劉 媛,張彩香,廖小平,姚林林,李佳樂(lè),劉 敏,徐 亮,羅茵文 (中國(guó)地質(zhì)大學(xué)(武漢)生物地質(zhì)與環(huán)境地質(zhì)國(guó)家重點(diǎn)實(shí)驗(yàn)室,湖北 武漢 430074)
太原小店污灌區(qū)土壤壬基酚的分布特征
劉 媛,張彩香*,廖小平,姚林林,李佳樂(lè),劉 敏,徐 亮,羅茵文 (中國(guó)地質(zhì)大學(xué)(武漢)生物地質(zhì)與環(huán)境地質(zhì)國(guó)家重點(diǎn)實(shí)驗(yàn)室,湖北 武漢 430074)
本研究以內(nèi)分泌干擾物壬基酚(NP)為例,研究了太原小店污灌區(qū)土壤NP的污染濃度水平及空間分布特征.結(jié)果表明,NP在研究區(qū)污灌土壤中普遍存在,含量高低順序?yàn)?污灌區(qū)>過(guò)渡區(qū)>清灌區(qū);總體上離灌渠越遠(yuǎn),土壤中NP含量越低;NP含量與土壤有機(jī)質(zhì)(TOC)呈正相關(guān),與土壤pH值呈負(fù)相關(guān);在垂直鉆孔沉積物中,隨土壤深度增加,NP含量逐漸減小,但在一定深度會(huì)出現(xiàn)NP的富集層,富集層深度受土壤理化性質(zhì)的影響,間接反映了該區(qū)域的污灌歷史及NP的下滲遷移能力.
太原小店;污灌土壤;壬基酚;沉積物;分布特征
在一些發(fā)展中國(guó)家,由于水資源供應(yīng)不能滿足糧食生產(chǎn)的需求,大量未經(jīng)處理或未完全處理的污水和污泥被廣泛用于農(nóng)田系統(tǒng),使污灌土壤成為外源性有機(jī)污染物的一個(gè)重要的“蓄積庫(kù)”[1].壬基酚(NP)是一種典型的內(nèi)分泌干擾物(EDCs),具有脂溶性高,難降解,易富集和致癌等特性[2],被歐盟水框架指令定義為優(yōu)控有害物質(zhì)[3].目前各國(guó)學(xué)者集中研究了生物體[4-5]、水體[6-7]、沉積物[8-9]和土壤[10]中NP的遷移轉(zhuǎn)化行為,并已取得了一些研究成果.盡管有研究表明,太原小店污灌渠地表水中NP含量范圍達(dá)到0.83~47.68μg/L[11],但對(duì)該污灌土壤中NP的殘留量和分布特征等研究較少.雖NP在土壤中具有強(qiáng)吸附性和移動(dòng)性低等特點(diǎn),但隨著徑流的橫向運(yùn)輸,NP會(huì)遷移滲入附近水體,對(duì)周邊水體存在潛在的生態(tài)和健康風(fēng)險(xiǎn)[12].盡管部分NP可以被土壤微生物降解,但受到土壤環(huán)境厭氧[13]和低溫[14]的限制,NP在土壤中的半衰期可超過(guò)60年[15].已有研究表明,土壤中殘留的NP還可以向農(nóng)作物遷移[16],直接關(guān)系糧食生產(chǎn)安全.因此,查明污灌土壤中NP的殘留量及分布特征具有重要的現(xiàn)實(shí)意義.
太原小店污灌區(qū)作為城市近郊農(nóng)業(yè)地,至今已有30年污水漫灌歷史,課題組近幾年來(lái)對(duì)該區(qū)域土壤和水體中有機(jī)物進(jìn)行了深入研究,證實(shí)長(zhǎng)期污水灌溉對(duì)該地區(qū)地下水環(huán)境已產(chǎn)生了一定的影響[17],本研究主要調(diào)查該地區(qū)土壤中NP的污染及分布,為合理評(píng)價(jià)污水灌溉在農(nóng)業(yè)生態(tài)系統(tǒng)中的應(yīng)用提供科學(xué)依據(jù).
1.1 樣品采集
根據(jù)研究區(qū)地理特征和灌渠分布特點(diǎn),研究組于2011年8月在小店污灌區(qū)采集了6個(gè)剖面土(圖中標(biāo)示為GS-1~6)和3個(gè)鉆孔沉積物(圖中標(biāo)示為F-4,F(xiàn)-5,F(xiàn)-15)樣品,采樣點(diǎn)布置如圖1所示.剖面土分布在三個(gè)不同灌溉區(qū),污灌區(qū)(GS-1-4)位于北張退水渠渠邊,采樣點(diǎn)離渠邊距離分別為2 7,16,35m;過(guò)渡區(qū)(GS-5)位于無(wú)公害蔬菜基地,20年前采用污水灌溉,后改為地下水灌溉;清灌區(qū)(GS-6)位于小店區(qū)東部,歷史上一直采用地下水灌溉.利用洛陽(yáng)鏟采集剖面土樣品(1m左右)并劃分8個(gè)層位進(jìn)行樣品采集,為避免交叉污染,去除浮土后裝入事先洗凈的鋁盒中,隨后用Parafilm膜密封保存.鉆孔沉積物中,污灌區(qū)(F-4)位于太榆退水渠渠邊玉米地;沼澤區(qū)(F-5)位于汾河岸邊玉米地,受汾河水質(zhì)影響較大;清灌區(qū)(F-15)位于向日葵地.利用水鉆鉆機(jī)(文登GJ-240S)采集沉積物(20m左右),采集層位間隔1~2m.樣品采集后現(xiàn)場(chǎng)描述其巖性[18]并立即用保鮮膜包裹,裝入PVC(30cm)塑料管中,送往實(shí)驗(yàn)室于-4 ℃冷凍保存,一周內(nèi)進(jìn)行分析和處理.
圖1 研究區(qū)域剖面土和鉆孔點(diǎn)分布示意Fig.1 Location of profile soils and borehole sediments
1.2 主要試劑和測(cè)試方法
主要試劑:二氯甲烷(HPLC級(jí),CNW);正己烷(HPLC級(jí),Tedia);丙酮(pesticide grade, J.KBaker);NP標(biāo)準(zhǔn)品(Fluka, USA,純度≥98%);回收率指示劑4-正-壬基酚(4-n-NP),內(nèi)標(biāo)化合物為2, 4, 6-三甲基苯酚(TMP),均購(gòu)買(mǎi)于美國(guó)Sigma-Aldrich公司.
土壤含水率:烘箱烘干法(105℃)測(cè)試;TOC:利用總有機(jī)碳分析儀(德國(guó),Elementer)測(cè)試;土壤pH值:利用甘汞電極pH計(jì)測(cè)試(PHS-3C,上海).
NP含量:利用氣相色譜質(zhì)譜聯(lián)用儀測(cè)試(HP 6890GC, HP5975四級(jí)桿質(zhì)譜儀和AS 800自動(dòng)進(jìn)樣儀).色譜柱為HP-5ms石英毛細(xì)管柱(30m× 0.25mm×0.25μm),載氣為高純氦(He≥99.999%),以不分流恒壓模式進(jìn)樣,進(jìn)樣量為1μL,進(jìn)樣口溫度為275℃,傳輸線溫度為275℃,溶劑延遲3.5min.色譜柱升溫程序?yàn)?初始溫度70℃保持1min,隨后以25℃/min速率升溫至130℃,再以2℃/min速率升溫至300℃,保持20min,分析時(shí)長(zhǎng)為108.4min.離子源溫度為250℃,利用全掃描模式采集樣品數(shù)據(jù),掃描范圍為50~500amu.
1.3 土樣預(yù)處理
準(zhǔn)確稱取自然風(fēng)干土樣5g±0.005g放入40mL玻璃瓶中,分別加入500ng回收率指示劑(4-n-NP)和15mL萃取劑(V二氯甲烷:V丙酮=1:1),漩渦振蕩器上充分混勻后超聲萃取10min (40kHZ,40℃);隨后混合液離心(3000r/min,5min),將上清液轉(zhuǎn)移至雞心瓶?jī)?nèi),上述萃取過(guò)程重復(fù)三遍,收集混合液減壓濃縮至3mL(40℃)(瑞士Buchi公司,Rotavapour R-210),轉(zhuǎn)移至硅膠(6mL)層析柱凈化,并用30mL洗脫液(V二氯甲烷:V正己烷=4:1)洗脫層析柱,利用正己烷將洗脫液替換濃縮至0.5mL(40℃),隨后轉(zhuǎn)移至2mL棕色細(xì)胞瓶中,檢測(cè)前用柔和氮?dú)鉂饪s至0.2mL左右(美國(guó)organomation公司, EFCG-11155-DA),加入400ng內(nèi)標(biāo)物(TMP),冷凍保存待測(cè).
1.4 質(zhì)量保證與質(zhì)量控制(QA/QC)
為了避免分析過(guò)程中引起污染,每天預(yù)處理15個(gè)樣品,同時(shí)包括一個(gè)方法空白,結(jié)果表明空白樣品中均未檢測(cè)到目標(biāo)化合物.加標(biāo)回收率范圍為84.1%~90.8%.配制10,20,50,100,150,200mg/L混標(biāo)標(biāo)準(zhǔn)系列6點(diǎn)校正曲線進(jìn)行定量,線性方程相關(guān)系數(shù)r大于0.99.其中目標(biāo)物NP定量為特征離子(m/z) 107,121,135,149的總和相對(duì)于內(nèi)標(biāo)物(TMP)特征離子(m/z) 121和136的總和進(jìn)行計(jì)算[19];回收率指示劑(4-n-NP)特征離子(m/z)為107和220,土樣中NP方法檢測(cè)限為4.6ng/g.
2.1 剖面土中NP的分布
圖2為研究區(qū)各剖面土樣品中NP的含量.結(jié)果表明,NP在所有樣品中均有不同程度的檢出,整個(gè)研究區(qū)污灌剖面土壤中NP的殘留量范圍為8.4~3384.8ng/g,平均值(PEC)為187.5ng/g.該平均值要低于歐盟風(fēng)險(xiǎn)評(píng)價(jià)技術(shù)導(dǎo)則中土壤壬基酚預(yù)測(cè)無(wú)效應(yīng)濃度(PNEC,300ng/g)[20],即生態(tài)風(fēng)險(xiǎn)墑值(RQ=PEC/PENC)小于1,表明本研究區(qū)污灌土壤中NP含量對(duì)周圍生態(tài)環(huán)境不構(gòu)成威脅.
剖面土中NP的含量順序?yàn)?污灌區(qū)>過(guò)渡區(qū)>清灌區(qū),清灌區(qū)土壤中NP的存在暗示該研究區(qū)土壤中NP不僅來(lái)源于污水處理廠排放的廢水和污泥,還存在其他污染源如農(nóng)藥,肥料,垃圾填埋,生物體,食品和大氣[21]等,但前者占主要地位.對(duì)比灌渠附近水平方向剖面土(GS-1-4)中NP含量,總體上離灌渠距離越遠(yuǎn),NP含量越低;但受漫灌的影響,表層土中NP含量變化復(fù)雜;另外,GS-1因離渠較近,受灌渠側(cè)滲的影響,土壤中NP含量較低,證實(shí)灌渠側(cè)滲對(duì)NP在土壤中的分布存在一定的影響.
從圖2中可看出,隨著深度的增加土壤中NP含量逐漸減小然后趨于穩(wěn)定,這主要是由于NP在滲入土壤向下遷移的過(guò)程中逐漸被土壤吸附或被微生物降解所致[22].其中,表層土(0~30cm)中NP含量較高,由于NP移動(dòng)性低[12],隨雨水垂相遷移弱[23],污水中未能達(dá)標(biāo)排放的NP隨著灌溉被吸附于土壤有機(jī)顆粒表面,故而在表層累積.在表層以下,受澆灌歷史及土壤理化性質(zhì)的影響,過(guò)渡區(qū)(GS-5)和清灌區(qū)(GS-6)剖面土中NP含量變化比較復(fù)雜.GS-5在55cm處出現(xiàn)該區(qū)域NP含量最大值,可能是20年前采用污水灌溉時(shí)污水中的高濃度NP運(yùn)移至此富集所致.GS-6中甚至出現(xiàn)NP含量遞增的趨勢(shì),推測(cè)是受附近灌渠中污水側(cè)滲的影響.
圖2 壬基酚在不同剖面土中的分布特征Fig.2 Distribution of NP in profile soils versus depth
由表1可見(jiàn),國(guó)內(nèi)土壤中NP殘留水平相對(duì)較低;由于國(guó)外污泥回用歷史較長(zhǎng),高疏水性NP大量濃集于污泥中[26,29].但本污灌區(qū)土壤中NP含量要比國(guó)內(nèi)其他區(qū)域高一個(gè)數(shù)量級(jí);因?yàn)椴煌鞘泄I(yè)水平和污水處理廠廢水處理能力不同,可能導(dǎo)致污水中NP含量不同,最終造成不同污灌區(qū)土壤中污染物含量差異.
表1 太原小店污灌土壤中NP的含量與國(guó)內(nèi)外其他研究區(qū)域的比較Table 1 Comparison of present NP soil concentrations with those literature reported data
2.2 鉆孔沉積物中NP的分布
由圖3可見(jiàn),在深層土壤中NP的殘留量范圍為4.4~434ng/g,平均值為39.33ng/g.總體上,污灌區(qū)(F-4),沼澤區(qū)(F-5)和清灌區(qū)(F-15)變化趨勢(shì)一致,隨著深度增加NP含量逐漸降低,并在一定深度富集,間接反映了該區(qū)域多年的污灌歷史[13,30].一方面,NP易吸附于土壤有機(jī)顆粒物表面,并存在解吸滯后現(xiàn)象[31];另外深層土壤中厭氧[14]和低溫[15]的共同限制,生物有效性大大降低,被土壤有機(jī)顆粒物包裹的NP只能隨灌溉水向下逐漸運(yùn)移,最后在水流推動(dòng)力和巖溶阻力平衡區(qū)域富集.
清灌區(qū)中NP含量隨深度增加變化比較平緩,在TOC含量高的地方NP含量會(huì)增加;但整體呈遞減趨勢(shì).在14m處TOC含量最高的地方NP富集,其值為434ng/g,表明土壤中NP分布特征受土壤有機(jī)質(zhì)含量的影響,TOC含量越高, NP含量越高.
沼澤區(qū)沉積物巖性主要為砂質(zhì)土,有機(jī)質(zhì)含量相對(duì)較低并呈微弱降低趨勢(shì),NP含量也隨之降低.但因沼澤區(qū)離汾河較近,長(zhǎng)期受汾河水質(zhì)影響,水巖交互作用頻繁,導(dǎo)致NP在10m處富集,其值為214.4ng/g.在更深層土壤,沉積物巖性由細(xì)砂變?yōu)榉壅常琓OC含量增加,導(dǎo)致NP含量又有增加趨勢(shì).
污灌區(qū)中NP含量比沼澤區(qū)和清灌區(qū)高,變化復(fù)雜.受污灌影響,NP含量的變化趨勢(shì)跟TOC含量變化趨勢(shì)相反,并出現(xiàn)兩個(gè)NP富集層,即5m處和越過(guò)黏土層后的16m處,其值分別為112ng/g和104ng/g.表明長(zhǎng)期污水灌溉會(huì)增加該污染物向深層土壤遷移的風(fēng)險(xiǎn),從而對(duì)該區(qū)域地下水環(huán)境安全造成一定的影響.
圖3 鉆孔沉積物中NP濃度分布Fig.3 Distribution of nonylphenol concentration in borehole sediments
2.3 土壤中NP分布的影響因素
由表2可知,鉆孔沉積物中NP含量與土壤TOC和pH之間沒(méi)有明顯的相關(guān)性,表明鉆孔沉積物中NP的分布受多種外界因素的影響,包括污灌歷史,肥料的施用,以及側(cè)滲的影響.
表2 土壤中NP含量與土壤理化性質(zhì)的相關(guān)性Table 2 The correlation between NP concentration and soil physio-chemical characteristics
而剖面土中NP含量與土壤TOC呈正相關(guān),這與Jin等[8]研究結(jié)果一致,表明淺層土壤中有機(jī)質(zhì)含量越高,土壤吸附NP能力越強(qiáng).另外,土壤中NP含量與pH呈負(fù)相關(guān),Chiou等[32]認(rèn)為堿性條件下,土壤有機(jī)質(zhì)表面帶負(fù)電荷導(dǎo)致對(duì)顯弱酸性NP具有排斥作用.土壤中NP含量與土壤含水率之間并沒(méi)有呈現(xiàn)出明顯相關(guān)性.此外,土壤中NP含量還可能與土壤礦物組成成分以及離子強(qiáng)度[33]有關(guān).
3.1 所有采集污灌土壤中都能檢測(cè)到NP,剖面土和鉆孔沉積物中平均值分別為187.5ng/g和39.33ng/g,生態(tài)風(fēng)險(xiǎn)墑(RQ)小于1,表明目前該污灌土壤中的NP含量對(duì)周圍生態(tài)環(huán)境不構(gòu)成威脅;不同灌溉方式土壤中NP含量高低順序?yàn)?污灌區(qū)>過(guò)渡區(qū)>清灌區(qū).
3.2 研究區(qū)污灌土壤NP空間污染濃度水平分布特征為,整體上,離污灌渠越遠(yuǎn)NP含量越低,但灌渠附近剖面土壤中NP分布特征受灌渠側(cè)滲的影響.
3.3 另外,隨著土壤深度增加,NP含量略有減少,但在一定深度出現(xiàn)NP富集層,表明NP有向深層土壤遷移的能力,且間接反映該區(qū)域多年的污灌歷史.
3.4 土壤中NP分布受多種因素影響,如土壤TOC,pH和巖性等.在淺層剖面土中,NP含量與土壤TOC呈正相關(guān),與pH值呈負(fù)相關(guān).
[1]Dakouré M Y, Mermoud A, Yacouba M, et al. Impacts of irrigation with industrial treated wastewater on soil properties [J]. Geoderma, 2013,200-201:31-39.
[2]Soares A, Guieysse B, Jefferson B, et al. Nonylphenol in the environment: A critical review on occurrence, fate, toxicity and treatment in wastewaters [J]. Environment International, 2008,34(7):1033-1049.
[3]European Community. Directive2000/60/EC of the parliament and of the council of 23October 2000establishing a framework Community action in the field of water policy. Office Journal European Community Luxembourg, 2000,327:1-73.
[4]Jung M Y, Kim T S. Differential modulation of regulatory T cell activities by nonylphenol, octylphenol and diethylstilbestrol [J]. The Journal of Immunology, 2009,182:47.3
[5]柳春紅,王偉華,褚 玥,等.深圳居民膳食壬基酚和辛基酚暴露的風(fēng)險(xiǎn)評(píng)估 [J]. 中國(guó)環(huán)境科學(xué), 2013,33(7):1316-1322.
[6]Rocha M J, Cruzeiro C, Reis M, et a1. Determination of seventeen endocrine disruptor compounds and their spatial and seasonaldistribution in Ria Formosa Lagoon (Portugal) [J]. Environmental Monitoring and Assessment, 2013,185(10):8215-8226.
[7]沈 鋼,張祖麟,余 剛,等.夏季海河與渤海灣中壬基酚和辛基酚污染的狀況 [J]. 中國(guó)環(huán)境科學(xué), 2005,25(6):733-736.
[8]Jin F, Hu J Y, Yang M. Vertical distribution of nonylphenol and nonylphenol ethoxylates in sedimentary core from the Beipaiming Channel, North China [J]. Journal of Environmental Sciences,2007,19(3):353-357.
[9]陳 兵,麥碧嫻,陳社軍,等.珠江三角洲河流沉積物中的壬基酚[J]. 中國(guó)環(huán)境科學(xué), 2005,25(4):484-486.
[10]Chen W P, Xu J, Lu S D, et al. Fates and transport of PPCPs in soil receiving reclaimed water irrigation [J]. Chemosphere,2013,93:2621-2630.
[11]劉 敏,張彩香,廖小平,等.污灌區(qū)地表水中辛基酚,壬基酚及其前體的分布特征 [J]. 環(huán)境化學(xué), 2014,33(7):1101-1106.
[12]Shang D Y, Macdonald R W, Ikonomou M G. Persistence of nonylphenol ethoxylate surfactants and their primary degradation products in sediments from near a municipal outfall in the strait of Georgia, British Columbia, Canada [J]. Environmental Science Technology, 1999,33(9):1366-1372.
[13]翟洪艷,于 泳,孫洪文.壬基酚在海河沉積物中的耗氧和厭氧降解 [J]. 環(huán)境化學(xué), 2007,26(6):725-729.
[14]Topp E, Starratt A. Rapid mineralization of the endocrine disrupting chemical 4-nonylphenol in soil [J]. Environmental Toxicology Chemistry, 2000,19(2):313-318.
[15]Barber L B, Thurman E M, Schroeder M P, et al. Long-term fate of organic micropollutants in sewage-contaminated groundwater[J]. Environmental Science and Technology, 1988,22(2):205-211.
[16]Cai Q Y, Huang H J, Lv H X, et al. Occurrence of Nonylphenol and Nonylphenol Monoethoxylate in Soil and Vegetables from Vegetable Farms in the Pearl River Delta, South China [J]. Archives of Environmental Contamination Toxicology, 2012,63: 22-28.
[17]Zhang C X, Liao X P, Li J L, et al. Influence of long-term sewage irrigation on the distribution of organochlorine pesticides in soil-groundwater systems [J]. Chemosphere, 2013,92(4):337-343.
[18]GB50021-2009 巖土工程勘測(cè)規(guī)范準(zhǔn)則 [S].
[19]Zhang C X, Eganhouse R P, Pontolillo J, et al. Determination of nonylphenol isomers in landfill leachate and municipalwastewater using steam distillation extraction coupled with comprehensive two-dimensional gas chromatography/time-offlight mass spectrome-try [J]. Journal of Chromatography A,2012,1230:110-116.
[20]European Commission. European Union risk assessment report: 4-nonylphenol (branched) and nonylphenol [R]. European Commis-sion Joint Research Centre, Brussels, Belgium. 2002,10,2nd Priority List.
[21]張婷瑜,張福金,何 江,等.壬基酚的土壤殘留及其行為研究進(jìn)展 [J/OL]. 農(nóng)業(yè)資源與環(huán)境學(xué)報(bào), http://www.cnki.net/kcms/ detail/12.1233.S.20131205.1533.001.html, 2013-12-05:1-11.
[22]Shchegolikhina A, Marschner B. Effects of sterile storage, cation saturation and substrate additions on the degradability and extractability of nonylphenol and phenanthrene in soil [J]. Chemosphere, 2013,93(9):2195-2202.
[23]Roberts P, Roberts J P, Jones D L. Behaviour of the endocrine disrupting chemical nonylphenol in soil:Assessing the risk associated with spreading contaminated waste to land [J]. Soil Biology and Biochemistry, 2006,38(7):1812-1822.
[24]Liber K, Knuth M L, Stay F S. An integrated evaluation of the persistence and effects of 4-nonylphenol in an experimental littoral ecosystem [J]. Environmental Toxicology Chemistry,1999,18(3):357-362.
[25]J?rgen V, Marianne T, Lars C. Phthalates and nonylphenols in profiles of differently dressed soils [J]. Science of The Total Environment, 2002,296(1-3):105-116.
[26]范奇元,金 泰,將學(xué)之,等.我國(guó)部分地區(qū)環(huán)境中NP的檢測(cè) [J].中國(guó)公共衛(wèi)生, 2002,18(11):1372-1373.
[27]王艷平,李 正,楊正禮,等.黑龍江農(nóng)田土壤NP及其短鏈聚氧乙烯醚殘留調(diào)查 [J]. 土壤通報(bào), 2012,43(3):706-710.
[28]Chen F, Ying G G, Kong L X, et al. Distribution and accumulation of endocrine-disrupting chemicals and pharmaceuticals in wastewater irrigated soils in Hebei, China [J]. Environmental Pollution, 2011,159(6):1490-1498.
[29]La Guardia M J, Hale R C, Harvey E, et al. Alkylphenol ethoxylate late degradation products in land-applied sewage sludge (biosolids)[J]. Environmental Science and Technology, 2001,35:4798-4804.
[30]Ferguson P L, Bopp R F, Chillrud S N, et a1. Biogeochemistry of nonylphenol ethoxylates in urban estuarine sediments [J]. Environmental Science Technology, 2003,37(16):3499-3506.
[31]姜 魯,王繼華,李建忠,等.炔雌醇和NP在土壤中的吸附-解吸特征 [J]. 環(huán)境科學(xué), 2012,33(11):3885-3892.
[32]Chiou C T, Peters L J, Freed V H. A physical concept of soil-water equilibria for nonionic organic compounds [J]. Science,1979,206(16):831-832.
[33]Liao X P, Zhang C X, Yao L L, et al. Sorption behavior of nonylphenol (NP) on sewage-irrigated soil: Kinetic and thermodynamic studies [J]. Science of The Total Environment,2014,473-474:530-536.
Distribution characteristics of nonylphenol in Taiyuan Xiaodian sewage-irrigated soil.
LIU Yuan, ZHANG Caixiang*, LIAO Xiao-ping, YAO Lin-lin, LI Jia-le, LIU Min, XU Liang, LUO Yin-wen (State key Laboratory of Biogeology and Environmental Geology, China Univerisity of Geoscience, Wuhan 430074, China). China Environmental Science,2015,35(1):165~170
The distribution characteristics of nonylphenol (NP) in sewage-irrigated soils were investigated in Xiaodian,Taiyuan city. The results showed that NP was ubiquitous in sewage-irrigated soil, and the concentration of NP in soils was as the following order: sewage-irrigated area > transition area > groundwater-irrigated area. Generally, NP content decreased as the distance from the drainage increased formed and presented positive correlation with the content of total organic content (TOC) but a negative correlation with pH value. In borehole sediments, the deeper sampling depth, the lower NP content, until another enrichment layer occurred, which indirectly implied the irrigation history and the migration capacity of NP towards deeper soiland was relative to the soil characteristics.
Taiyuan Xiaodian;sewage-irrigated soil;nonylphenol;sediments;distribution characteristics
X131.3
A
1000-6923(2015)01-0165-06
劉 媛(1989-),女,湖北宜昌人,中國(guó)地質(zhì)大學(xué)(武漢)生物地質(zhì)與環(huán)境地質(zhì)國(guó)家重點(diǎn)實(shí)驗(yàn)室碩士研究生,主要研究方向?yàn)榄h(huán)境有機(jī)污染化學(xué).
2014-03-18
國(guó)家自然科學(xué)基金(41372255)
* 責(zé)任作者, 教授, Caixiangzhang@yahoo.com