Further increasing the amount of MWCNT-CTAB suspension,the peak current almost remained stable.However,when it exceeded 14 μL,the peak current slightly decreased.When the coating film was too thick,the film no longer adhered tightly to the glass carbon,reducing conductivity and part of the MWCNTCTAB left the electrode surface.More excessively coated amount of MWCNT-CTAB suspension led to less adherent film.Accordingly,10 μL of MWCNT-CTAB suspension solution providing the maximum current response was used in further experiments,while the amount of suspension of MWCNT-CTAB had little effect on the oxidation potential of AAP.

    3.3.Effect of pH

    The pH of the supporting electrolyte had a noticeable effect on the electro-oxidation of analyte under investigation.The electrooxidation of AAP was carried out by cyclic voltammetry at the surface of MWCNT-CTAB modified GCE over the pH range 3.0-7.0. The peak potential shifted to more negative values with an increase in solution pH(Fig.5).The sharp and well-defined oxidation peak was observed in phosphate buffer of pH 3.Hence,we selected phosphate buffer of pH 3 for further studies.

    3.4.Effect of scan rate

    The cyclic voltammograms of 0.1 mM AAP on the MWCNTCTAB modified GCE at different scan rates are shown in Fig.6A. The observation was made to investigate the kinetics of the electrode reaction.With the increase of the scan rate,the oxidation peak current also increased gradually,indicating the direct electron transfer between AAP and modified electrode surface.In the range from 10 to 100 mV/s the oxidation peak current was proportional to the scan rate(Ipa(10 μA)=0.043-0.099 v1/2)and the correlation coefficient was 0.984,which indicated that the electron transfer reaction was a diffusion-controlled process[51].A linear relationship was observed between log Ipaand log v(log Ipa(μA)= 0.3088 log v(V/s)+1.275;r=0.976).The slope value of 0.3088 confirmsthattheelectro-oxidationofAAPwasdiffusion controlled.

    A linear relation between peak potential(Epa)and log ν was obtained,Epa=0.018 log v+0.445(Fig.6B).Such behavior revealed the irreversible nature of the electrochemical process for AAP. According to Laviron,for a diffusion-controlled irreversible process[52],Epais defined by the following equation:

    Fig.4.Typical cyclic voltammograms of 0.1 mM 4-aminoantipyrine at(a)bare GCE,(b)GCE+MWCNT and(c)GCE+MWCNT-CTAB.

    Fig.5.Influence of pH on the electro-oxidation of 0.1 mM of AAP.(a)-(e):3.0,4.2,5.0,6.2,7.0.

    where α is the transfer coefficient,k0is the heterogeneous electron transfer rate constant of the reaction,n is the number of transferred electrons,v is the potential scan rate and E0is the formal redox potential.The other symbols have their usual meaning.This relationship allows n to be readily calculated from the slope of the Epavs.logvplot.TakingT=298 K,R=8.314 J/Kmoland F=96480 C and the value α was calculated from Bard and Fualkner equation,which is equal to 1.325,the value of n was calculated to be 2.47≈2 for AAP.

    If E0is known,the value of k0can be estimated from the intercept of the above plot.E0in the above equation can be obtained from the ordinate intercept of the Epavs.v curve at v=0[53].The obtained k0was 9.845×103/s.

    3.5.Calibration curve

    In order to develop the voltammetric method for determination of the drug,we chose the differential pulse voltammetric method for the reason that the peaks were sharper and more distinct at a lower concentration of AAP than those obtained by CV,with a lower background current,resulting in enhanced resolution.In keeping with the obtained results,it was feasible to apply this technique to the quantitative analysis of AAP.The phosphate buffer solution of pH 3.0 was selected as the supporting electrolyte for the quantification as AAP gave maximum peak current.Differential pulse voltammograms obtained with increasing amounts of AAP showed that the peak current increased linearly with increased concentration.Linear calibration curves were obtained for AAP concentration in the range of 5.0×10-9-4.0×10-8M(Fig.7).Linear equation was Ipa=4.47(10-8M)-0.606(r=0.988).Interrelated statistical data of the calibration curves were procured from the three different calibration curves.Limits of detection(LOD)and quantification(LOQ)were calculated based on the peak current using the following equations: where s is the standard deviation of the peak currents of the blank(three replicates),and m is the slope of the calibration curve.The LOD and LOQ values were 1.63×10-10M,and 5.42×10-10M,respectively.The detection limits reported at different analytical methods for AAP related dipyrone derivative drugs are tabulated in Table 1.The proposed method was better than other reported electrochemical methods[31,38,54-56].

    3.6.Robustness and effect of excipients

    The robustness of the method was checked by evaluating the influence of small variations of some of the most important variables,including pH,accumulation time and potential range.The results indicated that none of these variables significantly affected the recovery of AAP.This provided an indication of the dependability of the proposed process for the assay of AAP,and the proposed method could be measured robustly.

    For the possible analytical application of the proposed method,the effect of some common excipients used in pharmaceutical preparations was examined.The tolerance limit was defined as the maximum concentration of the interfering substance that caused an error less than 5%for determination of AAP.The experimental results showed that hundred-fold excess of citric acid,dextrose,glucose,gum acacia,lactose,tartaric acid and sucrose did not interfere with the voltammetric signal of AAP.This showed that the electrode was much selective towards AAP.

    3.7.Reproducibility of the modified electrode

    Fig.6.(A)Cyclic voltammograms of 0.1 mM AAP at different scan rates(1-10:10,20,30,40,50,60,70,80,90,100 mV/s)in 0.2 M phosphate buffer(pH 3.0).(B)Relationship between peak potential and logarithm of scan rate.

    Fig.7.Differential pulse voltammograms of AAP at different concentrations at MWCNT-CTAB/GCE:(1)-(14)0.5×10-8-4.0×10-8M.Inset:plot of the concentration vs.peak current of AAP at MWCNT-CTAB/GCE.

    The renewal and reproducibility of the electrode were investigated.It was found that after determination the surface of the MWCNT-CTAB/GCE could be regenerated by successively cycling between 0 and 1.2 V in 3.0 pH with 0.2 M phosphate buffer afterwashing the electrode with water and acetone.As an example,0.1 mM AAP solution was measured successively for 5 times with the same electrode regenerated through such procedure after every determination,the relative standard deviation(RSD)of the peak current was 1.15%.As to the reproducibility between some days,it was similar to that of within a day,if the temperature was kept almost unchanged.Peak current obtained for 0.1 mM AAP solution on different days is shown in Supplementary Fig.3.Owing to the adsorption of AAP or its reductive products on to the electrode surface,the current response of the modified electrode would decrease after successive use.In this case,the electrode should be prepared again.

    3.8.Determination of AAP in biological samples

    The applicability of the proposed method for the determination of AAP in biological fluid of human urine and plasma samples was attempted.Drug-free human urine and plasma samples,obtained from healthy volunteers,were filtrated through a filter paper and stored frozen until the assay.The developed differential pulse voltammetric method for the AAP determination was applied to urine and plasma samples.The recoveries from urine and plasma were measured by spiking drug-free urine and plasma with known amounts of AAP.The urine and plasma samples were diluted with the phosphate buffer solution before analysis without further pretreatment.A quantitative analysis could be carried out by adding the standard solution of AAP into the detection system of urine and plasma samples.The calibration graph was used for the determination of spiked AAP in urine samples.The detection results of urine and plasma samples are listed in Table 2.The recovery determined was in the range of 98.02%-103.46%for human plasma and 99.16%-102.17%for urine sample.Thus,satisfactory recoveries of the analytes from the real samples and a good agreement between the concentration ranges studied and the real ranges encountered in the urine and plasma samples when treated with the drug made the developed method applicable in clinical analysis.

    淺談加強(qiáng)企業(yè)青年人才隊(duì)伍建設(shè)……………………………………………………………………………………李成麗(4.88)

    3.9.Application to pharmacokinetic studies

    Pharmacokinetics is the study of the time course of drug absorption,distribution,metabolism,and excretion.Clinical pharmacokinetics is the application of pharmacokinetic principles to the safe and effective therapeutic management of drugs in an individual patient.Primary goals of clinical pharmacokinetics include enhancing efficacy and decreasing toxicity of a patient's drug therapy.The development of strong correlations between drug concentrations and their pharmacologic responses has enabled clinicians to apply pharmacokinetic principles to actual patient situations.A drug's effect is often related to its concentration at the site of action,so it would be useful to monitor this concentration.Receptor sites of drugs are generally inaccessible to our observations or are widely distributed in the body,and therefore direct measurement of drug concentrations at these sites is not practicable.However,drug concentration in the blood or plasma,urine,saliva and other easily sampled fluids can be measured.

    The assay results are shown in Supplementary Fig.4,which illustrates the profile of the plasma concentration vs.time for AAP. The results suggested that the disposition of AAP was conformable to a one compartment open model.Table 3 shows the peak response of drug concentration at different time intervals and some the pharmacokinetic parameters for AAP in the plasma sample.

    Table 1Comparison of detection limits for AAP related dipyrone derivative drugs by different methods.

    Table 2Application of DPV to the determination of AAP in spiked human urine and blood plasma samples.

    Table 3Response of peak current of 1×10-8M AAP in urine sample at different time intervals.

    4.Conclusion

    The voltammetric behavior and oxidation mechanism of AAP were investigated at an MWCN-CTAB/GCE by CV in phosphate buffer solution of pH 3.0.Based on this study,influences of several physicochemical parameters such as potential scan rate,pH and concentration were investigated.The oxidation of AAP was found to be an irreversible with diffusion character.MWCNT-CTAB/GCE showed electrocatalytic action for the oxidation of AAP,characterizing by the enhancement of the peak current,which was probably due to the larger effective surface area of MWCNT-CTAB. This method was successfully used to determine AAP in the human urine and plasma samples.The proposed method offered the advantages of accuracy and time saving as well as simplicity of reagents and apparatus.In addition,the results obtained in the analysis of AAP in spiked urine and plasma samples demonstrated the applicability of the method for real sample analysis.

    Acknowledgments

    One of the author(J.I.Gowda)thanks UGC,New Delhi,India,for the award of Research Fellowship in Science for Meritorious Students(RFSMS).

    Appendix A.Supplementary Information

    Supplementary data associated with this article can be found in the online version at http://dx.doi.org/10.1016/j.jpha.2015.01.001.

    References

    [1]B.Nigovic,B.Simunic,Determination of 5-aminosalicylic acid in pharmaceutical formulation by differential pulse voltammetry,J.Pharm.Biomed.Anal.31(2003)169-174.

    [3]A.K.Jain,V.K.Gupta,S.Radi,et al.,A comparative study of Pb2+sensors based on derivatized tetrapyrazole and calix[4]arene receptors,Electrochim.Acta 51(12)(2006)2547-2553.

    [4]A.K.Jain,V.K.Gupta,L.P.Singh,et al.,Macrocycle based membrane sensors for the determination of cobalt(II)ions,Analyst 122(1997)583-586.

    [5]J.Wang,Electroanalytical Techniques in Clinical Chemistry and Laboratory Medicine,VCH,New York,1988.

    [6]V.K.Gupta,B.Sethi,R.A.Sharma,et al.,Mercury selective potentiometric sensor based on low rim functionalized thiacalix[4]-arene as a cationic receptor,J.Mol.Liq.177(2013)114-118.

    [7]R.N.Goyal,V.K.Gupta,S.Chatterjee,Electrochemical oxidation of 2′,3′-dideoxyadenosine at pyrolytic graphite electrode,Electrochim.Acta 53(2008)5354-5360.

    [8]V.K.Gupta,A.K.Jain,G.Maheshwari,et al.,Copper(II)-selective potentiometric sensors based on porphyrins in PVC matrix,Sens.Actuators B 117(2006)99-106.

    [9]Y.Tang,C.Sun,X.Yang,et al.,Graphene modified glassy carbon electrode for determination of trace aluminium(III)in biological samples,Int.J.Electrochem.Sci.8(2013)4194-4205.

    [10]B.P.Bator,L.Cabaj,M.Ra?,et al.,Potentiometric sensor platform based on a carbon black modified electrodes,Int.J.Electrochem.Sci.9(2014)2816-2823.

    [11]R.N.Goyal,V.K.Gupta,N.Bachheti,F(xiàn)ullerene-C60-modified electrode as a sensitive voltammetric sensor for detection of nandrolone—an anabolic steroid used in doping,Anal.Chim.Acta 597(2007)82-89.

    [12]B.H.Chiou,Y.T.Tsai,C.M.Wang,Phenothiazine-modified electrodes:a useful platform for protein adsorption study,Langmuir 30(2014)1550-1556.

    [13]Q.M.Feng,Q.Zhang,C.G.Shi,et al.,Using nanostructured conductive carbon tape modified with bismuth as the disposable working electrode for stripping analysis in paper-based analytical devices,Talanta 115(2013)235-240.

    [14]S.H.Yu,G.C.Zhao,Preparation of platinum nanoparticles-graphene modified electrode and selective determination of rutin,Int.J.Electrochem.2012(2012)431253-431259.

    [15]Y.Miao,J.Chen,X.Wu,Electrochemical behaviors of matrine at l-cysteinemodified electrodes,Surf.Rev.Lett.115(2008)537-543.

    [16]A.Balamurugan,S.M.Chen,Silver nanograins incorporated pedot modified electrode for electrocatalytic sensing of hydrogen peroxid,Electroanalysis 21(2009)1419-1423.

    [17]R.N.Goyal,V.K.Gupta,N.Bachheti,et al.,Electrochemical sensor for the determination of dopamine in presence of high concentration of ascorbic acid using a fullerene-C60coated gold electrode,Electroanalysis 20(2008)757-764.

    [18]Y.M.Chen,Y.P.Chen,Measurements for the solid solubilities of antipyrine,4-aminoantipyrine and 4-dimethylaminoantipyrine in supercritical carbon dioxide,F(xiàn)luid Phase Equilib.282(2009)82-87.

    [19]A.Lang,C.Hatscher,C.Wiegert,et al.,Protease-catalysed coupling of Nprotected amino acids and peptides with 4-aminoantipyrine,Amino Acids 36(2009)333-340.

    [20]S.Cunha,S.M.Oliveira,M.T.Rodrigues,et al.,Structural studies of 4-aminoantipyrine derivatives,J.Mol.Struct.752(2005)32-39.

    [21]S.Prasad,R.K.Agarwal,Cobalt(II)complexes of various thiosemicarbazones of 4-aminoantipyrine:syntheses,spectral,thermal and antimicrobial studies,Transit.Met.Chem.32(2007)143-149.

    [22]J.F.Van Staden,N.W.Beyene,R.I.Stefan,et al.,Sequential injection spectrophotometric determination of ritodrine hydrochloride using 4-aminoantipyrine,Talanta 68(2005)401-405.

    [23]J.Kasthuri,J.Santhanalakshmi,N.Rajendiran,Platinum nanoparticle catalysed coupling of phenol derivatives with 4-aminoantipyrine in aqueous medium,Transit.Met.Chem.33(2008)899-905.

    [24]C.Z.Katsaounos,E.K.Paleologos,D.L.Giokas,et al.,The 4-aminoantipyrine method revisited:determination of trace phenols by micellar assisted preconcentration,Int.J.Environ.Anal.Chem.83(2003)507-514.

    [25]A.M.Vinagre,E.F.Collares,Effect of 4-aminoantipyrine on gastric compliance and liquid emptying in rats,Braz.J.Med.Biol.Res.40(2007)903-909.

    [26]S.G.Sunderji,A.El Badry,E.R.Poore,et al.,The effect of myometrial contractures on uterine blood flow in the pregnant sheep at 114 to 140 days' gestation measured by the 4-aminoantipyrine equilibrium diffusion technique,Am.J.Obstet.Gynecol.149(1984)408-412.

    [27]A.El Badry,J.P.Figueroa,E.R.Poore,et al.,Effect of fetal intravascular 4-aminoantipyrine infusions on myometrial activity(contractures)at 125 to 143 days'gestation in the pregnant sheep,Am.J.Obstet.Gynecol.150(1984)474-479.

    [28]S.C.Pierre,R.Schmidt,C.Brenneis,et al.,Inhibition of cyclooxygenases by dipyrone,Br.J.Pharmacol.151(2007)494-503.

    [29]E.Emerson,Standard Methods for the Examination of Water and Waste Wáter,17th ed.,American Public Health Association,New York,1989,pp.5-51.

    [30]P.Majlat,Gas chromatography determination of atropine,theophylline,phenobarbital and aminophenazone in tablets,Pharmazie 39(1984)325-326.

    [31]L.Penney,C.Bergeron,B.Coates,et al.,Simultaneous determination of residues of dipyrone and its major metabolites in milk,bovine muscle,and porcine muscle by liquid chromatography/mass spectrometry,J.AOAC Int.88(2005)496-504.

    [32]D.Puig,I.silgoner,M.Grasserbauer,et al.,Part-per-trillion level determination of priority methyl-,nitro-,and chlorophenols in river water samples by automated on-line liquid/solid extraction followed by liquid chromatography/ mass spectrometry using atmospheric pressure chemical ionization and ion spray interfaces,Anal.Chem.69(1997)2756-2761.

    [33]E.Dabek-Zlotorzynska,Capillary electrophoresis in the determination of pollutants,Electrophoresis 18(1997)2453-2464.

    [34]N.Isoshi,N.Sachico,W.Kaori,et al.,Determination of phenol in tap water and river water samples by solid phase spectroscopy,Anal.Sci.16(2000)269-274.[35]G.Blo,F(xiàn).Dondi,A.Betti,et al.,Determination of phenols in water samples as 4-aminoantipyrine derivatives by high-performance liquid chromatography,J. Chromatogr.A 257(1983)69-79.

    [36]D.Damm,Simultaneous determination of the main metabolites of dipyrone by high-pressure liquid chromatography,Arzneimittelforschung 39(1989)1415-1417.

    [37]I.Carretero,J.M.Vadillo,J.J.Laserna,Determination of antipyrine metabolites in human plasma by solid-phase extraction and micellar liquid chromatography,Analyst 120(1995)1729-1732.

    [38]J.I.Gowda,S.T.Nandibewoor,Electrochemical behavior of 4-aminophenazone drug at graphite pencil electrode and its application in real samples,Ind.Eng. Chem.Res.51(2012)15936-15941.

    [39]H.Zhou,T.Wang,Y.Y.Duan,A simple method for amino-functionalization ofcarbon nanotubes and electrodeposition to modify neural microelectrodes,J. Electroanal.Chem.688(2013)69-75.

    [40]F.Fathirad,D.Afzali,A.Mostafavi,et al.,F(xiàn)abrication of anew carbon paste electrode modified with multi-walled carbon nanotube forstripping voltammetric determination of bismuth(III),Electrochim.Acta 103(2013)206-210.

    [41]B.Dogan-Topal,B.Bozal-Palab?y?k,B.Uslu,et al.,Multi-walled carbonnanotube modified glassy carbon electrode as a voltammetric nanosensor forthe sensitive determination of anti-viral drug valganciclovir in pharmaceuticals,Sens.Actuators B 177(2013)841-847.

    [42]S.Shahrokhian,M.Ghalkhani,M.Adeli,et al.,Multi-walled carbon nano-tubes with immobilised cobalt nanoparticle for modification of glassy carbonelectrode:application to sensitive voltammetric determination of thioridazine,Biosens.Bioelectron.24(2009)3235-3241.

    [43]E.Baldrich,R.Gómez,G.Gabriel,et al.,Magnetic entrapment for fast,simple and reversible electrode modification with carbon nanotubes:applicationto dopamine detection,Biosens.Bioelectron.26(2011)1876-1882.

    [44]R.N.Goyal,V.K.Gupta,S.Chatterjee,Simultaneous determination of adenosine and inosine using single-wall carbon nanotubes modified pyrolytic graphite electrode,Talanta 76(2008)662-668.

    [45]L.Vaisman,H.D.Wagner,G.Marom,The role of surfactants in dispersion ofcarbon nanotubes,Adv.Colloid Interface Sci.37(2006)128-130.

    [46]S.Swarup,C.K.Schoff,A survey of surfactants in coatings technology,Prog. Org.Coat.23(1993)1-22.

    [47]M.Y.Pletnev,Chemistry of surfactants,in:V.B.Fainerman,D.M?bius,R.Miller(Eds.),Studies in Interface Science,vol.13,Elsevier,Amsterdam,2001,p.1.

    [48]E.Pajootan,M.Arami,Structural and electrochemical characterization of carbon electrodemodified by multi-walled carbon nanotubes and surfactant,Electrochim.Acta 112(2013)505-514.

    [49]D.I.Anguiano,M.G.Garcia,C.Ruíz,et al.,Electrochemical detection of iron in a lixiviant solution of polluted soil using a modified glassy carbon electrode,Int. J.Electrochem.2012(2011)1155-1160.

    [50]J.C.Abbar,S.T.Nandibewoor,Development of electrochemical method for the determination of chlorzoxazone drug and its analytical applications to pharmaceutical dosage form and human biological fluids,Ind.Eng.Chem.Res.51(2012)111-118.

    [51]R.N.Hegde,R.R.Hosamani,S.T.Nandibewoor,Electrochemical oxidation and determination of theophylline at a carbon paste electrode using cetyltrimethyl ammonium bromide as enhancing agent,Anal.Lett.42(2009)2665-2682.

    [52]E.Laviron,General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems,J.Electroanal.Chem.101(1979)19-28.

    [53]Y.Wu,X.Ji,S.Hu,Studies on electrochemical oxidation of azithromycin and its interaction with bovine serum albumin,Bioelectrochemistry 64(2004)91-97.

    [54]R.L.C.Thiago Paixao,R.C.Matos,M.Bertotti,Diffusion layer titration of dipyrone in pharmaceuticals at a dual-band electrochemical cell,Talanta 61(2003)725-732.

    [55]G.Gopalakrishnan,P.Manisankar,B.Muralidharan,et al.,Stripping voltammetric determination of analgesics in their pharmaceuticals using nano-riboflavin-modified glassy carbon electrode,Int.J.Electrochem.2011(2011)1-11.

    [56]L.R.Cumba,U.O.Bicalho,D.R.Silvestrini,et al.,Preparation and voltammetric study of a composite titanium phosphate/nickel hexacyanoferrate and its application in dipyrone determination,Int.J.Chem.4(2012)66-78.

    11 September 2014

    in revised form

    ☆Peer review under responsibility of Xi'an Jiaotong University.

    .Tel.:+91 836 2770524;fax:+91 836 2747884.

    E-mail address:stnandibewoor@yahoo.com(S.T.Nandibewoor).

    http://dx.doi.org/10.1016/j.jpha.2015.01.001

    2095-1779/?2015 Xi'an Jiaotong University.Production and hosting by Elsevier B.V.All rights reserved.This is an open access article under the CC BY-NC-ND license

    (http://creativecommons.org/licenses/by-nc-nd/4.0/).

    猜你喜歡
    李成人才隊(duì)伍淺談
    懷念李成章教授
    淺談Schwarz引理及其推廣和應(yīng)用
    淺談ICP-MS的使用與保養(yǎng)
    關(guān)于培養(yǎng)新時(shí)期青年人才隊(duì)伍的思考
    活力(2021年6期)2021-08-05 07:23:58
    為詩淺談
    中華詩詞(2020年11期)2020-07-22 06:31:22
    激發(fā)人才隊(duì)伍活力 更好助力追趕超越
    淺談圓錐曲線中的創(chuàng)新題
    莊玉庭先負(fù)李成蹊
    棋藝(2016年4期)2016-09-20 05:38:45
    行吟黔境
    人才隊(duì)伍:發(fā)展機(jī)制待完善
    浙江人大(2014年6期)2014-03-20 16:20:37
    又粗又爽又猛毛片免费看| 亚洲精品国产精品久久久不卡| 亚洲七黄色美女视频| 1024手机看黄色片| svipshipincom国产片| 99久久99久久久精品蜜桃| 国内精品美女久久久久久| 日本 av在线| 久久精品综合一区二区三区| 欧美日韩福利视频一区二区| 天堂av国产一区二区熟女人妻| 国产精品亚洲一级av第二区| 丰满的人妻完整版| 这个男人来自地球电影免费观看| 一本精品99久久精品77| 精品不卡国产一区二区三区| 美女黄网站色视频| tocl精华| 可以在线观看毛片的网站| 亚洲人成网站在线播放欧美日韩| 美女高潮喷水抽搐中文字幕| 久久午夜亚洲精品久久| 国产探花在线观看一区二区| 国产一区二区三区视频了| 久久久久久久久久黄片| tocl精华| 波多野结衣巨乳人妻| 999精品在线视频| 1024香蕉在线观看| 国产亚洲av嫩草精品影院| 国内久久婷婷六月综合欲色啪| 亚洲国产精品合色在线| 国产精品久久久久久精品电影| cao死你这个sao货| 亚洲avbb在线观看| 九九在线视频观看精品| 一二三四社区在线视频社区8| 国产成人影院久久av| 亚洲精品乱码久久久v下载方式 | 亚洲专区国产一区二区| 一进一出好大好爽视频| 久久久久九九精品影院| 人妻丰满熟妇av一区二区三区| 中文亚洲av片在线观看爽| 黄色女人牲交| 男插女下体视频免费在线播放| 国产人伦9x9x在线观看| 黄色日韩在线| 在线免费观看的www视频| 亚洲精华国产精华精| 校园春色视频在线观看| 熟女电影av网| 19禁男女啪啪无遮挡网站| 亚洲欧美日韩高清专用| 一区二区三区国产精品乱码| 亚洲av成人不卡在线观看播放网| 国内毛片毛片毛片毛片毛片| 欧美极品一区二区三区四区| 亚洲欧美日韩东京热| 国产精品久久久av美女十八| 老鸭窝网址在线观看| 亚洲国产精品久久男人天堂| 精品国产亚洲在线| 亚洲中文av在线| 亚洲人成电影免费在线| 91九色精品人成在线观看| 国产野战对白在线观看| 91久久精品国产一区二区成人 | 黑人欧美特级aaaaaa片| 日韩人妻高清精品专区| 免费大片18禁| 欧洲精品卡2卡3卡4卡5卡区| 激情在线观看视频在线高清| 国产精品一及| 久久久国产成人免费| 人妻丰满熟妇av一区二区三区| 麻豆久久精品国产亚洲av| 在线观看舔阴道视频| 波多野结衣高清无吗| 国产精品精品国产色婷婷| 99久久精品国产亚洲精品| 黑人操中国人逼视频| 亚洲真实伦在线观看| 精品久久久久久久毛片微露脸| 无人区码免费观看不卡| 99国产精品一区二区三区| 成人三级黄色视频| 欧美成人一区二区免费高清观看 | 国产午夜精品久久久久久| 亚洲国产色片| 久久精品亚洲精品国产色婷小说| 亚洲片人在线观看| 男人和女人高潮做爰伦理| 免费在线观看日本一区| 亚洲乱码一区二区免费版| 叶爱在线成人免费视频播放| svipshipincom国产片| 午夜两性在线视频| 久久久精品欧美日韩精品| av片东京热男人的天堂| 国产黄片美女视频| 欧美午夜高清在线| 国产麻豆成人av免费视频| 人人妻人人看人人澡| 好男人电影高清在线观看| 午夜福利免费观看在线| 人妻久久中文字幕网| 免费无遮挡裸体视频| 国产免费av片在线观看野外av| 成人无遮挡网站| 真实男女啪啪啪动态图| 欧美又色又爽又黄视频| 一个人观看的视频www高清免费观看 | 日韩国内少妇激情av| 男人舔女人下体高潮全视频| 亚洲欧美日韩卡通动漫| 很黄的视频免费| 99久久精品一区二区三区| 国产亚洲精品久久久久久毛片| 亚洲国产看品久久| 最近视频中文字幕2019在线8| 两人在一起打扑克的视频| 又黄又粗又硬又大视频| 日韩欧美一区二区三区在线观看| 亚洲人与动物交配视频| 日韩精品中文字幕看吧| 十八禁网站免费在线| 国产精品美女特级片免费视频播放器 | 少妇人妻一区二区三区视频| 亚洲精品久久国产高清桃花| 国产激情偷乱视频一区二区| 村上凉子中文字幕在线| 亚洲精品久久国产高清桃花| 99久久99久久久精品蜜桃| 亚洲成人中文字幕在线播放| 男人的好看免费观看在线视频| 午夜精品一区二区三区免费看| 999久久久国产精品视频| 国产精品精品国产色婷婷| 成人三级做爰电影| 国产一区二区三区视频了| 露出奶头的视频| 久久久国产成人精品二区| 亚洲av五月六月丁香网| 久久久水蜜桃国产精品网| 国内精品久久久久久久电影| 变态另类成人亚洲欧美熟女| 欧美一区二区国产精品久久精品| 国产精品 欧美亚洲| 亚洲一区二区三区色噜噜| 欧美性猛交黑人性爽| 久久久国产成人精品二区| av福利片在线观看| 色综合站精品国产| 国产精品久久电影中文字幕| 麻豆久久精品国产亚洲av| 天天添夜夜摸| 国产人伦9x9x在线观看| 欧美+亚洲+日韩+国产| 制服丝袜大香蕉在线| 欧洲精品卡2卡3卡4卡5卡区| 两个人的视频大全免费| 精品国产乱码久久久久久男人| 亚洲av电影不卡..在线观看| 大型黄色视频在线免费观看| 免费搜索国产男女视频| 99久久精品一区二区三区| 97人妻精品一区二区三区麻豆| 天天躁日日操中文字幕| 亚洲中文日韩欧美视频| 一进一出好大好爽视频| 欧美丝袜亚洲另类 | 给我免费播放毛片高清在线观看| 欧美乱码精品一区二区三区| 丰满人妻一区二区三区视频av | 校园春色视频在线观看| 我的老师免费观看完整版| av在线天堂中文字幕| 欧美日韩亚洲国产一区二区在线观看| 成人av一区二区三区在线看| 亚洲av熟女| 欧美一级a爱片免费观看看| 日本与韩国留学比较| 亚洲国产欧美一区二区综合| 中文资源天堂在线| 99热只有精品国产| 成年女人毛片免费观看观看9| 一二三四在线观看免费中文在| 一二三四社区在线视频社区8| 久久精品国产99精品国产亚洲性色| 国产精品一区二区精品视频观看| 亚洲无线在线观看| 日本在线视频免费播放| 无遮挡黄片免费观看| 亚洲五月天丁香| 看免费av毛片| 99久久精品热视频| 国产97色在线日韩免费| 熟女电影av网| 99国产精品一区二区蜜桃av| 99久久精品一区二区三区| 午夜福利欧美成人| 国产麻豆成人av免费视频| 曰老女人黄片| 国产精品女同一区二区软件 | 麻豆国产97在线/欧美| 又爽又黄无遮挡网站| 久久香蕉精品热| 中文字幕熟女人妻在线| 国产精品一区二区免费欧美| 亚洲成人精品中文字幕电影| 1024手机看黄色片| 精品不卡国产一区二区三区| 亚洲七黄色美女视频| 高潮久久久久久久久久久不卡| 成人国产一区最新在线观看| 狠狠狠狠99中文字幕| 法律面前人人平等表现在哪些方面| 怎么达到女性高潮| 俄罗斯特黄特色一大片| 真人一进一出gif抽搐免费| 欧洲精品卡2卡3卡4卡5卡区| 亚洲无线观看免费| 国产爱豆传媒在线观看| 亚洲国产欧美人成| 99热6这里只有精品| 91九色精品人成在线观看| 日本与韩国留学比较| 亚洲欧美一区二区三区黑人| www国产在线视频色| 成人永久免费在线观看视频| 久久人人精品亚洲av| 日本免费a在线| 首页视频小说图片口味搜索| 亚洲国产日韩欧美精品在线观看 | 久久久久久人人人人人| 成年女人永久免费观看视频| 很黄的视频免费| 一个人看视频在线观看www免费 | 日本免费a在线| 午夜精品一区二区三区免费看| 99re在线观看精品视频| aaaaa片日本免费| 国产精品久久久久久久电影 | 亚洲欧美精品综合久久99| 国产一级毛片七仙女欲春2| 亚洲欧美一区二区三区黑人| 好看av亚洲va欧美ⅴa在| www.999成人在线观看| 老司机午夜福利在线观看视频| 999久久久精品免费观看国产| 男女之事视频高清在线观看| 在线观看舔阴道视频| 五月玫瑰六月丁香| 亚洲欧洲精品一区二区精品久久久| 久久久久亚洲av毛片大全| www.www免费av| 99国产精品一区二区三区| 国产午夜精品久久久久久| 99久久成人亚洲精品观看| av中文乱码字幕在线| 美女cb高潮喷水在线观看 | 真人一进一出gif抽搐免费| 国产乱人伦免费视频| 俄罗斯特黄特色一大片| 日日夜夜操网爽| 婷婷六月久久综合丁香| 亚洲第一欧美日韩一区二区三区| 99国产极品粉嫩在线观看| 禁无遮挡网站| 中文亚洲av片在线观看爽| 国产成人精品久久二区二区91| 国产激情偷乱视频一区二区| 哪里可以看免费的av片| 淫妇啪啪啪对白视频| 日韩 欧美 亚洲 中文字幕| 很黄的视频免费| 三级国产精品欧美在线观看 | 一区二区三区高清视频在线| 99riav亚洲国产免费| 不卡av一区二区三区| 国产成人福利小说| 国产aⅴ精品一区二区三区波| 在线视频色国产色| 亚洲一区高清亚洲精品| 波多野结衣高清无吗| 后天国语完整版免费观看| 婷婷精品国产亚洲av| 俄罗斯特黄特色一大片| 99国产精品99久久久久| 久久精品影院6| www.熟女人妻精品国产| 国产伦精品一区二区三区视频9 | 免费观看精品视频网站| 中文字幕人妻丝袜一区二区| 午夜久久久久精精品| 五月伊人婷婷丁香| 性欧美人与动物交配| 国产三级中文精品| 美女 人体艺术 gogo| 亚洲国产高清在线一区二区三| 免费搜索国产男女视频| 老司机在亚洲福利影院| 男女视频在线观看网站免费| 激情在线观看视频在线高清| 欧美zozozo另类| 亚洲国产日韩欧美精品在线观看 | 美女 人体艺术 gogo| 三级国产精品欧美在线观看 | 午夜免费成人在线视频| 狂野欧美白嫩少妇大欣赏| 午夜福利在线观看免费完整高清在 | 国产一区在线观看成人免费| 亚洲一区高清亚洲精品| 无遮挡黄片免费观看| 精品无人区乱码1区二区| 国产高清视频在线播放一区| 1024手机看黄色片| 12—13女人毛片做爰片一| 一本久久中文字幕| 亚洲专区国产一区二区| 久久久久国内视频| av福利片在线观看| 亚洲五月天丁香| 国产毛片a区久久久久| 极品教师在线免费播放| 91在线观看av| 国产精品爽爽va在线观看网站| 人妻丰满熟妇av一区二区三区| 美女黄网站色视频| 国产成人av激情在线播放| 黄色女人牲交| 中文在线观看免费www的网站| 精品国产三级普通话版| 国产精品永久免费网站| 男女下面进入的视频免费午夜| 欧美丝袜亚洲另类 | 国产精品 欧美亚洲| 国产又色又爽无遮挡免费看| 色av中文字幕| 在线观看一区二区三区| 欧美日韩亚洲国产一区二区在线观看| 午夜a级毛片| 成人亚洲精品av一区二区| 色在线成人网| 久久草成人影院| 精品久久久久久,| 国产视频内射| 亚洲成人精品中文字幕电影| www国产在线视频色| 久久人人精品亚洲av| a在线观看视频网站| 少妇的逼水好多| 国产一区二区在线av高清观看| 欧美一级毛片孕妇| 每晚都被弄得嗷嗷叫到高潮| 午夜精品在线福利| 国产精品一区二区三区四区免费观看 | 国产av麻豆久久久久久久| av欧美777| 成人性生交大片免费视频hd| 国产精品99久久久久久久久| 国产精品香港三级国产av潘金莲| 欧美日韩一级在线毛片| 亚洲午夜精品一区,二区,三区| 中文字幕人妻丝袜一区二区| 国产成人欧美在线观看| 日本黄色视频三级网站网址| 成在线人永久免费视频| 日本在线视频免费播放| 欧美+亚洲+日韩+国产| 欧美成人免费av一区二区三区| 我的老师免费观看完整版| 欧美激情在线99| 99精品在免费线老司机午夜| 巨乳人妻的诱惑在线观看| 久久久久国产一级毛片高清牌| 97人妻精品一区二区三区麻豆| 久久久国产成人免费| 网址你懂的国产日韩在线| 99久久精品热视频| 亚洲人成电影免费在线| 亚洲av五月六月丁香网| 成人特级av手机在线观看| 成人18禁在线播放| 国产男靠女视频免费网站| 嫁个100分男人电影在线观看| 黑人操中国人逼视频| 岛国视频午夜一区免费看| 99久国产av精品| 国产精品综合久久久久久久免费| 国产成人精品久久二区二区91| 国产激情偷乱视频一区二区| 国产高清激情床上av| 无人区码免费观看不卡| 精品国产亚洲在线| 欧美在线一区亚洲| 一个人看视频在线观看www免费 | 欧美国产日韩亚洲一区| 国产精品免费一区二区三区在线| 国产探花在线观看一区二区| 久久久久久大精品| 日韩国内少妇激情av| 亚洲av熟女| 国产精品1区2区在线观看.| 这个男人来自地球电影免费观看| 色哟哟哟哟哟哟| 后天国语完整版免费观看| ponron亚洲| x7x7x7水蜜桃| 欧美av亚洲av综合av国产av| 蜜桃久久精品国产亚洲av| 久久天堂一区二区三区四区| 国产探花在线观看一区二区| 国产一区二区三区在线臀色熟女| 亚洲自偷自拍图片 自拍| 18禁美女被吸乳视频| 免费无遮挡裸体视频| 又大又爽又粗| ponron亚洲| 在线观看日韩欧美| 精品国产超薄肉色丝袜足j| 又爽又黄无遮挡网站| 香蕉丝袜av| 国产高清videossex| 国产三级在线视频| 久久久久九九精品影院| 亚洲国产精品合色在线| 久久久久久国产a免费观看| 国产人伦9x9x在线观看| 91av网一区二区| 男人的好看免费观看在线视频| 免费在线观看视频国产中文字幕亚洲| 岛国视频午夜一区免费看| 狂野欧美白嫩少妇大欣赏| 少妇熟女aⅴ在线视频| 90打野战视频偷拍视频| 日韩大尺度精品在线看网址| 久久天堂一区二区三区四区| 免费看十八禁软件| 熟女少妇亚洲综合色aaa.| 国产男靠女视频免费网站| 欧美色欧美亚洲另类二区| 波多野结衣高清无吗| 免费在线观看亚洲国产| 久久久久亚洲av毛片大全| 女警被强在线播放| 精品国产超薄肉色丝袜足j| 亚洲五月天丁香| 国产精品99久久99久久久不卡| 亚洲国产欧美一区二区综合| 婷婷精品国产亚洲av| 18禁美女被吸乳视频| 亚洲中文日韩欧美视频| 88av欧美| 国产高清三级在线| 国产精品免费一区二区三区在线| 久久人妻av系列| 天堂动漫精品| 欧美日韩亚洲国产一区二区在线观看| avwww免费| www.精华液| 国产成人系列免费观看| 欧美一级毛片孕妇| avwww免费| 欧美另类亚洲清纯唯美| 国产三级在线视频| 老司机午夜十八禁免费视频| 国产乱人视频| 国内精品久久久久久久电影| 久久久国产欧美日韩av| 美女高潮的动态| 2021天堂中文幕一二区在线观| 欧美黄色淫秽网站| 日本与韩国留学比较| 精品久久蜜臀av无| 亚洲成人中文字幕在线播放| 成熟少妇高潮喷水视频| 精品久久久久久,| 国产成人av教育| 亚洲专区中文字幕在线| 久久久色成人| 国产精品综合久久久久久久免费| 美女cb高潮喷水在线观看 | 99精品欧美一区二区三区四区| 久久人妻av系列| 久久亚洲精品不卡| 一本精品99久久精品77| 97超视频在线观看视频| 国产探花在线观看一区二区| АⅤ资源中文在线天堂| 成人一区二区视频在线观看| 亚洲,欧美精品.| 国产探花在线观看一区二区| 国产精品日韩av在线免费观看| 窝窝影院91人妻| 久久久久久国产a免费观看| 色综合婷婷激情| 欧美性猛交╳xxx乱大交人| 99国产精品一区二区三区| 夜夜爽天天搞| 国产精品98久久久久久宅男小说| 日韩高清综合在线| 黄色丝袜av网址大全| 亚洲精品在线美女| 99精品久久久久人妻精品| 91字幕亚洲| 成人鲁丝片一二三区免费| 亚洲美女黄片视频| 国产亚洲欧美98| 一区福利在线观看| 日本三级黄在线观看| 丰满的人妻完整版| 久久久久久久久免费视频了| 老汉色av国产亚洲站长工具| 中文字幕久久专区| 亚洲国产欧美人成| 好看av亚洲va欧美ⅴa在| 欧美成人性av电影在线观看| 黄色成人免费大全| 国产成人精品无人区| 成年版毛片免费区| 男人的好看免费观看在线视频| av在线蜜桃| 99久久国产精品久久久| 一级a爱片免费观看的视频| 国内久久婷婷六月综合欲色啪| 在线永久观看黄色视频| 男女那种视频在线观看| 国产三级黄色录像| 中文资源天堂在线| 欧美zozozo另类| 午夜两性在线视频| 久9热在线精品视频| 国产高潮美女av| 夜夜夜夜夜久久久久| 国产不卡一卡二| 成人亚洲精品av一区二区| 丰满的人妻完整版| 亚洲欧美日韩高清在线视频| 性欧美人与动物交配| 一区福利在线观看| 久久国产精品人妻蜜桃| 色综合站精品国产| 国产熟女xx| 18禁美女被吸乳视频| 在线观看免费视频日本深夜| 99精品久久久久人妻精品| 人人妻人人澡欧美一区二区| 成人三级做爰电影| 在线永久观看黄色视频| 精品一区二区三区av网在线观看| 欧美黄色片欧美黄色片| 一级毛片精品| 男女之事视频高清在线观看| 亚洲欧美精品综合一区二区三区| 中国美女看黄片| 亚洲精品在线美女| 亚洲人成伊人成综合网2020| 一级a爱片免费观看的视频| 国产成人啪精品午夜网站| 美女黄网站色视频| 亚洲av中文字字幕乱码综合| 极品教师在线免费播放| 日韩国内少妇激情av| 91久久精品国产一区二区成人 | 人妻久久中文字幕网| 国产伦精品一区二区三区视频9 | 女人被狂操c到高潮| 18禁黄网站禁片免费观看直播| 成熟少妇高潮喷水视频| 午夜免费观看网址| 亚洲人成网站高清观看| 变态另类丝袜制服| 国产亚洲精品一区二区www| 亚洲七黄色美女视频| 久久国产精品影院| 午夜免费激情av| 成人av一区二区三区在线看| 国产日本99.免费观看| 国产又色又爽无遮挡免费看| 亚洲欧洲精品一区二区精品久久久| 亚洲精品色激情综合| 成人欧美大片| 91av网站免费观看| av天堂中文字幕网| 最近在线观看免费完整版| www.自偷自拍.com| 欧美另类亚洲清纯唯美| 精品久久久久久久毛片微露脸| 亚洲电影在线观看av| 午夜福利成人在线免费观看| 露出奶头的视频| 午夜福利在线观看免费完整高清在 | 综合色av麻豆| 国产视频一区二区在线看| 欧美丝袜亚洲另类 | 不卡av一区二区三区| 一进一出抽搐动态| 黄片小视频在线播放| 成人高潮视频无遮挡免费网站| 女警被强在线播放| 欧美黄色片欧美黄色片| 老熟妇乱子伦视频在线观看| 久久久久性生活片| av欧美777| 淫妇啪啪啪对白视频| 午夜免费成人在线视频| 免费人成视频x8x8入口观看| 夜夜看夜夜爽夜夜摸| 欧美色视频一区免费| 波多野结衣高清无吗| 99久久综合精品五月天人人| 他把我摸到了高潮在线观看| 精品国产乱子伦一区二区三区|