• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    In vitro inhibitory effects of plumbagin, the promising antimalarial candidate, on human cytochrome P450 enzymes

    2015-10-31 02:18:29WiriyapornSumsakulWannaChaijaroenkulKesaraNaBangchang

    Wiriyaporn Sumsakul, Wanna Chaijaroenkul, Kesara Na-Bangchang*

    1Graduate Program in Biomedical Sciences, Faculty of Allied Health Sciences, Thammasat University, Pathumthani 12121, Thailand

    2Center of Excellence in Pharmacology and Molecular Biology, Graduate Program in Bioclinical Sciences, Chulabhorn International College of Medicine, Thammasat University, Pathumthani 12121, Thailand

    In vitro inhibitory effects of plumbagin, the promising antimalarial candidate, on human cytochrome P450 enzymes

    Wiriyaporn Sumsakul1, Wanna Chaijaroenkul2, Kesara Na-Bangchang2*

    1Graduate Program in Biomedical Sciences, Faculty of Allied Health Sciences, Thammasat University, Pathumthani 12121, Thailand

    2Center of Excellence in Pharmacology and Molecular Biology, Graduate Program in Bioclinical Sciences, Chulabhorn International College of Medicine, Thammasat University, Pathumthani 12121, Thailand

    ARTICLE INFO

    Article history:

    in revised form 20 September 2015

    Accepted 15 October 2015

    Available online 20 November 2015

    Metabolism

    Human liver microsomes

    Plumbagin

    Cytochrome P450

    Enzyme inhibition

    Objective: To investigate the propensity of plumbagin to inhibit the three isoforms of human cytochrome P450 (CYP), ie., CYP1A2, CYP2C19, and CYP3A4 using human liver microsomes in vitro. Methods: Inhibitory effects of plumbagin on the three human CYP isoformswere investigated using pooled human liver microsomes. Phenacetin O-deethylation,omeprazole hydroxylation and nifedipine oxidation were used as selective substrates for CYP1A2, CYP2C19 and CYP3A4 activities, respectively. Concentrations of paracetamol,5-hydroxyomeprazole, and oxidized nifedipine were determined in microsomal incubation mixture using high performance liquid chromatography. Results: Plumbagin showed significantinhibitory effects on all CYP isoforms, but with the most potent activity on CYP2C19-mediated omeprazole hydroxylation. The IC50 (concentration that inhibits enzyme activity by 50%) values of plumbagin and nootkatone (selective inhibitor) for CYP2C19 were(0.78±0.01) and (27.31±0.66) μM, respectively. The inhibitory activities on CYP1A2-mediated phenacetin O-deethylation and CYP3A4-mediated nifedipine oxidation were moderate. The IC50values of plumbagin and -naphthoflavone (selective inhibitor) for CYP1A2 were(1.39±0.01) and (0.02±0.36) μM, respectively. The corresponding IC50values of plumbagin and ketoconazole (selective inhibitor) for CYP3A4 were (2.37±0.10) and (0.18±0.06) μM,respectively. Conclusions: Clinical relevance of the interference of human drug metabolizing enzymes should be aware of for further development scheme of plumbagin as antimalarial drug when used in combination with other antimalarial drugs which are metabolized by these CYP isoforms.

    Document heading doi:10.1016/j.apjtm.2015.10.016

    1. Introduction

    Malaria is widespread in tropical and subtropical regions. The resistance of Plasmodium falciparum (P. falciparum) to first-line antimalarial drugs has resulted in resurgence in treatment failures[1]. Since antimalarial drug resistance compromises the effective treatment of the disease, there is a pressing need for ongoingdrug discovery research that provides effective and affordable antimalarial agents. Natural products including medicinal plants may offer cheap alternative treatment opportunities for malaria patients.

    Plumbagin (5-hydroxy-2-methyl-1,4-naphthoquinone)is the major constituent in several plants including those in Plumbaginaceae, Droseraceae, Ancestrocladaceae, and Dioncophyllaceae families. It is a yellow naphthoquinone pigment which occurs in the plant roots[2]. This compound has been shown to display a wide effect of pharmacological activities such as activities against malaria, leishmaniasis, chagas disease, viral infections, and cancers[2-6]. The ethanol extract of Plumbagoindica Linn. was demonstrated promising antimalarial activity onchloroquine-resistant (K1) and chloroquine-sensitive (3D7)P. falciparum clones with median (range)IC50of 3.0 (2.7-3.1) and 6.2 (6.2-7.3) μg/mL[7]. Furthermore, we have recently demonstrated the antimalarial activity of plumbagin both in vitro and in vivo[8]. The aim of the present study was to further investigate the propensity of plumbagin to inhibit the three isoforms of human cytochrome P450(CYP), ie.,CYP1A2, CYP2C19 and CYP3A4 using human liver microsomes in vitro. The CYP enzyme system plays crucial roles in the metabolism of xenobiotics and endogenous substances and thus,has a significant impact on the occurrence of drug-drug interactions particularly metabolic drug interaction[9]. Interference of hepatic drug metabolizing enzyme(s) of one drug by the co-administered drug may result in unexpectedly high plasma concentration of the affected drug and severe adverse effect or toxicity[10].

    2. Materials and methods

    2.1. Chemicals

    The authentic plumbagin (purity 98.2%) was obtained from Apin chemicals Co. Ltd (OX, UK). Phenacetin, paracetamol, caffeine,omeprazole, 5-hydroxyomeprazole, nifedipine, oxidized nifedipine,ketoconazole, nootkatone, α-naphthoflavone, and diazepam were purchased from Sigma-Aldrich (St. Louis, MO, USA). 1,4-naphthoquinone was purchased from Wako Pure Chemical Industries, Co. Ltd. (Osaka, Japan). β-nicotinamide adenine dinucleotide phosphate (reduced form) tetrasodium salt (NADPH)was purchased from Merck KGaA (Darmstadt, Germany). Pooled human liver microsomes (from 50 donors) were obtained from Gibco BRL Life Technologies (Grand Island, NY, USA).

    2.2. CYP inhibition

    Inhibitory effects of plumbagin on CYP1A2, CYP2C19 and CYP3A4 activities were investigated in vitro using pooled human liver microsomes in a total volume of 500 μL of 0.1 M sodium phosphate buffer (pH 7.4). The concentration range of each substrate used was approximately equal to its Km (Michaelis constant) value. Each experiment was repeated four times.

    2.2.1. HPLC system

    Analysis of concentrations of each CYP-mediated metabolite was performed using the validated high-performance liquid chromatography (HPLC) method. The HPLC system consisted of TSP HPLC with P4000 solvent delivery system, equipped with an AS3000 auto sampler, UV1000 detector, SN4000 controller(Thermo Finnigan, San Jose, CA, USA), and Chrome Quest software(version 4.0). The HPLC column used was a Thermo Hypersil Gold C-18 reversed phase column (210 mm×4.6 mm, 5 μm particle size). Quality control (QC) samples were run in duplicate in each analytical batch at low, medium, and high concentrations. Criteria for acceptability were four out of six of the QC analyses to lie inside(100±15)% of the nominal values.

    2.2.2. Analytical assay validation

    The precision of the assay methods based on intraday repeatability was determined by analyzing five series concentrations of paracetamol, 5-hydroxyomeprazole, or oxidized nifedipine in phosphate buffer. The repeatability between days was established using the same concentration range of the three compounds, but the analysis was performed on three consecutive days. Results are expressed as relative standard deviation (%RSD) of replicate measurements as follow:

    The accuracy of the analytical methods was determined by comparing the measured concentration of paracetamol,5-hydroxyomeprazole, and oxidized nifedipine in phosphate buffer at each concentration level (n=5) to the true concentration in three replicates within one day and on three consecutive days. Accuracy was reported as percentage bias calculated from the equation: % Bias = [(Measure value - True value)/True value]×100

    Sensitivity of the analytical methods was obtained by the determination the limit of quantification (LOQ). The LOQ was determined based on signal-to-noise approach by comparing measured signals from samples with known lowest concentrations of the test compounds (paracetamol, 5-hydroxyomeprazole, and oxidized nifedipine) and by establishing the minimum concentrations at a typical signal-to-noise ratio is 10:1.

    2.2.3. CYP inhibition

    The inhibitory effect of plumbagin on CYP1A2-mediated phenacetin O-deethylation was performed using -naphthoflavone as a selective inhibitor[11]. In brief, the reaction mixture was preincubated (at 37 ℃, 5 min) with human liver microsomes (0.3 mg/mL, 100 μL), 20 μM phenacetin, and plumbagin(0-10 μM). The reaction was initiated with the addition of 1 mM NADPH. Following an incubation (at 37 ℃) for 60 min, the reaction was stopped by the addition of 500 μL of cold acetonitrile. The internal standard caffeine (500 μM, 50 μL) was added and the incubation mixture was cooled on ice for 5 min and centrifuged at 12 000× g for 15 min. The supernatant was transferred to an autosampling vial and an aliquot of 20 μL was injected onto the HPLC column. The concentrations of paracetamol (metabolite) were measured by HPLC with UV detection (240 nm)[11]. The gradient mobile phase consisted of a mixture of (A) acetonitrile and (B) distilled water; the initial ratio of mobile phase components (A:B) was 90:10 at a flow rate of 1 mL/min. The calibration curve was plotted using high ratioof paracetamol to caffeine on the ordinate, and concentrations of paracetamol (0.1-50 μM) on the abscissa.

    The inhibitory effect of plumbagin on CYP2C19-mediated omeprazole hydroxylation was performed using nootkatone as a selective inhibitor[12]. In brief, the reaction mixture was pre-incubated(at 37 ℃ for 5 min), with human liver microsomes (0.5 mg/mL, 100 μL), 10 μM omeprazole, and plumbagin (0-200 μM). The reaction was initiated with the addition of 1 mM NADPH. Following an incubation (at 37 ℃ for 60 min), the reaction was stopped by the addition of 500 μL of cold acetonitrile. The internal standard 1,4-naphthoquinone (10 μM, 50 μl) was added and the incubation mixture was cooled on ice for 5 min and centrifuged at 12 000×g for 15 min. The supernatant (800 μL) was transferred to an eppendorf tube and evaporated using speed vacuum concentrator (FTS System,Stone Ridge, NY, USA).The dried residue was reconstituted with 100 μL of a mixture of acetonitrile and water (50%:50%, v:v) and 10 μL injected onto the HPLC column. The concentrations of the metabolite 5-hydroxyomeprazole were measured by HPLC with UV detection (302 nm)[12]. The gradient mobile phase consisted of a mixture of (A) acetonitrile and (B) distilled water; the initial ratio of mobile phase components (A:B) was 10:90 at a flow rate of 1 mL/min. The calibration curve was plotted using high ratio of 5-hydroxyomeprazole to 1,4-naphthoquinone on the ordinate,and concentrations of 5-hydroxyomeprazole (40-2 500 nM) on the abscissa.

    The inhibitory effect of plumbagin on CYP3A4-mediated nifedipine oxidation was performed using ketoconazole as a selective inhibitor[13]. In brief, the reaction mixture was pre-incubated (at 37 ℃, 5 min), with human microsomes (0.3 mg/mL, 100 μL), 40 μM nifedipine, and plumbagin (0-20 μM). The reaction was initiated with the addition of 1 mM NADPH. Following an incubation (at 37 ℃ for 40 min), the reaction was stopped by the addition of 500 μL of cold acetonitrile. The internal standard diazepam (80 ng/mL,50 μL) was added and the incubation mixture was cooled on ice for 5 min and centrifuged at 12 000×g for 15 min. The supernatant was transferred to an autosampling vial and an aliquot of 20 μL was injected onto the HPLC column. The concentrations of oxidized nifedipine (metabolite) were measured by HPLC with UV detection(270 nm)[13-15]. The gradient mobile phase consisted of a mixture of (A) methanol and (B) distilled water; the initial ratio of mobile phase components (A:B) was 55:45 at a flow rate of 1 ml/min. The calibration curve was plotted using high ratio of oxidized nifedipine to diazepam on the ordinate, and concentrations of oxidized nifedipine (0.1-25 μM) on the abscissa.

    2.3. Data analysis

    IC50(concentrations causing 50% inhibition of enzyme activity)values were calculated from a logdose—response curve plotted using the Calcusyn? version 1.1 (BioSoft, Cambridge, UK).Data are presented as mean±SD of the four experiments.

    3. Results

    3.1. Analytical assay validation

    The analytical methods for determination ofparacetamol,5-hydroxyomeprazole, and oxidized nifedipine used in the study was found to be sensitive and accurate. The linearity of all calibration curves were demonstrated with coefficient (r2) of greater than 0.995. CYP1A2-mediated metabolism: The LOQ of paracetamol at a signal-to-noise ratio ≥10 was 100 nM. The precision (intra- and inter-) of analytical method (%RSD) was <6.3% and the accuracy(intra- and inter-) of the method was < ±10% (Table 1).

    Table 1 Intra- and inter-assay accuracy and precision of the analytical method for determination of paracetamol (n = 3 for each concentration).

    CYP2C19-mediated metabolism: The LOQ of 5-hydroxyomeprazole at a signal-to-noise ratio ≥10 was 40 nM. The precision (intra- and inter-) of analytical method (%RSD) was<6.22% and the accuracy (intra- and inter-)of the method was < ±7%(Table 2).

    Table 2 Intra- and inter-assay accuracy and precision of the analytical method for determination of 5-hydroxyomeprazole (n = 3 for each concentration).

    CYP3A4-mediated metabolism: The LOQ of oxidized nifedipine at a signal-to-noise ratio ≥10 was 100 nM. The precision (intra- and inter-) of analytical method (%RSD) was <7.05% and the accuracy(intra- and inter-) of the method was < ±6% (Table 3).

    3.2. CYPs inhibition

    The inhibitory effects of plumbagin and positivecontrols on the activities of three major human CYP isoforms, ie., CYP1A2,CYP2C19 and CYP3A4 are shown in Figure 1A-C and the IC50values are presented in Table 4. Plumbagin clearly inhibited CYP1A2-mediated phenacetin O-deethylation, CYP2C19-mediated omeprazole hydroxylation and CYP3A4-mediated nifedipine oxidation in concentration-dependent manners. Among the three CYP isoforms, the inhibitory activity was most potent for CYP2C19,of which its potency was about 35-fold of the selective inhibitornootkatone (mean IC50values of 0.78 μM vs. 27.31 μM). The inhibitory activities on CYP1A2 and CYP3A4 were moderate (about 13- to 69-fold lower than the selective inhibitors).

    Table 3 Intra- and inter-assay accuracy and precision of the analytical method for determination of oxidized nifedipine (n = 3 for each concentration).

    Table 4 IC50values (μM) of plumbagin and selective inhibitors on CYP1A2-mediated phenacetin O-deethylation, CYP2C19-mediated omeprazole hydroxylation,and CYP3A4-mediated nifedipine oxidation (n=4 for each experiment).

    4. Discussion

    Interactions between phytochemicals in herbal medicines and CYP are now well recognized because of their potential clinical and toxicological implications. These phytochemicals could act as substrates, inhibitors or inducers of the CYP isoforms, which can lead to pharmacokinetic interactions with the co-administered drugs metabolized by the same CYP isoform[9,16]. Our results provide evidence for the inhibitory effect of plumbagin on the three major hepatic CYP isoforms, ie., CYP1A2, CYP2C19, and CYP3A4. CYP1A2, CYP2C and CYP3A are expressed in human liver at approximately 13, 20 and 30% of total CYP, respectively[17]. Specific inhibitors recommended by the US FDA were used as reference compounds for the inhibitory activity on each CYP. For CYP2C19 however, since there has been no recommended selective inhibitor,nootakone was used as a reference compound as its inhibitory activity was shown to be selective toward CYP2C19[12]. Certain extent of variations in inhibitory activities of the selective inhibitors were observed compared with that previously been reported. The discrepancy could be due mainly to the choices of substrates used.

    Among the three CYP isoforms under investigation, the inhibitory activity of plumbagin on CYP2C19 was most evident, with potency of about 35-fold of the selective inhibitor nootkatone. CYP2C19 is a major metabolizing enzyme of several clinically important drugs such as proton-pump inhibitors like omeprazole and lanzoprazole,anti-epileptic-like mephenytoin, diazepam, antidepressants, the antiplatelet drug clopidogrel, the antifungal voriconazoleand selective serotonin reuptake inhibitors like citalopram[18]. Previous investigations in man have shown that CYP2C19 activity is susceptible to induction by herbs and natural products, eg., St John's wort, Ginko biloba, and the Chinese herbal mixture Yin Zhi Huang[19-21]. Nevertheless, there has been no clear evidence on the inhibitory effect of herbal remedies on CYP2C19. Although inhibitory activity on CYP3A4 was moderate (mean IC50= 2.37 μM),the clinical relevance of such interaction should not be overlooked as this CYP isoform is involved in the metabolism of 50% of all pharmaceuticals[22]. CYP1A2 is known to play a major role in the metabolism of pre-carcinogens and inhibitory effect of plumbagin to this CYP isoform may contribute only minor interaction with the co-administered drugs[23]. Several other factors are necessary to be considered for definitive conclusion on the clinical relevant metabolic drug interactions. These include comparative dispositionof the individual constituents responsible for inhibition, as well as the locations of the affected CYP (intestine, liver, etc.)[24]. Until further clinical investigations in healthy subjects are confirmed, the potential of this compound for use in treatment of malaria infection may be limited.

    The study demonstrated the propensity of plumbagin to interfere with the three human hepatic CYP isoforms, ie., CYP1A2,CYP2C19, and CYP3A4. The inhibitory potency was highest on CYP2C19. Concurrent administration of plumbagin (as pure compound or as the extract of Plumbago indica Linn.) may result in highly toxic plasma concentrations of the co-administered drugs that are metabolized by these CYP isoforms. Clinical relevance of the interference of human drug metabolizing enzymes should be aware of for further development scheme of plumbagin as antimalarial drug when used co-administration with other antimalarial drugs which are metabolized by CYP1A2, 2C19 and 3A4, ie., quinine, mefloquine and chloroquine.

    Conflict of interest statement

    We declare that we have no conflict of interest.

    Acknowledgements

    The authors gratefully acknowledge the financial support provided by Thammasat University Research Fund under the TU Research Scholar, Contract No 78/2557, Commission on Higher Education, Ministry of Education of Thailand, Office of Higher Education Commission, Thammasat University (Excellence Center in Pharmacology and Molecular Biology of Malaria and Cholangiocarcinoma), Thammasat University and the Thailand Research Fund through a Royal Golden Jubilee Ph.D. scholarship to Wiriyaporn Sumsakul (Grant no. PHD/0326/2551).

    [1] Na-Bangchang K, Congpuong K. Current malaria status and distribution of drug resistance in East and Southeast Asia with special focus to Thailand. Tohoku J Exp Med 2007; 211(2): 99-113.

    [2] Paiva SR, Silva Marques S, Figueiredo MR, Auxiliadora M. Plumbaginales: a pharmacological approach. Floresta e Ambiente 2003;10(1): 98-105.

    [3] Bhargava SK. Effects of plumbagin on reproductive function of male dog. Indian J Exp Biol 1984; 22(3): 153-156.

    [4] Itoigawa M, Takeya K, Furukawa H. Cardiotonic action of plumbagin on guinea-pig papillary muscle. Planta Med 1991; 57(4): 317-319.

    [5] Premakumari P, Rathinam K, Santhakumari G. Antifertility activity of plumbagin. Indian J Med Res 1977; 65(6): 829-838.

    [6] Sandur SK, Ichikawa H, Sethi G, Ahn KS, Aggarwal BB. Plumbagin(5-hydroxy-2-methyl-1,4-naphthoquinone) suppresses NF-kappaB activation and NF-kappaB-regulated gene products through modulation of p65 and IkappaBalpha kinase activation, leading to potentiation of apoptosis induced by cytokine and chemotherapeutic agents. J Biol Chem 2006; 281(25): 17023-17033.

    [7] Thiengsusuk A, Chaijaroenkul W, Na-Bangchang K. Antimalarial activities of medicinal plants and herbal formulations used in Thai traditional medicine. Parasitol Res 2013; 112(4): 1475-1481.

    [8] Sumsakul W, Plengsuriyakarn T, Chaijaroenkul W, Viyanant V, Karbwang J, Na-Bangchang K. Antimalarial activity of plumbagin in vitro and in animal models. BMC Complement Altern Med 2014; 14(15).

    [9] Zhou S, Gao Y, Jiang W, Huang M, Xu A, Paxton JW. Interactions of herbs with cytochrome P450. Drug Metab Rev 2003; 35(1): 35-98.

    [10] Lin JH, Lu AY. Inhibition and induction of cytochrome P450 and the clinical implications. Clin Pharmacokinet 1998; 35(5): 361-390.

    [11] Lavhekar S, Lohade A, Coutinho E, Iyer K. Estimation of microsomal CYP1A2 activity by high performance liquid chromatography. Indian J Pharmaceutical Sci 2006; 68(2): 258.

    [12] Tassaneeyakul W, Guo L, Fukuda K, Ohta T, Yamazoe Y. Inhibition selectivity of grapefruit juice components on human cytochromes P450. Arch Biochem Biophys 2000; 378(2): 356-363.

    [13] Patki K, Von Moltke L, Greenblatt D. In vitro metabolism of midazolam,triazolam, nifedipine, and testosterone by human liver microsomes and recombinant cytochromes p450: role of cyp3a4 and cyp3a5. Drug Metab Dispos 2003; 31(7): 938-944.

    [14] Foti RS, Pearson JT, Rock DA, Wahlstrom JL, Wienkers LC. In vitro inhibition of multiple cytochrome P450 isoforms by xanthone derivatives from mangosteen extract. Drug Metab Dispos 2009; 37(9): 1848-1855.

    [15] He N, Edeki T. The inhibitory effects of herbal components on CYP2C9 and CYP3A4 catalytic activities in human liver microsomes. Am J Ther 2004; 11(3): 206-212.

    [16] Wu JJ, Ai CZ, Liu Y, Zhang YY, Jiang M, Fan XR, et al. Interactions between phytochemicals from traditional Chinese medicines and human cytochrome P450 enzymes. Curr Drug Metab 2012; 13(5): 599-614.

    [17] Shimada T, Yamazaki H, Mimura M, Inui Y, Guengerich FP. Interindividual variations in human liver cytochrome P-450 enzymes involved in the oxidation of drugs, carcinogens and toxic chemicals:studies with liver microsomes of 30 Japanese and 30 Caucasians. J Pharmacol Exp Ther 1994; 270(1): 414-423.

    [18] Desta Z, Zhao X, Shin JG, Flockhart DA. Clinical significance of the cytochrome P450 2C19 genetic polymorphism. Clin Pharmacokinet 2002; 41(12): 913-958.

    [19] Fan L, Wang G, Wang LS, Chen Y, Zhang W, Huang YF, et al. Herbal medicine Yin Zhi Huang induces CYP3A4-mediated sulfoxidation and CYP2C19-dependent hydroxylation of omeprazole. Acta Pharmacol Sin 2007; 28(10): 1685-1692.

    [20] Wang LS, Zhou G, Zhu B, Wu J, Wang JG, El-Aty AMA, et al. St John's wort induces both cytochrome P450 3A4—catalyzed sulfoxidation and 2C19—dependent hydroxylation of omeprazole. Clin Pharmacology & Therapeutics 2004; 75(3): 191-197.

    [21] Yin OQ, Tomlinson B, Waye MM, Chow AH, Chow MS. Pharmacogenetics and herb-drug interactions: experience with Ginkgo biloba and omeprazole. Pharmacogenetics 2004; 14(12): 841-850.

    [22] Rendic S, Di Carlo FJ. Human cytochrome P450 enzymes: a status report summarizing their reactions, substrates, inducers, and inhibitors. Drug Metab Rev 1997; 29(1-2): 413-580.

    [23] Ingelman-Sundberg M. Human drug metabolising cytochrome P450 enzymes: properties and polymorphisms. Naunyn Schmiedebergs Arch Pharmacol 2004; 369(1): 89-104.

    [24] Izzo AA, Ernst E. Interactions between herbal medicines and prescribed drugs: a systematic review. Drugs 2001; 61(15): 2163-2175.

    Article history:

    Received 15 August 2015

    Received in revised form 20 September 2015

    Accepted 15 October 2015

    Available online 20 November 2015

    15 August 2015

    Kesara Na-Bangchang, Center of Excellence in Pharmacology and Molecular Biology of Malaria and Cholangiocarcinoma,Chulabhorn International College of Medicine, Thammasat University (Rangsit Campus), Klongluang, Pathumthani, 12121, Thailand.

    E-mail: kesaratmu@yahoo.com

    午夜福利成人在线免费观看| 中文字幕高清在线视频| 757午夜福利合集在线观看| 久久久久久九九精品二区国产 | 国产私拍福利视频在线观看| 国产高清有码在线观看视频 | 在线观看免费午夜福利视频| 50天的宝宝边吃奶边哭怎么回事| 一二三四在线观看免费中文在| 午夜福利18| 亚洲熟妇熟女久久| 免费在线观看黄色视频的| 亚洲第一电影网av| 日本成人三级电影网站| 国产又爽黄色视频| 亚洲一码二码三码区别大吗| 精品久久久久久成人av| 女性被躁到高潮视频| 午夜影院日韩av| 国产一区二区在线av高清观看| 久久久久九九精品影院| 国产精品永久免费网站| 国产精品99久久99久久久不卡| 无遮挡黄片免费观看| 女性生殖器流出的白浆| 国产色视频综合| 天堂影院成人在线观看| 日本黄色视频三级网站网址| 国产精品久久久久久精品电影 | 欧美日韩黄片免| 丰满的人妻完整版| 成人手机av| 观看免费一级毛片| 亚洲精品国产区一区二| 久久久水蜜桃国产精品网| 国产亚洲av嫩草精品影院| 中文字幕最新亚洲高清| 色哟哟哟哟哟哟| 精品乱码久久久久久99久播| 精品欧美国产一区二区三| 九色国产91popny在线| 亚洲专区国产一区二区| 日韩欧美一区二区三区在线观看| 国产精品久久久久久人妻精品电影| 国产成人欧美在线观看| 欧美激情久久久久久爽电影| 久久精品aⅴ一区二区三区四区| 国产成人精品久久二区二区91| 国产成人欧美在线观看| 老熟妇乱子伦视频在线观看| 国产一区在线观看成人免费| 久久精品国产亚洲av高清一级| www国产在线视频色| 欧美乱色亚洲激情| 午夜a级毛片| 成人午夜高清在线视频 | 日韩欧美三级三区| 麻豆国产av国片精品| 黄片播放在线免费| 18禁观看日本| 淫秽高清视频在线观看| 国产成人欧美在线观看| 亚洲专区国产一区二区| 亚洲熟妇熟女久久| 亚洲免费av在线视频| 黑人操中国人逼视频| 久久久久亚洲av毛片大全| 女性生殖器流出的白浆| 免费在线观看亚洲国产| 欧美精品啪啪一区二区三区| 亚洲成人国产一区在线观看| 在线观看日韩欧美| 99国产精品99久久久久| 自线自在国产av| 成人免费观看视频高清| 日本撒尿小便嘘嘘汇集6| 99久久99久久久精品蜜桃| 神马国产精品三级电影在线观看 | 日韩欧美 国产精品| 免费电影在线观看免费观看| 中文字幕人妻熟女乱码| 国产熟女xx| 国产野战对白在线观看| 男女视频在线观看网站免费 | 一二三四在线观看免费中文在| 久久精品aⅴ一区二区三区四区| 日本 欧美在线| 日本在线视频免费播放| 亚洲精品中文字幕在线视频| 亚洲av电影在线进入| 美女 人体艺术 gogo| 亚洲av片天天在线观看| 欧美日本亚洲视频在线播放| 制服丝袜大香蕉在线| 少妇的丰满在线观看| 不卡av一区二区三区| 精华霜和精华液先用哪个| 狠狠狠狠99中文字幕| 成熟少妇高潮喷水视频| 成人特级黄色片久久久久久久| 99热只有精品国产| 欧美日韩一级在线毛片| 亚洲av成人一区二区三| 亚洲美女黄片视频| 亚洲国产精品成人综合色| 日本三级黄在线观看| 国产精品亚洲一级av第二区| 中文字幕人妻丝袜一区二区| 两人在一起打扑克的视频| 成人永久免费在线观看视频| 少妇被粗大的猛进出69影院| 亚洲成人久久爱视频| 男男h啪啪无遮挡| 久久人人精品亚洲av| 一夜夜www| 亚洲国产中文字幕在线视频| 老司机靠b影院| 色综合站精品国产| 久久久国产成人精品二区| 婷婷亚洲欧美| 88av欧美| 欧美色欧美亚洲另类二区| 日韩国内少妇激情av| 男女做爰动态图高潮gif福利片| 在线观看免费日韩欧美大片| 欧美日本视频| 午夜a级毛片| 桃红色精品国产亚洲av| 国产精品电影一区二区三区| 国产av在哪里看| 亚洲av第一区精品v没综合| 美女扒开内裤让男人捅视频| 午夜视频精品福利| 99国产综合亚洲精品| 亚洲第一欧美日韩一区二区三区| 欧美三级亚洲精品| 少妇裸体淫交视频免费看高清 | 国产三级黄色录像| 久久久久久大精品| 中文字幕另类日韩欧美亚洲嫩草| 成人手机av| 午夜成年电影在线免费观看| 中文字幕久久专区| 又黄又爽又免费观看的视频| 免费在线观看影片大全网站| 波多野结衣av一区二区av| 免费在线观看完整版高清| 免费看美女性在线毛片视频| 禁无遮挡网站| 桃色一区二区三区在线观看| 高清在线国产一区| 欧美精品啪啪一区二区三区| 精品人妻1区二区| 国产成年人精品一区二区| 国产成人av教育| 不卡av一区二区三区| 久久精品国产清高在天天线| 国产极品粉嫩免费观看在线| 白带黄色成豆腐渣| 女性生殖器流出的白浆| 国内久久婷婷六月综合欲色啪| 久久久久久免费高清国产稀缺| av有码第一页| 欧美国产日韩亚洲一区| 亚洲av成人不卡在线观看播放网| 久久精品成人免费网站| 一本综合久久免费| 深夜精品福利| 欧美中文日本在线观看视频| 国产视频一区二区在线看| 长腿黑丝高跟| 日韩欧美在线二视频| 欧美亚洲日本最大视频资源| 亚洲av熟女| 久久热在线av| 精品国产一区二区三区四区第35| 女警被强在线播放| 久久国产精品影院| 99国产综合亚洲精品| 高清在线国产一区| 亚洲欧美日韩无卡精品| 真人一进一出gif抽搐免费| 搡老熟女国产l中国老女人| 精品国产一区二区三区四区第35| 女警被强在线播放| 日韩中文字幕欧美一区二区| 国产黄色小视频在线观看| 午夜久久久久精精品| 大型黄色视频在线免费观看| 久久久久国内视频| 成人永久免费在线观看视频| 精品乱码久久久久久99久播| 人妻久久中文字幕网| 日本黄色视频三级网站网址| 欧美zozozo另类| 精品久久久久久久久久久久久 | 人人妻,人人澡人人爽秒播| 欧美人与性动交α欧美精品济南到| 日韩大尺度精品在线看网址| 天天躁夜夜躁狠狠躁躁| 亚洲性夜色夜夜综合| 午夜福利成人在线免费观看| 麻豆成人av在线观看| 国产私拍福利视频在线观看| 国产精华一区二区三区| 欧美一级a爱片免费观看看 | 亚洲五月色婷婷综合| 国产91精品成人一区二区三区| 久久香蕉激情| 国产激情偷乱视频一区二区| 欧美日本亚洲视频在线播放| 18美女黄网站色大片免费观看| 久久人妻av系列| 又黄又爽又免费观看的视频| 精品国产亚洲在线| 国产精品久久久久久精品电影 | 国产午夜福利久久久久久| 99热只有精品国产| 在线看三级毛片| 91在线观看av| 亚洲片人在线观看| 亚洲国产欧美一区二区综合| 最新美女视频免费是黄的| 国产一级毛片七仙女欲春2 | 人妻丰满熟妇av一区二区三区| 日韩精品青青久久久久久| 精品免费久久久久久久清纯| 欧美日韩亚洲国产一区二区在线观看| 国产精品1区2区在线观看.| 草草在线视频免费看| 人成视频在线观看免费观看| 久久久国产成人精品二区| 亚洲中文日韩欧美视频| 久久精品亚洲精品国产色婷小说| 国产精品98久久久久久宅男小说| 久久婷婷成人综合色麻豆| 婷婷精品国产亚洲av在线| 久久久水蜜桃国产精品网| 国产亚洲av嫩草精品影院| 午夜久久久久精精品| 欧美日韩瑟瑟在线播放| 国产av在哪里看| 国产精品av久久久久免费| 一本精品99久久精品77| 一a级毛片在线观看| 久久香蕉激情| 日韩中文字幕欧美一区二区| 51午夜福利影视在线观看| 欧美一级a爱片免费观看看 | 嫁个100分男人电影在线观看| 搡老熟女国产l中国老女人| 国产精品二区激情视频| 亚洲第一电影网av| 午夜a级毛片| 很黄的视频免费| 国产亚洲av高清不卡| 国产亚洲精品久久久久5区| 啦啦啦观看免费观看视频高清| 久久久国产欧美日韩av| 非洲黑人性xxxx精品又粗又长| 亚洲三区欧美一区| 99久久无色码亚洲精品果冻| 久久精品亚洲精品国产色婷小说| 淫秽高清视频在线观看| 中文字幕久久专区| 国产成年人精品一区二区| 亚洲精品国产一区二区精华液| 伊人久久大香线蕉亚洲五| 免费看十八禁软件| 老熟妇乱子伦视频在线观看| 久久精品国产亚洲av高清一级| 黄色毛片三级朝国网站| 99精品欧美一区二区三区四区| 特大巨黑吊av在线直播 | 欧美日韩亚洲国产一区二区在线观看| 久久人人精品亚洲av| 99精品久久久久人妻精品| 亚洲五月色婷婷综合| 午夜亚洲福利在线播放| 亚洲午夜理论影院| 淫秽高清视频在线观看| 麻豆一二三区av精品| 久久精品国产清高在天天线| 丰满人妻熟妇乱又伦精品不卡| 亚洲成人精品中文字幕电影| 日韩一卡2卡3卡4卡2021年| 国产午夜福利久久久久久| 男女视频在线观看网站免费 | 亚洲成人精品中文字幕电影| 99久久精品国产亚洲精品| 老汉色∧v一级毛片| 男女视频在线观看网站免费 | 国产成人系列免费观看| 99久久国产精品久久久| 久久精品91蜜桃| 老鸭窝网址在线观看| 国产伦在线观看视频一区| av有码第一页| 黄色毛片三级朝国网站| 国产午夜精品久久久久久| xxx96com| 午夜福利一区二区在线看| 国产成人欧美在线观看| 日韩成人在线观看一区二区三区| 午夜老司机福利片| 亚洲专区中文字幕在线| 一本一本综合久久| 亚洲精品国产区一区二| 制服诱惑二区| 999久久久精品免费观看国产| 人成视频在线观看免费观看| 婷婷亚洲欧美| 69av精品久久久久久| 香蕉久久夜色| 91av网站免费观看| 久久久久免费精品人妻一区二区 | 成人18禁高潮啪啪吃奶动态图| 国产又色又爽无遮挡免费看| 欧美另类亚洲清纯唯美| avwww免费| 少妇的丰满在线观看| 亚洲精品在线观看二区| 99久久精品国产亚洲精品| 大型黄色视频在线免费观看| 一进一出抽搐动态| 老熟妇仑乱视频hdxx| 色精品久久人妻99蜜桃| 日本成人三级电影网站| 又大又爽又粗| 日本成人三级电影网站| 18禁裸乳无遮挡免费网站照片 | 性色av乱码一区二区三区2| 午夜日韩欧美国产| 免费高清在线观看日韩| 精品国产国语对白av| av有码第一页| 国产成人精品久久二区二区免费| 欧美日韩中文字幕国产精品一区二区三区| 欧美最黄视频在线播放免费| 亚洲熟妇中文字幕五十中出| 看免费av毛片| 老汉色av国产亚洲站长工具| 精品国产乱子伦一区二区三区| 国产私拍福利视频在线观看| 黑人欧美特级aaaaaa片| 亚洲久久久国产精品| 国产又黄又爽又无遮挡在线| 宅男免费午夜| 黑人欧美特级aaaaaa片| 亚洲av成人av| 国产激情欧美一区二区| 成人免费观看视频高清| 精品国产国语对白av| 90打野战视频偷拍视频| 亚洲av片天天在线观看| 丝袜美腿诱惑在线| 欧美国产精品va在线观看不卡| 国产亚洲精品久久久久5区| 女人爽到高潮嗷嗷叫在线视频| 亚洲av电影在线进入| 色播在线永久视频| 极品教师在线免费播放| 国产伦在线观看视频一区| 久久中文字幕人妻熟女| 亚洲va日本ⅴa欧美va伊人久久| 叶爱在线成人免费视频播放| 熟妇人妻久久中文字幕3abv| 亚洲欧美一区二区三区黑人| 老司机在亚洲福利影院| or卡值多少钱| 亚洲天堂国产精品一区在线| 亚洲国产毛片av蜜桃av| 亚洲五月婷婷丁香| 久久久久久久久中文| 国内揄拍国产精品人妻在线 | 啦啦啦观看免费观看视频高清| 国产野战对白在线观看| 日本免费一区二区三区高清不卡| 国产黄色小视频在线观看| 成人18禁高潮啪啪吃奶动态图| 嫩草影视91久久| 欧美在线一区亚洲| 免费观看精品视频网站| 亚洲全国av大片| 51午夜福利影视在线观看| 看免费av毛片| 久久亚洲精品不卡| 在线av久久热| 成人av一区二区三区在线看| 欧美黑人巨大hd| 黄色毛片三级朝国网站| 丰满的人妻完整版| 日本在线视频免费播放| 亚洲av美国av| 丁香六月欧美| 日韩视频一区二区在线观看| 中文字幕精品免费在线观看视频| 欧美zozozo另类| 免费无遮挡裸体视频| 中亚洲国语对白在线视频| 又紧又爽又黄一区二区| 禁无遮挡网站| 18禁观看日本| 国产区一区二久久| av在线播放免费不卡| 一卡2卡三卡四卡精品乱码亚洲| 在线观看一区二区三区| 中文在线观看免费www的网站 | 91国产中文字幕| 国产午夜福利久久久久久| 别揉我奶头~嗯~啊~动态视频| 亚洲成人久久性| 在线观看免费午夜福利视频| 免费看a级黄色片| 精品久久蜜臀av无| 在线永久观看黄色视频| 啦啦啦观看免费观看视频高清| 国产精品九九99| 精品久久久久久久人妻蜜臀av| 国产av一区二区精品久久| 国产亚洲欧美98| 亚洲精品av麻豆狂野| 波多野结衣巨乳人妻| www.999成人在线观看| 91大片在线观看| av欧美777| 亚洲成a人片在线一区二区| 国产爱豆传媒在线观看 | 天堂√8在线中文| 亚洲国产中文字幕在线视频| 亚洲欧美日韩无卡精品| 精品无人区乱码1区二区| 日韩欧美 国产精品| 男人的好看免费观看在线视频 | 精品久久久久久久久久免费视频| 久久狼人影院| 又黄又爽又免费观看的视频| 亚洲成人久久性| 欧美人与性动交α欧美精品济南到| 精品福利观看| 男女之事视频高清在线观看| 成人精品一区二区免费| 国产欧美日韩精品亚洲av| 久久久国产成人精品二区| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲人成电影免费在线| 在线观看免费视频日本深夜| 男女视频在线观看网站免费 | 欧美精品亚洲一区二区| 国产黄色小视频在线观看| 看片在线看免费视频| 国产精品二区激情视频| 亚洲人成伊人成综合网2020| 97碰自拍视频| 国产麻豆成人av免费视频| 亚洲一区二区三区色噜噜| 久久久久久久精品吃奶| 香蕉久久夜色| 日韩视频一区二区在线观看| 窝窝影院91人妻| 岛国视频午夜一区免费看| 最新美女视频免费是黄的| 男人舔女人下体高潮全视频| 欧美日韩亚洲国产一区二区在线观看| 亚洲第一av免费看| 免费在线观看成人毛片| 悠悠久久av| 99久久无色码亚洲精品果冻| 亚洲自偷自拍图片 自拍| 亚洲欧美一区二区三区黑人| 一本精品99久久精品77| av在线播放免费不卡| 可以免费在线观看a视频的电影网站| 亚洲专区中文字幕在线| 男人的好看免费观看在线视频 | 大型黄色视频在线免费观看| 一本一本综合久久| 12—13女人毛片做爰片一| 久久久久国内视频| 侵犯人妻中文字幕一二三四区| 国产精品久久久久久人妻精品电影| 白带黄色成豆腐渣| 中文字幕另类日韩欧美亚洲嫩草| 亚洲av成人一区二区三| 美女高潮喷水抽搐中文字幕| 日本三级黄在线观看| 草草在线视频免费看| √禁漫天堂资源中文www| 午夜福利欧美成人| 国产激情久久老熟女| 日韩免费av在线播放| 久久午夜亚洲精品久久| 日本成人三级电影网站| av超薄肉色丝袜交足视频| 欧美精品啪啪一区二区三区| 制服丝袜大香蕉在线| 国产激情偷乱视频一区二区| 一二三四社区在线视频社区8| 制服人妻中文乱码| 国产精品久久久人人做人人爽| 成熟少妇高潮喷水视频| 久久国产精品男人的天堂亚洲| 久久久久久亚洲精品国产蜜桃av| 国产av在哪里看| 国产日本99.免费观看| www.自偷自拍.com| 午夜激情福利司机影院| 亚洲av成人不卡在线观看播放网| bbb黄色大片| 999久久久国产精品视频| 一进一出抽搐动态| 韩国精品一区二区三区| 久久久精品国产亚洲av高清涩受| 韩国精品一区二区三区| 非洲黑人性xxxx精品又粗又长| 欧美又色又爽又黄视频| 很黄的视频免费| www日本黄色视频网| 男女那种视频在线观看| 久久中文字幕一级| 欧美精品亚洲一区二区| 无人区码免费观看不卡| 黄色女人牲交| 看片在线看免费视频| 大型av网站在线播放| 免费在线观看影片大全网站| 老司机福利观看| АⅤ资源中文在线天堂| 欧美 亚洲 国产 日韩一| 黄片大片在线免费观看| 最好的美女福利视频网| 午夜久久久久精精品| 久久久精品欧美日韩精品| 欧美精品亚洲一区二区| 非洲黑人性xxxx精品又粗又长| 两个人免费观看高清视频| 国产激情偷乱视频一区二区| 国产精品 国内视频| 久久精品人妻少妇| 精品久久久久久成人av| 久久久久久国产a免费观看| 欧美日韩精品网址| 在线观看免费午夜福利视频| 久久亚洲精品不卡| 色播在线永久视频| a在线观看视频网站| 2021天堂中文幕一二区在线观 | 国产精品日韩av在线免费观看| 久久久久国产精品人妻aⅴ院| 精品欧美国产一区二区三| 在线视频色国产色| 亚洲欧美日韩高清在线视频| 精品免费久久久久久久清纯| 每晚都被弄得嗷嗷叫到高潮| 成人三级做爰电影| 国产精品日韩av在线免费观看| 国产黄片美女视频| 亚洲欧美激情综合另类| 99热只有精品国产| 99国产精品一区二区三区| 日韩高清综合在线| 日韩成人在线观看一区二区三区| 夜夜躁狠狠躁天天躁| 亚洲七黄色美女视频| 久久久久久人人人人人| 久久伊人香网站| videosex国产| 久久香蕉精品热| 国产单亲对白刺激| 日韩三级视频一区二区三区| 国产精品一区二区精品视频观看| 免费在线观看亚洲国产| 岛国视频午夜一区免费看| 亚洲va日本ⅴa欧美va伊人久久| 久久久国产成人免费| 午夜福利欧美成人| 看黄色毛片网站| 十八禁人妻一区二区| 最好的美女福利视频网| 我的亚洲天堂| 欧美在线一区亚洲| 久久久久亚洲av毛片大全| xxx96com| 国产成人精品无人区| 午夜福利高清视频| 国产人伦9x9x在线观看| 国产黄色小视频在线观看| 国产高清视频在线播放一区| 丰满人妻熟妇乱又伦精品不卡| 欧美性猛交╳xxx乱大交人| 日韩中文字幕欧美一区二区| 久久久久国产一级毛片高清牌| 啦啦啦 在线观看视频| 一级a爱视频在线免费观看| 99久久精品国产亚洲精品| 中文字幕人妻丝袜一区二区| 成年版毛片免费区| 美女 人体艺术 gogo| 99热只有精品国产| 婷婷亚洲欧美| 欧美色欧美亚洲另类二区| 波多野结衣高清作品| 婷婷精品国产亚洲av| 久久久久久亚洲精品国产蜜桃av| 免费高清视频大片| 国产精品免费视频内射| 成人国语在线视频| 亚洲熟妇中文字幕五十中出| 国产精品99久久99久久久不卡| 亚洲成a人片在线一区二区| 久久精品影院6| 久热爱精品视频在线9| 久久精品国产99精品国产亚洲性色| 亚洲精品粉嫩美女一区| 亚洲五月色婷婷综合|