• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Numerical simulation on the aerodynamic performance of ice coating airfoil of wind turbine blade

    2015-11-03 07:02:00JizheHAIWenleiSUNYujunZHOU
    機床與液壓 2015年3期
    關鍵詞:風力機氣動風機

    Ji-zhe HAI, Wen-lei SUN, Yu-jun ZHOU

    (School of Mechanical Engineering, Xinjiang University, Urumqi 830049, China)

    ?

    Numerical simulation on the aerodynamic performance of ice coating airfoil of wind turbine blade

    Ji-zhe HAI*, Wen-lei SUN, Yu-jun ZHOU

    (School of Mechanical Engineering, Xinjiang University, Urumqi 830049, China)

    Taking the S818 airfoil of 1.5 MW wind turbine blade as the research object. Model of the finite element of airfoil flow field was built in this paper. The non-viscous incompressible Navier-stokes equations are used as flow control equation, which conducted numerical simulation analysis on Ice-free airfoil, airfoil of rime ice, chord-length ice, and horn ice. The pressure distribution are obtained from the lift-drag ratio, velocity vector and surface pressure of different thickness of the blade airfoil in the angle of attack from -2° to 20°.The results showed that the thicker of the ice coating, the shaper maximum lift-drag ratio of airfoil are decreased. Moreover, certain thickness of chord length ice and horn ice leads to the mutation of the loss of lift-drag ratio. When ice thickness is 10 mm, the maximum lift-drag ratio amplitude reduction of horn ice reached the maximum at 22.04%, the chord length ice at 11.97% and rime ice at 6.14%. In addition, the airfoil after icing would enter stall area in advance which deteriorates aerodynamic performance of blade and reduces the power coefficient of wind turbine.

    Wind turbine, Airfoil, Ice coating, Aerodynamic performance

    1 Introduction

    As the wind power is one of the important strategic substitute energy, the research on wind turbine goes deeper both at home and abroad. Onshore wind energy resources in Xinjiang possessing nine large fetch accounts for 37% of the national total, only second to Inner Mongolia. But the climate in Xinjiang is so harsh, nearly half a year’s time in the snow-covered winter and great difference of day-night temperature that the wind turbine would be iced when runs under low temperature condition below zero especially meeting supercooled drops. blade of wind turbine prones to icing which changes the external shape and aerodynamic performance of blade. Thus it has negatively influence on transformation efficiency, may damage blade in severe case and causes accident. To improve the utilization efficiency of wind energy, it’s of great necessity to conduct a research on the effects of aerodynamic performance of icing wind turbine blades.

    A number of researches on icing wind turbine blades have been done internationally. For one thing, Montreuil [2] et al verified the variation about drops collection coefficient under various weather conditions through the calculation model adopted by theoretical analysis and experimental demonstration and they obtained good results. Forting [3] et al studied the effect of deice system especially by focusing on icing wind turbine and they described two theories about the formation of rime ice and glaze ice based on the experiments. For another, Zhang Dalin [4] etc. domestic scholars made a numerical simulation to calculate the air flow field of ice-forming surface impacted by supercooled droplets through applying Reynolds averagedN-Sequations andk-εtwo-equation turbulence model. Yi Xian [5] using Calculation model of Ice accretion process can predict the growth process of icing at the forefront of the wing.

    S818 of NREL airfoil was selected as the research object in this work. We established the finite element analysis model of Ice-free airfoil, rime ice, chord length ice and horn ice airfoil’s flow field and analyzed the variation of airfoil lift, drag and surface pressure characteristics of different thicknesses and different ice-model comparatively. Finally the mechanism of icing airfoil aerodynamic performance was obtained which provided fundamental basis for further valid measure of deicing.

    2 Icing airfoil and calculation model

    Due to the various temperature, air humidity and fluid speed, icing structure on the blade airfoil was different.The matted rime ice with poor transparency formed on the surface of airfoil when temperature was lower, below -15 degrees Celsius, because the droplets froze immediately and the inclusion of air in droplets had no chance to discharge. However, when the temperature was a little higher the droplets couldn’t freeze immediately and a part of droplet moved to rear airfoil so that groove formed in leading edge of airfoil and horn ice in rear. Moreover, chord length ice formed under the SLD (supercooled liquid drops) condition. The condensing droplets can’t evaporate completely with a heat protection system at leading edge and the backflow of droplets develops into ice covering on the upper and lower surfaces. As a result of above formation mechanism, the shape of chord length ice varies in different place which made the edge shape of chord length ice more complex than the horn ice’s. Airfoil with three icing shape was selected as research object. It was described in Fig.1.

    To begin with, the work chose Navier-Stokes equations of incompressible viscous based on Reynolds-averaged as flow-controlled equation, Spalart-Allmaras model which was suitable for airfoil flow as the turbulent model and SIMPLE pressure-velocity coupling equations as calculation methods [6]. Furthermore, the Convection Interpolation was second-order upwind scheme, Gradient Interpolation used least square method on a cell by cell basis and pressure interpolation was also second-order format. The sixth section of the S818 airfoil was selected as the research object. The chord length of Airfoil was 2.412 m, installation angle was 6.35°and the constant wind speed was 10 m/s. At this point, Reynolds number was 1.6×106. Divided airfoil flow field grid is shown in Fig.2.

    Fig.1 Solid model and two-dimensional trajectory of different ice-model

    Fig.2 S818 airfoil computing grid

    3 Basic theory of aerodynamics

    3.1 Wind turbine power coefficient

    The axial velocity inducing factoraand the radial velocity inducing factor b were stable value.

    (1)

    Where,λis tip speed ratio, combining with the knowledge of aerodynamics.CP, the power coefficient, can be calculated as follows.

    (2)

    Where,ζis lift-drag ratio andλtis the tip speed ratio of wind turbine design.

    It can be concluded from the above formula that coefficient of wind turbine power was irrelevant to lift and drag coefficient value but only relates to lift-drag ratio of airfoil. The greater the value of airfoil lift-drag ratio was, the higher power efficiency was.λtis a constant value for a running wind turbine so that only the airfoil lift-drag ratio affects the utilization efficiency of power.

    3.2 Fluid control equations

    This article studied on flow around of airfoil under low wind speed condition in which inflow parameters Reynolds number was 1×106-2×106and Mach number was 0.04-0.08. In general, the fluid with Mach number lower than 0.1 can be regarded as incompressible flows and heat transfers was out of consideration.

    The equations of numerical solution were Navier-Stokes equations of incompressible viscous based on Reynolds-averaged and it’s expressed in the Cartesian coordinate system[8] as follows:

    Mass equation:

    (3)

    Momentum equation:

    (4)

    Where,uis the average fluctuating velocity;xis the position vector;ρis the air density;Pis pressure;uefis the effective viscosity coefficient;u′ is the fluctuating instantaneous value;i,j,kis the three components of Cartesian coordinate system.

    3.3 Turbulence equations

    Taking the compressibility of fluid, feasibility of establishment, requirement of precision and the limit of time into consideration comprehensively, Spalart-Allmaras model was used as turbulence model to calculate boundary flux. This model was first used in flow calculations especially when adverse pressure gradient exists within the flow region. It did well in calculation of boundary layer which was often selected for calculation near the Flow separation area. Additionally, the model combined with wall function was applicable for low grid precision and we can get accurate solution. To solve the dynamic viscosity of the vortex, Spalart-Allmaras model is a simple equation relatively.

    The corresponding transport equation [9] is:

    (5)

    4 Icing airfoil lift and drag performance analysis

    Based on the different icing conditions, the work established aerodynamic analysis model on Ice-free airfoil, airfoil of rime ice, chord-length ice and horn ice.We analyzed and calculated the influence of icing thickness and different icing shape to the aerodynamic performance under the condition of inflow wind with attack angle from -2° to 20°.

    4.1 The influence of icing thickness to the aerodynamic performance

    It can be concluded from Fig.3 to Fig.5 that the lift-drag ratio of airfoil decreased with the increase of the thickness of three shapes of ice. What’s more, between -2° and 5° attack angle the lift-drag ratio of airfoil increased in a small range. After 5° attack angle it reduced greatly and the thicker ice was the greater amplitude reduction was. The calculation results are shown in Table 1.

    Fig.3 Lift-drag ratio curve of rime ice airfoil with different thickness

    Fig.4 Lift-drag ratio curve of chord length ice airfoil with different thickness

    Fig.5 Lift-drag ratio curve of horn ice airfoil with different thickness

    Table 1 Comparison of aerodynamic force of different icing thickness

    Icethickness0mm5mm10mm15mm20mmlossoflift-dragratioofrimeice/%05.466.419.8413.40lossoflift-dragratioofchordlengthice/%03.7911.9714.1216.50lossoflift-dragratioofhornice/%010.4711.2422.0422.91

    As is shown in Table 1, the change of the loss of maximum lift-drag ratio of rime ice appeared to be uniform. Nevertheless, reduction was three times than before when the thickness of chord length ice was 15 mm and it became uniform again at 15 or 20 mm thickness.

    There was a great mutation of reduction which was 10 times than the uniform when at 15 mm thickness of horn ice and reduction was back to uniform at 20 mm. Consequently, the increase of the horn ice thickness influenced coefficient of wind turbine power most.

    Besides, the maximum lift-drag ratio of ice-free airfoil appeared at 8° attack angle. However, when ice thickness of rime ice and horn ice was 15, 20 mm it appeared at 6° and 4° attack angle which led to the stall of airfoil in advance.

    4.2 The impact of different shape ice-model on airfoil aerodynamic lift and drag characteristics

    To obtain a further understanding about the impact of different ice model on the coefficient of wind turbine power, three shapes with 10 mm thickness of icing airfoil were selected to have a comparative analysis, as shown from Fig.6 to Fig.8.

    Fig.6 Lift coefficient comparison chart of airfoil with different thickness

    Fig.7 Drag coefficient comparison chart of airfoil with different thickness

    Fig.8 Lift-drag ratio comparison chart of airfoil with different thickness

    Fig.6 indicates that the three ice-models with same ice thickness and attack angle from 1° to 16°, rime ice had the largest lift coefficient values, followed by the horn ice and the chord length ice was the minimum. From -2° to 1° and 16°to 20° of the attack angle, chord length ice had the largest lift coefficient values, followed by the rime ice and the horn ice was the minimum.

    Fig.7 shows that three ice-models at the same attack angle less than 12° had almost the same drag coefficient values and after 12°horn ice had the largest drag coefficient values, followed by the rime ice and the chord length ice was the minimum.

    At 10 mm icing thickness, the lift coefficient increased rapidly in a range of low attack angle while the drag coefficient increased sharply with the increase of attack angle. It can be concluded from the analysis of Table 2 that at the same thickness, the most evident reduction of lift-drag ratio was caused by horn ice and the stall of airfoil occurred ahead.

    Table 2 Comparison of aerodynamic force of different ice-models

    Ice-modelIce-free10mmrimeice10mmchordlengthice10mmhorniceMaximumlift-dragratio33.8683631.6963229.8148125.8786Lossoflift-dragratio06.41%11.97%22.04%Correspondingattackanglesofmaximumlift-dragratio8°8°8°6°

    5 The analysis of surface pressure and velocity field of icing airfoil

    The overall dimension of airfoil changed after icing which altered the speed and direction of the flow through blade [10]. Taking airfoil of three 10 mm thickness ice-model for study, velocity field and pressure on the different ice-model surface were obtained through analysis at 10° of attack angle, as shown in Fig.9 and Fig.10.

    Comparing Fig. 9 (a) and (b), it can be found that there was little difference between the separation area in trailing edge of rime icing airfoil and no ice airfoil. Although the rime ice made the upper surface velocity increase obviously, the lower surface increased accordingly which decreased the pressure difference on the whole.

    Fig.9 (d) indicates that there was a big separation bubble in flow field with the existence of horn ice. Because of the stagnation point on ice, boundary layer can’t coordinate the adverse pressure gradient appearing on the top of horn ice. The shape mutation in leading edge increased the flow velocity, changed the flow direction and separated flow on upper surface which gave birth to the low velocity area on near wall and vortex in trailing edge. Moreover, the big separation bubble redistributed pressure so the impulse changed, lift decreased and resistance increased.

    Fig.9 The flow field distribution of four icing airfoil types at attack angle of 10°

    Fig.9 (c) shows that in airfoil of chord length ice from leading edge to the one-third chord length the flow velocity decreased and flow direction became irregular. Also, after one-third chord length on the lower surface the flow separated and it led to the low velocity with vortex coming into being on near wall between the chord length ice and trailing edge while. Meanwhile, the flow velocity on far wall was greater than on no ice airfoil.

    In a word, velocity field of chord length ice airfoil is complex and this icing type lengthens the downward flow and it develops the bound layer along the chord length direction. The shape always was various in different position of the chord length which made it more complicated than horn ice on influence of coefficient of wind turbine power.

    From Fig.10 (a) and (b), it can be concluded that 10 mm rime ice almost had no effect on upper and lower pressure distributions and it just increased the pressure difference slightly. Comparing the 10mm chord length airfoil with no ice airfoil, the chord length ice had greatly changed the pressure distribution on airfoil surface especially when the upper surface pressure decreased suddenly after increase and the lower surface pressure distribution was irregular. After the fluid flowing through the chord length icing airfoil the pressure distribution gradually became steady but the upper and lower pressure difference was approximately a half than before.

    Fig.10 (a) and (d) shows that upper and lower surface pressure distributions with obvious fluctuations was extremely uneven in leading edge of horn ice airfoil. Specifically, upper pressure difference tended to be stable near one-third chord length of airfoil and it slowly increased similar to no-ice airfoil’s near trailing edge. From one-tenth of chord length the lower surface pressure distributions tended to be stable and to trailing edge surface pressure value remained the same. Thus, on account of the significant angularity of horn ice, static pressure of whole airfoil surface changed and vortex was formed in the rear airfoil.

    Fig.10 Surface static pressure distribution curve of four kinds of airfoil at 10° attack angle

    6 Conclusions

    In summary, through the aerodynamic performance numerical simulation of three ice-model (rime ice, chord length ice and horn ice) airfoil, the work analyzed the effect of different ice-model on aerodynamic performance of the airfoil in three aspects from the lift and drag, the velocity field and surface pressure distribution.

    The results are as follows :

    1) With the increase of the thickness of three ice-models, the maximum lift-drag ratio of airfoil decreased and in different degree the stall occurred in advance. After 5° attack angle the lift-drag ratio comparing with the ice-free airfoil’s reduced greatly and the thicker ice was the greater amplitude reduction was. Certain thickness of chord length ice and horn ice led to the mutation of the loss of lift-drag ratio and the influence of horn ice was more significant for the amplitude reduction was 10 times than normal.

    2) When ice thickness of three ice-models is 10 mm, the maximum lift-drag ratio amplitude reduction of horn ice reached the maximum at 22.04%,the chord length ice at 11.97% and rime ice at 6.14%. All results above indicate that horn ice has the greatest impact on airfoil aerodynamic performance, followed by the rime ice and the chord length ice is the slightest.

    Those results provide theoretical basis for feasible deicing measure and efficient strategy of fan control in different season to guarantee the security and stability of fan operation.

    Acknowledgements

    This paper is supported by National Natural Science Foundation of China (No.51065026 and No.51465055) and the Natural Science Foundation of Xinjiang (No. 2014211A010).

    [1]Liu Xiong, Chen Yan, Ye Zhiquan. Analysis of the influence of aerodynamic performance enlarging the airfoil’s trailing edge thickness [J]. Solar Technology. 2006(27): 489-495.

    [2] Montreuil E, Chazottes A, Guffond D. Enhancement of Prediction Capability in Icing Accretion and related Performance Penalties Part I: Three-dimensional CFD Prediction of the Ice Accretion. 1st AIAA Atmospheric and Space Environments Conference.

    [3] Fortin G, Perron J. Wind Turbine Icing and De-Icing[C]// 47th AIAA Aerospace Sciences MeetingIncluding The New Horizons Forum and Aerospace Exposition, Orlando, Florida, 2009.

    [4]Zhang Dalin, Yang Xi, Haisong A. Numerical simulation of supercooled water droplets impingement on icing surface[J]. Journal of Aerospace Power, 2003 (1): 87-91.

    [5]Yi Xian, Zhu Guolin. Numerically simulating of ice accretion on airfoil[Z]. 2002, 20 (4):428-433.

    [6]Hai Jizhe, Sun Wenlei, Zhou Yujun. Study on Aerodynamic Characteristic of Blade Airfoil of Wind Turbine [J]. Fluid machinery, 2013, 41(8): 30-34.

    [7]Jiang Haibo, Cao Shuliang, Yang Ping. Power limit of horizontal axis wind turbine [J]. Chinese Journal of Mechanical Engineering, 2011(47): 112-118.

    [8]Tang Jin. Research of Improving Aerodynamic Performance of Wind Turbines Blade Profile [D]. Beijing: Tsinghua University, 2004.

    [9]Wang Fujun. Fluid dynamics analysis of computational[M]. Beijing: Tsinghua University Press, 2004.

    [10]Wang Wenlong, He Bin, et al. Numerical simulation of aerodynamic performance on icing airfoil of wind turbines blade [J]. Renewable energy resources, 2013(31): 60-64.

    風力機葉片覆冰翼型氣動性能的數(shù)值模擬

    海幾哲*,孫文磊,周玉俊

    新疆大學 機械工程學院,烏魯木齊830049

    以某1.5 MW風機葉片S818翼型為研究對象,建立了翼型流場有限元分析模型。采用基于Reynolds平均的Navier-Stokes不可壓縮粘性方程作為流動控制方程,對無冰翼型、霜冰、弦長冰及角冰翼型進行數(shù)值模擬分析,得到了-2°-20°攻角下不同厚度葉片翼型的升阻比、速度矢量和表面壓力分布。研究結果表明:覆冰越厚,翼型的最大升阻比降幅越大。對于弦長冰和角冰在厚度達到一定值時,使得升阻比損失產(chǎn)生較大的突變。在覆冰厚度都為10 mm時,角冰的最大升阻比減幅最大,達到22.04%;其次是弦長冰為11.97%,霜冰的最小為6.41%。同時結冰后的翼型會提前進入失速區(qū),導致槳葉氣動性能惡化,降低了風機的功率系數(shù)。

    風力機;翼型;覆冰;氣動性能

    8 March 2015; revised 11 May 2015;

    Ji-zhe HAI, Associate professor.

    Doctor. E-mail: haijizhe@163.com

    10.3969/j.issn.1001-3881.2015.18.002 Document code: A

    TK83

    accepted 13 July 2015

    Hydromechatronics Engineering

    http://jdy.qks.cqut.edu.cn

    E-mail: jdygcyw@126.com

    猜你喜歡
    風力機氣動風機
    中寰氣動執(zhí)行機構
    基于NACA0030的波紋狀翼型氣動特性探索
    基于UIOs的風力機傳動系統(tǒng)多故障診斷
    測控技術(2018年5期)2018-12-09 09:04:38
    基于反饋線性化的RLV氣動控制一體化設計
    測控技術(2018年9期)2018-11-25 07:44:24
    風機折翼“倒春寒”
    能源(2018年5期)2018-06-15 08:56:02
    風機倒塔事故為何頻發(fā)?
    能源(2017年9期)2017-10-18 00:48:27
    節(jié)能技術EPU在AV71風機上的應用
    TS3000系統(tǒng)防喘振控制在 AV80-14風機中的應用
    大型風力機整機氣動彈性響應計算
    小型風力機葉片快速建模方法
    太陽能(2015年6期)2015-02-28 17:09:35
    日本午夜av视频| 国产成人精品久久久久久| 水蜜桃什么品种好| 9热在线视频观看99| 久久久久久久久久久久大奶| 在线天堂中文资源库| 国产精品久久久av美女十八| av在线老鸭窝| 999精品在线视频| 日韩 亚洲 欧美在线| 99久久精品国产国产毛片| 综合色丁香网| 丰满乱子伦码专区| 美女国产视频在线观看| 视频在线观看一区二区三区| 熟女电影av网| 一级毛片黄色毛片免费观看视频| 你懂的网址亚洲精品在线观看| 国产在线视频一区二区| 少妇被粗大的猛进出69影院 | 内地一区二区视频在线| 国产日韩欧美视频二区| 精品国产国语对白av| 国产成人91sexporn| av免费观看日本| 欧美亚洲 丝袜 人妻 在线| 欧美亚洲 丝袜 人妻 在线| 视频在线观看一区二区三区| 男的添女的下面高潮视频| 狠狠婷婷综合久久久久久88av| 亚洲人成77777在线视频| 人体艺术视频欧美日本| 久久久久久久久久久免费av| 亚洲成人av在线免费| 欧美日韩一区二区视频在线观看视频在线| 国产免费福利视频在线观看| 欧美日韩综合久久久久久| 日韩人妻精品一区2区三区| 久久99一区二区三区| 亚洲精品自拍成人| 国产永久视频网站| 国产精品 国内视频| 亚洲精品视频女| a级毛片在线看网站| 久久99精品国语久久久| 国产精品成人在线| 欧美日韩视频精品一区| 国产国语露脸激情在线看| 草草在线视频免费看| 黑人高潮一二区| 国产视频首页在线观看| 久久久久人妻精品一区果冻| 亚洲色图综合在线观看| 春色校园在线视频观看| 午夜91福利影院| 国产老妇伦熟女老妇高清| 韩国av在线不卡| 99热全是精品| 99久久人妻综合| 久久久a久久爽久久v久久| 日韩欧美一区视频在线观看| 久久久久国产网址| 90打野战视频偷拍视频| 日韩熟女老妇一区二区性免费视频| 九九在线视频观看精品| 一级爰片在线观看| av在线老鸭窝| 国产爽快片一区二区三区| 在现免费观看毛片| av国产精品久久久久影院| 亚洲一区二区三区欧美精品| 久久99一区二区三区| 国产 一区精品| 精品人妻偷拍中文字幕| 久久免费观看电影| 亚洲av日韩在线播放| 亚洲第一区二区三区不卡| 亚洲激情五月婷婷啪啪| av播播在线观看一区| 亚洲美女视频黄频| 18禁裸乳无遮挡动漫免费视频| 中文精品一卡2卡3卡4更新| 国产综合精华液| 一级毛片我不卡| 一级a做视频免费观看| 男女高潮啪啪啪动态图| 9色porny在线观看| 亚洲 欧美一区二区三区| 黑人猛操日本美女一级片| 久久99热这里只频精品6学生| 黄色毛片三级朝国网站| 国产精品嫩草影院av在线观看| 91成人精品电影| av国产久精品久网站免费入址| 丝瓜视频免费看黄片| 91精品伊人久久大香线蕉| 日日爽夜夜爽网站| 卡戴珊不雅视频在线播放| 久久午夜福利片| 精品久久久精品久久久| 美女国产高潮福利片在线看| 国产黄色视频一区二区在线观看| 欧美成人午夜精品| 高清毛片免费看| 秋霞伦理黄片| 人妻一区二区av| 伦精品一区二区三区| av有码第一页| 成年美女黄网站色视频大全免费| 伊人亚洲综合成人网| 亚洲av成人精品一二三区| 一级片'在线观看视频| 搡老乐熟女国产| 黄色毛片三级朝国网站| 国产成人a∨麻豆精品| 久久久久网色| 成年人午夜在线观看视频| 国产亚洲精品久久久com| 欧美3d第一页| 国产亚洲av片在线观看秒播厂| 日韩欧美一区视频在线观看| 亚洲成av片中文字幕在线观看 | 天天躁夜夜躁狠狠躁躁| 国产乱人偷精品视频| 少妇被粗大的猛进出69影院 | 亚洲国产精品一区二区三区在线| 只有这里有精品99| 精品一区二区三区四区五区乱码 | 亚洲av电影在线进入| 你懂的网址亚洲精品在线观看| 日本av免费视频播放| 久久久久精品久久久久真实原创| 欧美国产精品一级二级三级| 成人影院久久| 国产高清国产精品国产三级| 亚洲综合精品二区| 99热6这里只有精品| 涩涩av久久男人的天堂| 亚洲,欧美精品.| 夫妻性生交免费视频一级片| 男女边摸边吃奶| 欧美日韩成人在线一区二区| av又黄又爽大尺度在线免费看| 国产国拍精品亚洲av在线观看| 亚洲情色 制服丝袜| 国产精品嫩草影院av在线观看| 韩国高清视频一区二区三区| 久久久久久久大尺度免费视频| 久久久久国产精品人妻一区二区| 久久久久久人人人人人| 精品亚洲成a人片在线观看| 赤兔流量卡办理| 波野结衣二区三区在线| 欧美精品一区二区大全| 1024视频免费在线观看| 99热国产这里只有精品6| 国产男女内射视频| 啦啦啦中文免费视频观看日本| 亚洲欧美清纯卡通| 国产乱来视频区| 国产精品麻豆人妻色哟哟久久| 免费看不卡的av| 成人亚洲精品一区在线观看| 亚洲精品视频女| 成人黄色视频免费在线看| 日韩大片免费观看网站| 久久久久人妻精品一区果冻| 亚洲欧美清纯卡通| 亚洲精品456在线播放app| 夜夜爽夜夜爽视频| 国产在线视频一区二区| 男的添女的下面高潮视频| 成人手机av| 日本vs欧美在线观看视频| 国产男女内射视频| 少妇猛男粗大的猛烈进出视频| 欧美丝袜亚洲另类| 免费黄频网站在线观看国产| 久久鲁丝午夜福利片| 国产免费现黄频在线看| 最近最新中文字幕大全免费视频 | 久久精品久久久久久噜噜老黄| 一级片'在线观看视频| 美国免费a级毛片| 天天躁夜夜躁狠狠躁躁| 欧美激情 高清一区二区三区| 久久人妻熟女aⅴ| 日本色播在线视频| 日韩三级伦理在线观看| 欧美日韩国产mv在线观看视频| 欧美成人精品欧美一级黄| 人人妻人人爽人人添夜夜欢视频| 男女下面插进去视频免费观看 | 久久精品国产a三级三级三级| 国产不卡av网站在线观看| 亚洲成色77777| 亚洲成人av在线免费| 蜜臀久久99精品久久宅男| 少妇人妻久久综合中文| 看免费av毛片| 国产 精品1| 乱码一卡2卡4卡精品| 欧美激情国产日韩精品一区| 国产成人精品久久久久久| 亚洲欧洲国产日韩| 亚洲av男天堂| 国产视频首页在线观看| 午夜老司机福利剧场| 亚洲成人一二三区av| 国产成人午夜福利电影在线观看| 肉色欧美久久久久久久蜜桃| 久久精品国产自在天天线| 夫妻午夜视频| 丰满少妇做爰视频| 97精品久久久久久久久久精品| 亚洲第一av免费看| 欧美人与善性xxx| 满18在线观看网站| 国产成人91sexporn| 日本av手机在线免费观看| 韩国av在线不卡| 美女中出高潮动态图| 黑丝袜美女国产一区| 69精品国产乱码久久久| 国产综合精华液| 国产精品国产三级国产专区5o| 午夜福利乱码中文字幕| 熟女电影av网| 婷婷色综合大香蕉| 国产亚洲欧美精品永久| 欧美日韩国产mv在线观看视频| 女的被弄到高潮叫床怎么办| 久久av网站| 美女大奶头黄色视频| 免费久久久久久久精品成人欧美视频 | 精品国产一区二区三区久久久樱花| 人人妻人人澡人人看| 人人妻人人添人人爽欧美一区卜| 99热全是精品| 免费人成在线观看视频色| 亚洲欧美精品自产自拍| 亚洲伊人久久精品综合| 国产免费视频播放在线视频| 国产69精品久久久久777片| 赤兔流量卡办理| 男女下面插进去视频免费观看 | 精品亚洲乱码少妇综合久久| 亚洲国产日韩一区二区| 国产一区二区三区av在线| 久久影院123| 99热6这里只有精品| 夜夜爽夜夜爽视频| 你懂的网址亚洲精品在线观看| 少妇人妻 视频| 国产综合精华液| 美女视频免费永久观看网站| 80岁老熟妇乱子伦牲交| 大话2 男鬼变身卡| 免费久久久久久久精品成人欧美视频 | 日日摸夜夜添夜夜爱| 蜜桃国产av成人99| 80岁老熟妇乱子伦牲交| 男的添女的下面高潮视频| 精品久久国产蜜桃| 热99国产精品久久久久久7| 国产日韩欧美在线精品| 在线天堂最新版资源| av片东京热男人的天堂| 美国免费a级毛片| 一个人免费看片子| 国产av精品麻豆| 一本—道久久a久久精品蜜桃钙片| 99久久综合免费| 欧美成人精品欧美一级黄| 九草在线视频观看| 精品熟女少妇av免费看| 日本色播在线视频| 人人妻人人添人人爽欧美一区卜| 在线免费观看不下载黄p国产| 18+在线观看网站| 亚洲精品自拍成人| 黑人猛操日本美女一级片| a 毛片基地| 精品视频人人做人人爽| 大话2 男鬼变身卡| xxx大片免费视频| 国产片特级美女逼逼视频| 宅男免费午夜| 满18在线观看网站| xxx大片免费视频| 国产精品熟女久久久久浪| 亚洲丝袜综合中文字幕| 午夜福利网站1000一区二区三区| 国产精品人妻久久久影院| 最后的刺客免费高清国语| 国产精品麻豆人妻色哟哟久久| 久久精品熟女亚洲av麻豆精品| 国产高清不卡午夜福利| 免费播放大片免费观看视频在线观看| 久久午夜福利片| 国产亚洲精品第一综合不卡 | 国产精品久久久久久av不卡| 激情视频va一区二区三区| 免费高清在线观看日韩| 国产精品国产三级国产av玫瑰| 一级黄片播放器| 免费大片黄手机在线观看| 国产一区二区三区av在线| 免费观看性生交大片5| 女人被躁到高潮嗷嗷叫费观| 90打野战视频偷拍视频| 我的女老师完整版在线观看| 亚洲综合精品二区| 国产一区有黄有色的免费视频| 亚洲国产精品一区二区三区在线| 国产男女内射视频| 亚洲成人一二三区av| 亚洲美女视频黄频| 精品久久国产蜜桃| 热re99久久精品国产66热6| 精品少妇黑人巨大在线播放| 国产精品秋霞免费鲁丝片| 卡戴珊不雅视频在线播放| av线在线观看网站| 插逼视频在线观看| 五月玫瑰六月丁香| 欧美人与性动交α欧美软件 | 国产黄频视频在线观看| av国产精品久久久久影院| 欧美成人午夜精品| 在线精品无人区一区二区三| 国产精品无大码| 毛片一级片免费看久久久久| 国产一区有黄有色的免费视频| 满18在线观看网站| 多毛熟女@视频| 亚洲成人一二三区av| 成人亚洲精品一区在线观看| 一级毛片 在线播放| av电影中文网址| 美女中出高潮动态图| 日韩av不卡免费在线播放| av天堂久久9| 另类精品久久| 国产精品.久久久| 菩萨蛮人人尽说江南好唐韦庄| 高清欧美精品videossex| 丝瓜视频免费看黄片| 大陆偷拍与自拍| 国产男女内射视频| 亚洲精品456在线播放app| 国产白丝娇喘喷水9色精品| 亚洲av.av天堂| 热99国产精品久久久久久7| 蜜桃在线观看..| 国产一区二区在线观看av| 国产1区2区3区精品| 乱码一卡2卡4卡精品| 最近最新中文字幕大全免费视频 | 成人影院久久| 欧美成人午夜免费资源| 在线天堂最新版资源| 国产亚洲最大av| 久久久精品区二区三区| 日韩熟女老妇一区二区性免费视频| 亚洲av福利一区| 国产日韩欧美视频二区| 久久女婷五月综合色啪小说| 五月玫瑰六月丁香| 国产日韩欧美视频二区| 日本黄色日本黄色录像| 日日撸夜夜添| a 毛片基地| 国产在线免费精品| 美女国产视频在线观看| 国产黄色视频一区二区在线观看| 日本黄色日本黄色录像| 午夜激情久久久久久久| 99热这里只有是精品在线观看| 亚洲经典国产精华液单| 国产亚洲午夜精品一区二区久久| 久久久久久人人人人人| 免费观看在线日韩| 亚洲情色 制服丝袜| 午夜精品国产一区二区电影| 一级毛片黄色毛片免费观看视频| 色哟哟·www| 丝袜在线中文字幕| 国产精品.久久久| 夫妻午夜视频| 晚上一个人看的免费电影| 美女脱内裤让男人舔精品视频| 狂野欧美激情性xxxx在线观看| 男人舔女人的私密视频| 亚洲精品视频女| 丰满少妇做爰视频| 久久久精品免费免费高清| 99香蕉大伊视频| 亚洲四区av| av有码第一页| 丰满乱子伦码专区| 亚洲av综合色区一区| 国产精品久久久久久久电影| 综合色丁香网| 亚洲第一av免费看| 午夜日本视频在线| 国产免费一区二区三区四区乱码| 两个人免费观看高清视频| 亚洲欧美成人综合另类久久久| 亚洲五月色婷婷综合| 免费高清在线观看日韩| 青春草亚洲视频在线观看| 十八禁高潮呻吟视频| 久久99精品国语久久久| av电影中文网址| 人人妻人人爽人人添夜夜欢视频| 亚洲色图 男人天堂 中文字幕 | 亚洲国产欧美日韩在线播放| 天堂中文最新版在线下载| 中国国产av一级| 丁香六月天网| 黄片无遮挡物在线观看| 国产免费一区二区三区四区乱码| 两个人免费观看高清视频| 久久久久视频综合| 最近的中文字幕免费完整| 亚洲中文av在线| 久久影院123| 亚洲三级黄色毛片| 18在线观看网站| 99久国产av精品国产电影| 久久久久国产网址| 男女边吃奶边做爰视频| 日日啪夜夜爽| 成人黄色视频免费在线看| 在线 av 中文字幕| 夫妻性生交免费视频一级片| 午夜免费鲁丝| 国产精品国产av在线观看| 精品国产乱码久久久久久小说| 国产片特级美女逼逼视频| 精品酒店卫生间| 久久ye,这里只有精品| 乱码一卡2卡4卡精品| 国产精品一国产av| 免费日韩欧美在线观看| 色网站视频免费| av国产精品久久久久影院| 另类亚洲欧美激情| 啦啦啦在线观看免费高清www| 熟妇人妻不卡中文字幕| 亚洲av国产av综合av卡| 女性被躁到高潮视频| 成人免费观看视频高清| 精品第一国产精品| 少妇的逼水好多| 日韩中文字幕视频在线看片| 国产欧美日韩一区二区三区在线| 午夜日本视频在线| 又黄又粗又硬又大视频| 黄色一级大片看看| 久久久久人妻精品一区果冻| 精品一区二区三卡| 国产极品天堂在线| 精品一区二区三区视频在线| 大陆偷拍与自拍| 中文字幕av电影在线播放| 亚洲久久久国产精品| 亚洲国产精品成人久久小说| 夫妻性生交免费视频一级片| 免费观看性生交大片5| 午夜福利乱码中文字幕| 一本—道久久a久久精品蜜桃钙片| 亚洲精品国产av蜜桃| 亚洲精品国产av成人精品| 久久人人97超碰香蕉20202| 亚洲精品自拍成人| 中国国产av一级| 久久精品aⅴ一区二区三区四区 | 精品福利永久在线观看| 久久午夜福利片| 五月开心婷婷网| 国产成人av激情在线播放| 久久毛片免费看一区二区三区| 亚洲精品色激情综合| 极品少妇高潮喷水抽搐| 美女主播在线视频| 久久精品久久久久久久性| 久久免费观看电影| 亚洲四区av| 精品国产露脸久久av麻豆| 久久韩国三级中文字幕| 伦精品一区二区三区| 亚洲欧洲精品一区二区精品久久久 | 考比视频在线观看| 成人国产av品久久久| 亚洲精华国产精华液的使用体验| 国产精品人妻久久久影院| 乱人伦中国视频| 久久久久精品久久久久真实原创| 欧美亚洲日本最大视频资源| 只有这里有精品99| a级毛色黄片| 亚洲精品视频女| 日韩 亚洲 欧美在线| 大话2 男鬼变身卡| 最近手机中文字幕大全| 久久久久久久久久人人人人人人| 久久久久久久精品精品| 欧美激情 高清一区二区三区| 久久久精品94久久精品| 免费黄频网站在线观看国产| av片东京热男人的天堂| 乱人伦中国视频| 少妇人妻 视频| 亚洲美女搞黄在线观看| 婷婷色综合大香蕉| 亚洲成人一二三区av| 国产黄频视频在线观看| 99热全是精品| 男女边摸边吃奶| 97人妻天天添夜夜摸| 成年美女黄网站色视频大全免费| 午夜91福利影院| 久久久久国产网址| 亚洲,一卡二卡三卡| 亚洲精品美女久久av网站| 久久99热这里只频精品6学生| 亚洲,欧美精品.| 两个人看的免费小视频| 亚洲,欧美精品.| 色视频在线一区二区三区| 亚洲在久久综合| 国产精品一区二区在线不卡| 国产成人一区二区在线| 久久综合国产亚洲精品| 在线精品无人区一区二区三| 亚洲色图综合在线观看| 欧美激情极品国产一区二区三区 | 欧美老熟妇乱子伦牲交| 青春草亚洲视频在线观看| 色5月婷婷丁香| 在线观看国产h片| 日本黄色日本黄色录像| 最近中文字幕高清免费大全6| 熟女av电影| 欧美性感艳星| 十八禁网站网址无遮挡| 一二三四中文在线观看免费高清| 欧美激情国产日韩精品一区| 亚洲 欧美一区二区三区| 国产探花极品一区二区| 91在线精品国自产拍蜜月| 黄色配什么色好看| 少妇猛男粗大的猛烈进出视频| 免费av不卡在线播放| 丰满少妇做爰视频| 99精国产麻豆久久婷婷| 春色校园在线视频观看| 久久人妻熟女aⅴ| 亚洲国产色片| 日韩av在线免费看完整版不卡| 久久人人爽人人片av| 国产精品一国产av| 欧美 日韩 精品 国产| 精品国产乱码久久久久久小说| 国产在线一区二区三区精| 女人精品久久久久毛片| 又黄又爽又刺激的免费视频.| 亚洲一级一片aⅴ在线观看| 久久久久久久亚洲中文字幕| 精品午夜福利在线看| 精品一品国产午夜福利视频| 精品一区在线观看国产| 欧美人与善性xxx| 日日摸夜夜添夜夜爱| 久久国产精品大桥未久av| 我要看黄色一级片免费的| 日本黄大片高清| 欧美日韩av久久| 亚洲av中文av极速乱| 国产精品国产三级国产专区5o| 美女主播在线视频| 亚洲精品一区蜜桃| 最近最新中文字幕免费大全7| 日韩精品免费视频一区二区三区 | 老司机影院成人| 男女啪啪激烈高潮av片| 青春草国产在线视频| 美女主播在线视频| 精品亚洲成a人片在线观看| 中文精品一卡2卡3卡4更新| 少妇被粗大的猛进出69影院 | 亚洲精品456在线播放app| 日韩精品有码人妻一区| 精品亚洲成国产av| 在线观看三级黄色| 日韩在线高清观看一区二区三区| 国产av国产精品国产| 你懂的网址亚洲精品在线观看| 最近手机中文字幕大全| 波野结衣二区三区在线| 亚洲四区av| 午夜日本视频在线| 香蕉精品网在线| 日韩制服骚丝袜av| av在线老鸭窝| 午夜久久久在线观看| 久久av网站| 国精品久久久久久国模美| 色网站视频免费| 男人爽女人下面视频在线观看| 国产黄色免费在线视频| 国产精品蜜桃在线观看| 99久久中文字幕三级久久日本|