• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    In vitro inhibitory effects of plumbagin, the promising antimalarial candidate, on human cytochrome P450 enzymes

    2015-10-31 02:18:29WiriyapornSumsakulWannaChaijaroenkulKesaraNaBangchang

    Wiriyaporn Sumsakul, Wanna Chaijaroenkul, Kesara Na-Bangchang*

    1Graduate Program in Biomedical Sciences, Faculty of Allied Health Sciences, Thammasat University, Pathumthani 12121, Thailand

    2Center of Excellence in Pharmacology and Molecular Biology, Graduate Program in Bioclinical Sciences, Chulabhorn International College of Medicine, Thammasat University, Pathumthani 12121, Thailand

    In vitro inhibitory effects of plumbagin, the promising antimalarial candidate, on human cytochrome P450 enzymes

    Wiriyaporn Sumsakul1, Wanna Chaijaroenkul2, Kesara Na-Bangchang2*

    1Graduate Program in Biomedical Sciences, Faculty of Allied Health Sciences, Thammasat University, Pathumthani 12121, Thailand

    2Center of Excellence in Pharmacology and Molecular Biology, Graduate Program in Bioclinical Sciences, Chulabhorn International College of Medicine, Thammasat University, Pathumthani 12121, Thailand

    ARTICLE INFO

    Article history:

    in revised form 20 September 2015

    Accepted 15 October 2015

    Available online 20 November 2015

    Metabolism

    Human liver microsomes

    Plumbagin

    Cytochrome P450

    Enzyme inhibition

    Objective: To investigate the propensity of plumbagin to inhibit the three isoforms of human cytochrome P450 (CYP), ie., CYP1A2, CYP2C19, and CYP3A4 using human liver microsomes in vitro. Methods: Inhibitory effects of plumbagin on the three human CYP isoformswere investigated using pooled human liver microsomes. Phenacetin O-deethylation,omeprazole hydroxylation and nifedipine oxidation were used as selective substrates for CYP1A2, CYP2C19 and CYP3A4 activities, respectively. Concentrations of paracetamol,5-hydroxyomeprazole, and oxidized nifedipine were determined in microsomal incubation mixture using high performance liquid chromatography. Results: Plumbagin showed significantinhibitory effects on all CYP isoforms, but with the most potent activity on CYP2C19-mediated omeprazole hydroxylation. The IC50 (concentration that inhibits enzyme activity by 50%) values of plumbagin and nootkatone (selective inhibitor) for CYP2C19 were(0.78±0.01) and (27.31±0.66) μM, respectively. The inhibitory activities on CYP1A2-mediated phenacetin O-deethylation and CYP3A4-mediated nifedipine oxidation were moderate. The IC50values of plumbagin and -naphthoflavone (selective inhibitor) for CYP1A2 were(1.39±0.01) and (0.02±0.36) μM, respectively. The corresponding IC50values of plumbagin and ketoconazole (selective inhibitor) for CYP3A4 were (2.37±0.10) and (0.18±0.06) μM,respectively. Conclusions: Clinical relevance of the interference of human drug metabolizing enzymes should be aware of for further development scheme of plumbagin as antimalarial drug when used in combination with other antimalarial drugs which are metabolized by these CYP isoforms.

    Document heading doi:10.1016/j.apjtm.2015.10.016

    1. Introduction

    Malaria is widespread in tropical and subtropical regions. The resistance of Plasmodium falciparum (P. falciparum) to first-line antimalarial drugs has resulted in resurgence in treatment failures[1]. Since antimalarial drug resistance compromises the effective treatment of the disease, there is a pressing need for ongoingdrug discovery research that provides effective and affordable antimalarial agents. Natural products including medicinal plants may offer cheap alternative treatment opportunities for malaria patients.

    Plumbagin (5-hydroxy-2-methyl-1,4-naphthoquinone)is the major constituent in several plants including those in Plumbaginaceae, Droseraceae, Ancestrocladaceae, and Dioncophyllaceae families. It is a yellow naphthoquinone pigment which occurs in the plant roots[2]. This compound has been shown to display a wide effect of pharmacological activities such as activities against malaria, leishmaniasis, chagas disease, viral infections, and cancers[2-6]. The ethanol extract of Plumbagoindica Linn. was demonstrated promising antimalarial activity onchloroquine-resistant (K1) and chloroquine-sensitive (3D7)P. falciparum clones with median (range)IC50of 3.0 (2.7-3.1) and 6.2 (6.2-7.3) μg/mL[7]. Furthermore, we have recently demonstrated the antimalarial activity of plumbagin both in vitro and in vivo[8]. The aim of the present study was to further investigate the propensity of plumbagin to inhibit the three isoforms of human cytochrome P450(CYP), ie.,CYP1A2, CYP2C19 and CYP3A4 using human liver microsomes in vitro. The CYP enzyme system plays crucial roles in the metabolism of xenobiotics and endogenous substances and thus,has a significant impact on the occurrence of drug-drug interactions particularly metabolic drug interaction[9]. Interference of hepatic drug metabolizing enzyme(s) of one drug by the co-administered drug may result in unexpectedly high plasma concentration of the affected drug and severe adverse effect or toxicity[10].

    2. Materials and methods

    2.1. Chemicals

    The authentic plumbagin (purity 98.2%) was obtained from Apin chemicals Co. Ltd (OX, UK). Phenacetin, paracetamol, caffeine,omeprazole, 5-hydroxyomeprazole, nifedipine, oxidized nifedipine,ketoconazole, nootkatone, α-naphthoflavone, and diazepam were purchased from Sigma-Aldrich (St. Louis, MO, USA). 1,4-naphthoquinone was purchased from Wako Pure Chemical Industries, Co. Ltd. (Osaka, Japan). β-nicotinamide adenine dinucleotide phosphate (reduced form) tetrasodium salt (NADPH)was purchased from Merck KGaA (Darmstadt, Germany). Pooled human liver microsomes (from 50 donors) were obtained from Gibco BRL Life Technologies (Grand Island, NY, USA).

    2.2. CYP inhibition

    Inhibitory effects of plumbagin on CYP1A2, CYP2C19 and CYP3A4 activities were investigated in vitro using pooled human liver microsomes in a total volume of 500 μL of 0.1 M sodium phosphate buffer (pH 7.4). The concentration range of each substrate used was approximately equal to its Km (Michaelis constant) value. Each experiment was repeated four times.

    2.2.1. HPLC system

    Analysis of concentrations of each CYP-mediated metabolite was performed using the validated high-performance liquid chromatography (HPLC) method. The HPLC system consisted of TSP HPLC with P4000 solvent delivery system, equipped with an AS3000 auto sampler, UV1000 detector, SN4000 controller(Thermo Finnigan, San Jose, CA, USA), and Chrome Quest software(version 4.0). The HPLC column used was a Thermo Hypersil Gold C-18 reversed phase column (210 mm×4.6 mm, 5 μm particle size). Quality control (QC) samples were run in duplicate in each analytical batch at low, medium, and high concentrations. Criteria for acceptability were four out of six of the QC analyses to lie inside(100±15)% of the nominal values.

    2.2.2. Analytical assay validation

    The precision of the assay methods based on intraday repeatability was determined by analyzing five series concentrations of paracetamol, 5-hydroxyomeprazole, or oxidized nifedipine in phosphate buffer. The repeatability between days was established using the same concentration range of the three compounds, but the analysis was performed on three consecutive days. Results are expressed as relative standard deviation (%RSD) of replicate measurements as follow:

    The accuracy of the analytical methods was determined by comparing the measured concentration of paracetamol,5-hydroxyomeprazole, and oxidized nifedipine in phosphate buffer at each concentration level (n=5) to the true concentration in three replicates within one day and on three consecutive days. Accuracy was reported as percentage bias calculated from the equation: % Bias = [(Measure value - True value)/True value]×100

    Sensitivity of the analytical methods was obtained by the determination the limit of quantification (LOQ). The LOQ was determined based on signal-to-noise approach by comparing measured signals from samples with known lowest concentrations of the test compounds (paracetamol, 5-hydroxyomeprazole, and oxidized nifedipine) and by establishing the minimum concentrations at a typical signal-to-noise ratio is 10:1.

    2.2.3. CYP inhibition

    The inhibitory effect of plumbagin on CYP1A2-mediated phenacetin O-deethylation was performed using -naphthoflavone as a selective inhibitor[11]. In brief, the reaction mixture was preincubated (at 37 ℃, 5 min) with human liver microsomes (0.3 mg/mL, 100 μL), 20 μM phenacetin, and plumbagin(0-10 μM). The reaction was initiated with the addition of 1 mM NADPH. Following an incubation (at 37 ℃) for 60 min, the reaction was stopped by the addition of 500 μL of cold acetonitrile. The internal standard caffeine (500 μM, 50 μL) was added and the incubation mixture was cooled on ice for 5 min and centrifuged at 12 000× g for 15 min. The supernatant was transferred to an autosampling vial and an aliquot of 20 μL was injected onto the HPLC column. The concentrations of paracetamol (metabolite) were measured by HPLC with UV detection (240 nm)[11]. The gradient mobile phase consisted of a mixture of (A) acetonitrile and (B) distilled water; the initial ratio of mobile phase components (A:B) was 90:10 at a flow rate of 1 mL/min. The calibration curve was plotted using high ratioof paracetamol to caffeine on the ordinate, and concentrations of paracetamol (0.1-50 μM) on the abscissa.

    The inhibitory effect of plumbagin on CYP2C19-mediated omeprazole hydroxylation was performed using nootkatone as a selective inhibitor[12]. In brief, the reaction mixture was pre-incubated(at 37 ℃ for 5 min), with human liver microsomes (0.5 mg/mL, 100 μL), 10 μM omeprazole, and plumbagin (0-200 μM). The reaction was initiated with the addition of 1 mM NADPH. Following an incubation (at 37 ℃ for 60 min), the reaction was stopped by the addition of 500 μL of cold acetonitrile. The internal standard 1,4-naphthoquinone (10 μM, 50 μl) was added and the incubation mixture was cooled on ice for 5 min and centrifuged at 12 000×g for 15 min. The supernatant (800 μL) was transferred to an eppendorf tube and evaporated using speed vacuum concentrator (FTS System,Stone Ridge, NY, USA).The dried residue was reconstituted with 100 μL of a mixture of acetonitrile and water (50%:50%, v:v) and 10 μL injected onto the HPLC column. The concentrations of the metabolite 5-hydroxyomeprazole were measured by HPLC with UV detection (302 nm)[12]. The gradient mobile phase consisted of a mixture of (A) acetonitrile and (B) distilled water; the initial ratio of mobile phase components (A:B) was 10:90 at a flow rate of 1 mL/min. The calibration curve was plotted using high ratio of 5-hydroxyomeprazole to 1,4-naphthoquinone on the ordinate,and concentrations of 5-hydroxyomeprazole (40-2 500 nM) on the abscissa.

    The inhibitory effect of plumbagin on CYP3A4-mediated nifedipine oxidation was performed using ketoconazole as a selective inhibitor[13]. In brief, the reaction mixture was pre-incubated (at 37 ℃, 5 min), with human microsomes (0.3 mg/mL, 100 μL), 40 μM nifedipine, and plumbagin (0-20 μM). The reaction was initiated with the addition of 1 mM NADPH. Following an incubation (at 37 ℃ for 40 min), the reaction was stopped by the addition of 500 μL of cold acetonitrile. The internal standard diazepam (80 ng/mL,50 μL) was added and the incubation mixture was cooled on ice for 5 min and centrifuged at 12 000×g for 15 min. The supernatant was transferred to an autosampling vial and an aliquot of 20 μL was injected onto the HPLC column. The concentrations of oxidized nifedipine (metabolite) were measured by HPLC with UV detection(270 nm)[13-15]. The gradient mobile phase consisted of a mixture of (A) methanol and (B) distilled water; the initial ratio of mobile phase components (A:B) was 55:45 at a flow rate of 1 ml/min. The calibration curve was plotted using high ratio of oxidized nifedipine to diazepam on the ordinate, and concentrations of oxidized nifedipine (0.1-25 μM) on the abscissa.

    2.3. Data analysis

    IC50(concentrations causing 50% inhibition of enzyme activity)values were calculated from a logdose—response curve plotted using the Calcusyn? version 1.1 (BioSoft, Cambridge, UK).Data are presented as mean±SD of the four experiments.

    3. Results

    3.1. Analytical assay validation

    The analytical methods for determination ofparacetamol,5-hydroxyomeprazole, and oxidized nifedipine used in the study was found to be sensitive and accurate. The linearity of all calibration curves were demonstrated with coefficient (r2) of greater than 0.995. CYP1A2-mediated metabolism: The LOQ of paracetamol at a signal-to-noise ratio ≥10 was 100 nM. The precision (intra- and inter-) of analytical method (%RSD) was <6.3% and the accuracy(intra- and inter-) of the method was < ±10% (Table 1).

    Table 1 Intra- and inter-assay accuracy and precision of the analytical method for determination of paracetamol (n = 3 for each concentration).

    CYP2C19-mediated metabolism: The LOQ of 5-hydroxyomeprazole at a signal-to-noise ratio ≥10 was 40 nM. The precision (intra- and inter-) of analytical method (%RSD) was<6.22% and the accuracy (intra- and inter-)of the method was < ±7%(Table 2).

    Table 2 Intra- and inter-assay accuracy and precision of the analytical method for determination of 5-hydroxyomeprazole (n = 3 for each concentration).

    CYP3A4-mediated metabolism: The LOQ of oxidized nifedipine at a signal-to-noise ratio ≥10 was 100 nM. The precision (intra- and inter-) of analytical method (%RSD) was <7.05% and the accuracy(intra- and inter-) of the method was < ±6% (Table 3).

    3.2. CYPs inhibition

    The inhibitory effects of plumbagin and positivecontrols on the activities of three major human CYP isoforms, ie., CYP1A2,CYP2C19 and CYP3A4 are shown in Figure 1A-C and the IC50values are presented in Table 4. Plumbagin clearly inhibited CYP1A2-mediated phenacetin O-deethylation, CYP2C19-mediated omeprazole hydroxylation and CYP3A4-mediated nifedipine oxidation in concentration-dependent manners. Among the three CYP isoforms, the inhibitory activity was most potent for CYP2C19,of which its potency was about 35-fold of the selective inhibitornootkatone (mean IC50values of 0.78 μM vs. 27.31 μM). The inhibitory activities on CYP1A2 and CYP3A4 were moderate (about 13- to 69-fold lower than the selective inhibitors).

    Table 3 Intra- and inter-assay accuracy and precision of the analytical method for determination of oxidized nifedipine (n = 3 for each concentration).

    Table 4 IC50values (μM) of plumbagin and selective inhibitors on CYP1A2-mediated phenacetin O-deethylation, CYP2C19-mediated omeprazole hydroxylation,and CYP3A4-mediated nifedipine oxidation (n=4 for each experiment).

    4. Discussion

    Interactions between phytochemicals in herbal medicines and CYP are now well recognized because of their potential clinical and toxicological implications. These phytochemicals could act as substrates, inhibitors or inducers of the CYP isoforms, which can lead to pharmacokinetic interactions with the co-administered drugs metabolized by the same CYP isoform[9,16]. Our results provide evidence for the inhibitory effect of plumbagin on the three major hepatic CYP isoforms, ie., CYP1A2, CYP2C19, and CYP3A4. CYP1A2, CYP2C and CYP3A are expressed in human liver at approximately 13, 20 and 30% of total CYP, respectively[17]. Specific inhibitors recommended by the US FDA were used as reference compounds for the inhibitory activity on each CYP. For CYP2C19 however, since there has been no recommended selective inhibitor,nootakone was used as a reference compound as its inhibitory activity was shown to be selective toward CYP2C19[12]. Certain extent of variations in inhibitory activities of the selective inhibitors were observed compared with that previously been reported. The discrepancy could be due mainly to the choices of substrates used.

    Among the three CYP isoforms under investigation, the inhibitory activity of plumbagin on CYP2C19 was most evident, with potency of about 35-fold of the selective inhibitor nootkatone. CYP2C19 is a major metabolizing enzyme of several clinically important drugs such as proton-pump inhibitors like omeprazole and lanzoprazole,anti-epileptic-like mephenytoin, diazepam, antidepressants, the antiplatelet drug clopidogrel, the antifungal voriconazoleand selective serotonin reuptake inhibitors like citalopram[18]. Previous investigations in man have shown that CYP2C19 activity is susceptible to induction by herbs and natural products, eg., St John's wort, Ginko biloba, and the Chinese herbal mixture Yin Zhi Huang[19-21]. Nevertheless, there has been no clear evidence on the inhibitory effect of herbal remedies on CYP2C19. Although inhibitory activity on CYP3A4 was moderate (mean IC50= 2.37 μM),the clinical relevance of such interaction should not be overlooked as this CYP isoform is involved in the metabolism of 50% of all pharmaceuticals[22]. CYP1A2 is known to play a major role in the metabolism of pre-carcinogens and inhibitory effect of plumbagin to this CYP isoform may contribute only minor interaction with the co-administered drugs[23]. Several other factors are necessary to be considered for definitive conclusion on the clinical relevant metabolic drug interactions. These include comparative dispositionof the individual constituents responsible for inhibition, as well as the locations of the affected CYP (intestine, liver, etc.)[24]. Until further clinical investigations in healthy subjects are confirmed, the potential of this compound for use in treatment of malaria infection may be limited.

    The study demonstrated the propensity of plumbagin to interfere with the three human hepatic CYP isoforms, ie., CYP1A2,CYP2C19, and CYP3A4. The inhibitory potency was highest on CYP2C19. Concurrent administration of plumbagin (as pure compound or as the extract of Plumbago indica Linn.) may result in highly toxic plasma concentrations of the co-administered drugs that are metabolized by these CYP isoforms. Clinical relevance of the interference of human drug metabolizing enzymes should be aware of for further development scheme of plumbagin as antimalarial drug when used co-administration with other antimalarial drugs which are metabolized by CYP1A2, 2C19 and 3A4, ie., quinine, mefloquine and chloroquine.

    Conflict of interest statement

    We declare that we have no conflict of interest.

    Acknowledgements

    The authors gratefully acknowledge the financial support provided by Thammasat University Research Fund under the TU Research Scholar, Contract No 78/2557, Commission on Higher Education, Ministry of Education of Thailand, Office of Higher Education Commission, Thammasat University (Excellence Center in Pharmacology and Molecular Biology of Malaria and Cholangiocarcinoma), Thammasat University and the Thailand Research Fund through a Royal Golden Jubilee Ph.D. scholarship to Wiriyaporn Sumsakul (Grant no. PHD/0326/2551).

    [1] Na-Bangchang K, Congpuong K. Current malaria status and distribution of drug resistance in East and Southeast Asia with special focus to Thailand. Tohoku J Exp Med 2007; 211(2): 99-113.

    [2] Paiva SR, Silva Marques S, Figueiredo MR, Auxiliadora M. Plumbaginales: a pharmacological approach. Floresta e Ambiente 2003;10(1): 98-105.

    [3] Bhargava SK. Effects of plumbagin on reproductive function of male dog. Indian J Exp Biol 1984; 22(3): 153-156.

    [4] Itoigawa M, Takeya K, Furukawa H. Cardiotonic action of plumbagin on guinea-pig papillary muscle. Planta Med 1991; 57(4): 317-319.

    [5] Premakumari P, Rathinam K, Santhakumari G. Antifertility activity of plumbagin. Indian J Med Res 1977; 65(6): 829-838.

    [6] Sandur SK, Ichikawa H, Sethi G, Ahn KS, Aggarwal BB. Plumbagin(5-hydroxy-2-methyl-1,4-naphthoquinone) suppresses NF-kappaB activation and NF-kappaB-regulated gene products through modulation of p65 and IkappaBalpha kinase activation, leading to potentiation of apoptosis induced by cytokine and chemotherapeutic agents. J Biol Chem 2006; 281(25): 17023-17033.

    [7] Thiengsusuk A, Chaijaroenkul W, Na-Bangchang K. Antimalarial activities of medicinal plants and herbal formulations used in Thai traditional medicine. Parasitol Res 2013; 112(4): 1475-1481.

    [8] Sumsakul W, Plengsuriyakarn T, Chaijaroenkul W, Viyanant V, Karbwang J, Na-Bangchang K. Antimalarial activity of plumbagin in vitro and in animal models. BMC Complement Altern Med 2014; 14(15).

    [9] Zhou S, Gao Y, Jiang W, Huang M, Xu A, Paxton JW. Interactions of herbs with cytochrome P450. Drug Metab Rev 2003; 35(1): 35-98.

    [10] Lin JH, Lu AY. Inhibition and induction of cytochrome P450 and the clinical implications. Clin Pharmacokinet 1998; 35(5): 361-390.

    [11] Lavhekar S, Lohade A, Coutinho E, Iyer K. Estimation of microsomal CYP1A2 activity by high performance liquid chromatography. Indian J Pharmaceutical Sci 2006; 68(2): 258.

    [12] Tassaneeyakul W, Guo L, Fukuda K, Ohta T, Yamazoe Y. Inhibition selectivity of grapefruit juice components on human cytochromes P450. Arch Biochem Biophys 2000; 378(2): 356-363.

    [13] Patki K, Von Moltke L, Greenblatt D. In vitro metabolism of midazolam,triazolam, nifedipine, and testosterone by human liver microsomes and recombinant cytochromes p450: role of cyp3a4 and cyp3a5. Drug Metab Dispos 2003; 31(7): 938-944.

    [14] Foti RS, Pearson JT, Rock DA, Wahlstrom JL, Wienkers LC. In vitro inhibition of multiple cytochrome P450 isoforms by xanthone derivatives from mangosteen extract. Drug Metab Dispos 2009; 37(9): 1848-1855.

    [15] He N, Edeki T. The inhibitory effects of herbal components on CYP2C9 and CYP3A4 catalytic activities in human liver microsomes. Am J Ther 2004; 11(3): 206-212.

    [16] Wu JJ, Ai CZ, Liu Y, Zhang YY, Jiang M, Fan XR, et al. Interactions between phytochemicals from traditional Chinese medicines and human cytochrome P450 enzymes. Curr Drug Metab 2012; 13(5): 599-614.

    [17] Shimada T, Yamazaki H, Mimura M, Inui Y, Guengerich FP. Interindividual variations in human liver cytochrome P-450 enzymes involved in the oxidation of drugs, carcinogens and toxic chemicals:studies with liver microsomes of 30 Japanese and 30 Caucasians. J Pharmacol Exp Ther 1994; 270(1): 414-423.

    [18] Desta Z, Zhao X, Shin JG, Flockhart DA. Clinical significance of the cytochrome P450 2C19 genetic polymorphism. Clin Pharmacokinet 2002; 41(12): 913-958.

    [19] Fan L, Wang G, Wang LS, Chen Y, Zhang W, Huang YF, et al. Herbal medicine Yin Zhi Huang induces CYP3A4-mediated sulfoxidation and CYP2C19-dependent hydroxylation of omeprazole. Acta Pharmacol Sin 2007; 28(10): 1685-1692.

    [20] Wang LS, Zhou G, Zhu B, Wu J, Wang JG, El-Aty AMA, et al. St John's wort induces both cytochrome P450 3A4—catalyzed sulfoxidation and 2C19—dependent hydroxylation of omeprazole. Clin Pharmacology & Therapeutics 2004; 75(3): 191-197.

    [21] Yin OQ, Tomlinson B, Waye MM, Chow AH, Chow MS. Pharmacogenetics and herb-drug interactions: experience with Ginkgo biloba and omeprazole. Pharmacogenetics 2004; 14(12): 841-850.

    [22] Rendic S, Di Carlo FJ. Human cytochrome P450 enzymes: a status report summarizing their reactions, substrates, inducers, and inhibitors. Drug Metab Rev 1997; 29(1-2): 413-580.

    [23] Ingelman-Sundberg M. Human drug metabolising cytochrome P450 enzymes: properties and polymorphisms. Naunyn Schmiedebergs Arch Pharmacol 2004; 369(1): 89-104.

    [24] Izzo AA, Ernst E. Interactions between herbal medicines and prescribed drugs: a systematic review. Drugs 2001; 61(15): 2163-2175.

    Article history:

    Received 15 August 2015

    Received in revised form 20 September 2015

    Accepted 15 October 2015

    Available online 20 November 2015

    15 August 2015

    Kesara Na-Bangchang, Center of Excellence in Pharmacology and Molecular Biology of Malaria and Cholangiocarcinoma,Chulabhorn International College of Medicine, Thammasat University (Rangsit Campus), Klongluang, Pathumthani, 12121, Thailand.

    E-mail: kesaratmu@yahoo.com

    女人精品久久久久毛片| 视频区图区小说| 深夜精品福利| 国产精品久久久久成人av| 精品国产乱码久久久久久小说| www.av在线官网国产| 亚洲欧美成人精品一区二区| 日韩一区二区视频免费看| 免费一级毛片在线播放高清视频 | 波多野结衣一区麻豆| 黄片小视频在线播放| 国产亚洲精品久久久久久毛片| 亚洲七黄色美女视频| 国产男靠女视频免费网站| 国产精品电影一区二区三区| 精品熟女少妇八av免费久了| 亚洲人成77777在线视频| 午夜免费成人在线视频| 久久精品亚洲熟妇少妇任你| 日本三级黄在线观看| a在线观看视频网站| 亚洲熟妇熟女久久| 人人妻人人澡欧美一区二区 | 美女高潮喷水抽搐中文字幕| 黄色 视频免费看| 真人做人爱边吃奶动态| 亚洲欧美精品综合久久99| 操美女的视频在线观看| 在线观看免费日韩欧美大片| 久久久国产精品麻豆| 亚洲国产欧美日韩在线播放| 中文亚洲av片在线观看爽| 久久国产精品影院| 精品国内亚洲2022精品成人| 亚洲在线自拍视频| av网站免费在线观看视频| 伊人久久大香线蕉亚洲五| 亚洲成人久久性| 欧美不卡视频在线免费观看 | 两个人免费观看高清视频| 侵犯人妻中文字幕一二三四区| 50天的宝宝边吃奶边哭怎么回事| 国产区一区二久久| 午夜免费激情av| 国产伦人伦偷精品视频| 天堂动漫精品| 波多野结衣av一区二区av| 又紧又爽又黄一区二区| 久久久久久久久免费视频了| 99久久精品国产亚洲精品| 最近最新免费中文字幕在线| 亚洲狠狠婷婷综合久久图片| 岛国视频午夜一区免费看| av视频免费观看在线观看| 日韩精品青青久久久久久| 精品不卡国产一区二区三区| 国产精品1区2区在线观看.| 国产精品乱码一区二三区的特点 | 美女高潮喷水抽搐中文字幕| 午夜福利18| 91字幕亚洲| 亚洲一区二区三区色噜噜| 亚洲中文字幕日韩| 欧美绝顶高潮抽搐喷水| 久久精品国产综合久久久| 久久人人爽av亚洲精品天堂| 黄片播放在线免费| 亚洲欧美激情综合另类| 国产精华一区二区三区| 国内毛片毛片毛片毛片毛片| 亚洲成人国产一区在线观看| 村上凉子中文字幕在线| 国产午夜福利久久久久久| 99国产精品一区二区三区| 老司机深夜福利视频在线观看| 欧美绝顶高潮抽搐喷水| 50天的宝宝边吃奶边哭怎么回事| 国产精品秋霞免费鲁丝片| 如日韩欧美国产精品一区二区三区| 国产成人影院久久av| 亚洲av熟女| 欧美在线一区亚洲| 啪啪无遮挡十八禁网站| 亚洲av熟女| 51午夜福利影视在线观看| 老鸭窝网址在线观看| 精品免费久久久久久久清纯| 自线自在国产av| 国产乱人伦免费视频| 亚洲午夜理论影院| 国产精品电影一区二区三区| 久久久久精品国产欧美久久久| 97超级碰碰碰精品色视频在线观看| 好男人在线观看高清免费视频 | 欧美午夜高清在线| 日韩成人在线观看一区二区三区| 日本五十路高清| 少妇 在线观看| 久久精品亚洲精品国产色婷小说| 免费观看精品视频网站| √禁漫天堂资源中文www| 老司机午夜十八禁免费视频| 一区在线观看完整版| 中国美女看黄片| 免费女性裸体啪啪无遮挡网站| 欧美黑人欧美精品刺激| 在线永久观看黄色视频| 亚洲伊人色综图| 国产一区二区三区视频了| 亚洲专区字幕在线| 国产精品电影一区二区三区| 黄片播放在线免费| 欧美另类亚洲清纯唯美| 国产激情久久老熟女| 99久久国产精品久久久| 亚洲色图 男人天堂 中文字幕| 色播亚洲综合网| 欧美激情高清一区二区三区| 亚洲av熟女| 两个人视频免费观看高清| 国产高清有码在线观看视频 | 中文字幕人成人乱码亚洲影| 午夜福利高清视频| 亚洲国产精品合色在线| 美国免费a级毛片| 亚洲av片天天在线观看| 国产精品乱码一区二三区的特点 | 亚洲精品美女久久av网站| 国产成年人精品一区二区| 色综合亚洲欧美另类图片| 亚洲久久久国产精品| 国产黄a三级三级三级人| 99国产精品免费福利视频| 国产精品二区激情视频| 国产精品爽爽va在线观看网站 | 亚洲国产欧美网| 国产1区2区3区精品| tocl精华| a在线观看视频网站| 电影成人av| av视频免费观看在线观看| 精品一品国产午夜福利视频| 搡老岳熟女国产| 欧美日本亚洲视频在线播放| 韩国精品一区二区三区| 精品电影一区二区在线| 丝袜在线中文字幕| 亚洲中文字幕一区二区三区有码在线看 | 国产免费av片在线观看野外av| 99re在线观看精品视频| 精品一品国产午夜福利视频| 欧美在线黄色| 欧美激情 高清一区二区三区| 天堂√8在线中文| 黄色视频,在线免费观看| 亚洲欧美一区二区三区黑人| 亚洲国产欧美一区二区综合| 视频在线观看一区二区三区| 91国产中文字幕| 女警被强在线播放| av片东京热男人的天堂| 久久伊人香网站| 日本在线视频免费播放| 成人18禁高潮啪啪吃奶动态图| 人人澡人人妻人| 九色国产91popny在线| 中文字幕久久专区| 咕卡用的链子| 日韩国内少妇激情av| 午夜精品久久久久久毛片777| 性色av乱码一区二区三区2| 啪啪无遮挡十八禁网站| 电影成人av| 亚洲国产欧美一区二区综合| 丝袜人妻中文字幕| 免费搜索国产男女视频| 免费人成视频x8x8入口观看| 大香蕉久久成人网| 给我免费播放毛片高清在线观看| 成人手机av| 欧美人与性动交α欧美精品济南到| 日韩有码中文字幕| 性少妇av在线| 久久草成人影院| 亚洲第一电影网av| 日韩欧美国产在线观看| 夜夜躁狠狠躁天天躁| 国产av一区在线观看免费| 久久热在线av| 窝窝影院91人妻| 啦啦啦观看免费观看视频高清 | 亚洲最大成人中文| 国产亚洲精品一区二区www| 国产片内射在线| 亚洲成国产人片在线观看| 精品熟女少妇八av免费久了| 夜夜夜夜夜久久久久| 精品久久蜜臀av无| 丰满人妻熟妇乱又伦精品不卡| 久久青草综合色| 久久精品亚洲精品国产色婷小说| 老熟妇乱子伦视频在线观看| 日本黄色视频三级网站网址| 天天躁夜夜躁狠狠躁躁| 国产精品久久久久久精品电影 | 亚洲av成人av| 欧美日韩乱码在线| 如日韩欧美国产精品一区二区三区| 大码成人一级视频| 日日夜夜操网爽| 97人妻天天添夜夜摸| 伊人久久大香线蕉亚洲五| 在线永久观看黄色视频| 亚洲九九香蕉| 波多野结衣av一区二区av| 欧美在线黄色| 香蕉丝袜av| 国产熟女午夜一区二区三区| 亚洲欧美精品综合久久99| 午夜免费鲁丝| 九色亚洲精品在线播放| 韩国精品一区二区三区| 亚洲精品久久成人aⅴ小说| 久久久久久国产a免费观看| 免费女性裸体啪啪无遮挡网站| 后天国语完整版免费观看| 色尼玛亚洲综合影院| 成人永久免费在线观看视频| 亚洲一区二区三区色噜噜| 91成人精品电影| 久久精品影院6| 1024视频免费在线观看| 女人被狂操c到高潮| 日日摸夜夜添夜夜添小说| 亚洲成人免费电影在线观看| 国产精品香港三级国产av潘金莲| 露出奶头的视频| 在线观看日韩欧美| 两个人看的免费小视频| 岛国在线观看网站| 午夜福利18| 美女高潮到喷水免费观看| 国产精华一区二区三区| 法律面前人人平等表现在哪些方面| 麻豆一二三区av精品| 国产视频一区二区在线看| 黑人巨大精品欧美一区二区蜜桃| 亚洲一区二区三区色噜噜| 搡老岳熟女国产| 亚洲人成77777在线视频| 禁无遮挡网站| 欧美国产日韩亚洲一区| 91在线观看av| 亚洲精品中文字幕在线视频| av在线播放免费不卡| 亚洲无线在线观看| 久久精品成人免费网站| 黄色片一级片一级黄色片| 校园春色视频在线观看| 一级毛片高清免费大全| 午夜激情av网站| 亚洲 国产 在线| 欧美午夜高清在线| 99国产精品一区二区蜜桃av| av片东京热男人的天堂| 中文字幕久久专区| 中文亚洲av片在线观看爽| 午夜免费成人在线视频| 宅男免费午夜| 欧美在线一区亚洲| 18美女黄网站色大片免费观看| 亚洲国产欧美一区二区综合| 18美女黄网站色大片免费观看| 色精品久久人妻99蜜桃| 精品免费久久久久久久清纯| 色综合站精品国产| 久久国产精品男人的天堂亚洲| 男人舔女人的私密视频| 色哟哟哟哟哟哟| 激情视频va一区二区三区| 亚洲三区欧美一区| 国产午夜福利久久久久久| 亚洲一区二区三区色噜噜| 亚洲一区二区三区色噜噜| 亚洲中文字幕一区二区三区有码在线看 | www.999成人在线观看| 成人手机av| 50天的宝宝边吃奶边哭怎么回事| 午夜精品国产一区二区电影| www.999成人在线观看| 国产麻豆69| 制服人妻中文乱码| 亚洲精品一卡2卡三卡4卡5卡| 国产av在哪里看| 久久香蕉国产精品| 大香蕉久久成人网| 久久热在线av| 夜夜看夜夜爽夜夜摸| 宅男免费午夜| 日韩高清综合在线| 成人18禁高潮啪啪吃奶动态图| 变态另类成人亚洲欧美熟女 | 69精品国产乱码久久久| 国产av一区在线观看免费| 曰老女人黄片| 一区福利在线观看| 性色av乱码一区二区三区2| 欧美中文日本在线观看视频| 久久精品亚洲精品国产色婷小说| 日本欧美视频一区| 大陆偷拍与自拍| 欧美人与性动交α欧美精品济南到| 午夜久久久久精精品| 少妇 在线观看| 日韩欧美三级三区| 久久香蕉激情| 亚洲国产欧美网| 日韩成人在线观看一区二区三区| 亚洲精华国产精华精| 国产片内射在线| 国产精品乱码一区二三区的特点 | av福利片在线| 日韩大尺度精品在线看网址 | 午夜精品在线福利| 女人爽到高潮嗷嗷叫在线视频| 村上凉子中文字幕在线| 69av精品久久久久久| 亚洲av电影不卡..在线观看| 麻豆国产av国片精品| 中出人妻视频一区二区| 欧美绝顶高潮抽搐喷水| 亚洲人成77777在线视频| 一级,二级,三级黄色视频| 成人18禁在线播放| 欧美成人午夜精品| 亚洲,欧美精品.| 大香蕉久久成人网| 色综合婷婷激情| 日韩 欧美 亚洲 中文字幕| 啪啪无遮挡十八禁网站| 午夜成年电影在线免费观看| svipshipincom国产片| 欧美中文综合在线视频| 久久精品亚洲精品国产色婷小说| 波多野结衣av一区二区av| 亚洲av熟女| 伦理电影免费视频| 久久香蕉精品热| 一进一出好大好爽视频| 禁无遮挡网站| 国产精品野战在线观看| 亚洲美女黄片视频| 少妇裸体淫交视频免费看高清 | 国产成人啪精品午夜网站| 亚洲自偷自拍图片 自拍| 99国产极品粉嫩在线观看| 久久人妻福利社区极品人妻图片| 亚洲免费av在线视频| 欧美乱色亚洲激情| 日韩成人在线观看一区二区三区| 午夜亚洲福利在线播放| 欧美色欧美亚洲另类二区 | 国产精品二区激情视频| 制服诱惑二区| 亚洲 欧美一区二区三区| 亚洲中文字幕一区二区三区有码在线看 | 91九色精品人成在线观看| 欧美日本亚洲视频在线播放| 日本 欧美在线| 日韩欧美国产在线观看| 不卡一级毛片| 露出奶头的视频| √禁漫天堂资源中文www| 亚洲 欧美 日韩 在线 免费| 久久香蕉国产精品| 非洲黑人性xxxx精品又粗又长| 一本综合久久免费| 一区二区日韩欧美中文字幕| 国产成人影院久久av| 中文字幕久久专区| 女人高潮潮喷娇喘18禁视频| 亚洲一码二码三码区别大吗| 高潮久久久久久久久久久不卡| 日韩欧美国产一区二区入口| 少妇裸体淫交视频免费看高清 | 麻豆成人av在线观看| 涩涩av久久男人的天堂| 一区二区三区精品91| 精品第一国产精品| 97人妻天天添夜夜摸| 黄片小视频在线播放| 久久久国产成人免费| 咕卡用的链子| 亚洲视频免费观看视频| 欧美人与性动交α欧美精品济南到| 精品卡一卡二卡四卡免费| 亚洲国产看品久久| 丝袜人妻中文字幕| 国产精品野战在线观看| 久久久久亚洲av毛片大全| 日日干狠狠操夜夜爽| 日韩欧美国产在线观看| 久久人人97超碰香蕉20202| 少妇裸体淫交视频免费看高清 | 咕卡用的链子| 每晚都被弄得嗷嗷叫到高潮| 国产精品自产拍在线观看55亚洲| 亚洲欧美精品综合久久99| 亚洲精品一卡2卡三卡4卡5卡| 亚洲久久久国产精品| 十分钟在线观看高清视频www| 久久国产精品影院| 国产精品九九99| 精品日产1卡2卡| 一边摸一边做爽爽视频免费| 久久香蕉国产精品| 成人三级做爰电影| 亚洲精品一卡2卡三卡4卡5卡| 亚洲精品美女久久久久99蜜臀| 欧美黄色淫秽网站| 天天一区二区日本电影三级 | 日本一区二区免费在线视频| 亚洲专区字幕在线| 久热这里只有精品99| 亚洲成av人片免费观看| 精品高清国产在线一区| 亚洲第一av免费看| 中亚洲国语对白在线视频| 我的亚洲天堂| 日韩精品青青久久久久久| av超薄肉色丝袜交足视频| 91九色精品人成在线观看| 在线观看免费视频网站a站| 给我免费播放毛片高清在线观看| 一本综合久久免费| 99国产精品免费福利视频| x7x7x7水蜜桃| 黄色成人免费大全| 亚洲精品美女久久久久99蜜臀| 精品久久蜜臀av无| 国产视频一区二区在线看| 叶爱在线成人免费视频播放| 伦理电影免费视频| 韩国精品一区二区三区| 亚洲aⅴ乱码一区二区在线播放 | 午夜a级毛片| 久久久国产成人免费| 午夜福利影视在线免费观看| 国产精品一区二区三区四区久久 | 在线观看一区二区三区| 最近最新免费中文字幕在线| 国产1区2区3区精品| 黄片大片在线免费观看| 99国产精品一区二区蜜桃av| 亚洲天堂国产精品一区在线| 日本五十路高清| 给我免费播放毛片高清在线观看| 亚洲专区字幕在线| 国产亚洲欧美在线一区二区| 美女扒开内裤让男人捅视频| 少妇粗大呻吟视频| 人成视频在线观看免费观看| 免费在线观看日本一区| 免费少妇av软件| 精品欧美国产一区二区三| 国产伦一二天堂av在线观看| 欧美黄色片欧美黄色片| 久久久久国产一级毛片高清牌| 一级黄色大片毛片| 丝袜美腿诱惑在线| 久久影院123| 黄色女人牲交| 在线av久久热| 动漫黄色视频在线观看| 久久人妻熟女aⅴ| 欧美一级a爱片免费观看看 | 十八禁人妻一区二区| 搡老熟女国产l中国老女人| 99国产精品免费福利视频| 国产精品久久电影中文字幕| 国产av在哪里看| 午夜免费激情av| 99国产精品一区二区三区| av有码第一页| 亚洲天堂国产精品一区在线| 亚洲少妇的诱惑av| 在线观看免费日韩欧美大片| 亚洲自偷自拍图片 自拍| 长腿黑丝高跟| 亚洲精品国产一区二区精华液| 日本免费一区二区三区高清不卡 | 精品国产国语对白av| 日韩欧美三级三区| 老司机福利观看| 日韩精品青青久久久久久| a在线观看视频网站| 搡老熟女国产l中国老女人| 日韩三级视频一区二区三区| 久久热在线av| 国产免费av片在线观看野外av| 热99re8久久精品国产| 亚洲专区国产一区二区| 黑丝袜美女国产一区| 免费在线观看日本一区| 在线观看免费视频网站a站| 极品人妻少妇av视频| 日本黄色视频三级网站网址| 两个人视频免费观看高清| 精品久久久久久久人妻蜜臀av | 久久中文字幕一级| 久久青草综合色| 亚洲激情在线av| 精品午夜福利视频在线观看一区| 自线自在国产av| 久久九九热精品免费| 日韩精品中文字幕看吧| 露出奶头的视频| 国内精品久久久久精免费| 久久狼人影院| 欧美成人一区二区免费高清观看 | svipshipincom国产片| 在线观看免费视频日本深夜| 19禁男女啪啪无遮挡网站| 色尼玛亚洲综合影院| 国产99白浆流出| 国产精品av久久久久免费| 精品国内亚洲2022精品成人| 色综合亚洲欧美另类图片| 中出人妻视频一区二区| 97碰自拍视频| 一区在线观看完整版| 黑人巨大精品欧美一区二区mp4| 黄频高清免费视频| 热re99久久国产66热| 天堂动漫精品| 正在播放国产对白刺激| 巨乳人妻的诱惑在线观看| 精品国产一区二区久久| 亚洲精品国产区一区二| 日本 欧美在线| 色婷婷久久久亚洲欧美| 视频区欧美日本亚洲| 国内精品久久久久精免费| 精品国产美女av久久久久小说| 欧美成人免费av一区二区三区| 久久人人97超碰香蕉20202| 禁无遮挡网站| 在线观看66精品国产| 99国产精品一区二区蜜桃av| 女人爽到高潮嗷嗷叫在线视频| 国产午夜精品久久久久久| 精品一区二区三区av网在线观看| 日韩欧美一区二区三区在线观看| 人妻久久中文字幕网| 久久国产乱子伦精品免费另类| 热99re8久久精品国产| 色哟哟哟哟哟哟| 国产熟女午夜一区二区三区| 12—13女人毛片做爰片一| 男人操女人黄网站| 国产99白浆流出| 男人的好看免费观看在线视频 | 制服丝袜大香蕉在线| 韩国av一区二区三区四区| 成人亚洲精品一区在线观看| 国产成人免费无遮挡视频| 国产一区二区在线av高清观看| 我的亚洲天堂| 中文字幕人成人乱码亚洲影| 成熟少妇高潮喷水视频| 国产又爽黄色视频| 亚洲av电影不卡..在线观看| av在线播放免费不卡| 亚洲国产中文字幕在线视频| 一a级毛片在线观看| 午夜福利成人在线免费观看| 日韩成人在线观看一区二区三区| 美女 人体艺术 gogo| 亚洲专区中文字幕在线| 国产一区二区在线av高清观看| 免费看美女性在线毛片视频| 午夜日韩欧美国产| 国产精品日韩av在线免费观看 | 他把我摸到了高潮在线观看| 久久午夜综合久久蜜桃| 一进一出好大好爽视频| 亚洲国产中文字幕在线视频| 国产精品久久久久久亚洲av鲁大| 亚洲人成电影免费在线| 嫩草影视91久久| 波多野结衣一区麻豆| 在线观看免费视频日本深夜| 成人手机av| 12—13女人毛片做爰片一| 国产成人av教育| 国产野战对白在线观看| 亚洲免费av在线视频| 欧美av亚洲av综合av国产av| 久久草成人影院| 成人三级黄色视频| 亚洲第一欧美日韩一区二区三区| 成人三级黄色视频| 成熟少妇高潮喷水视频| 亚洲精品久久成人aⅴ小说| 亚洲欧洲精品一区二区精品久久久| 国产精品久久久久久精品电影 | 久久久久精品国产欧美久久久| 日韩欧美一区二区三区在线观看| 日韩欧美国产在线观看| 亚洲熟妇熟女久久| 一区二区三区国产精品乱码| 国产精品爽爽va在线观看网站 | 最新在线观看一区二区三区| 日本欧美视频一区| 多毛熟女@视频|